
X10: An Object-Oriented Approach to
Non-Uniform Cluster Computing

Philippe Charles
∗

pcharles@us.ibm.com

Christian Grothoff
†

christian@grothoff.org

Vijay Saraswat ∗

vsaraswa@us.ibm.com

Christopher Donawa
‡

donawa@ca.ibm.com

Allan Kielstra ‡

kielstra@ca.ibm.com

Kemal Ebcioglu ∗

kemal@us.ibm.com

Christoph von Praun ∗

praun@us.ibm.com

Vivek Sarkar ∗

vsarkar@us.ibm.com

ABSTRACT
It is now well established that the device scaling predicted by
Moore’s Law is no longer a viable option for increasing the
clock frequency of future uniprocessor systems at the rate
that had been sustained during the last two decades. As a
result, future systems are rapidly moving from uniprocessor
to multiprocessor configurations, so as to use parallelism in-
stead of frequency scaling as the foundation for increased
compute capacity. The dominant emerging multiprocessor
structure for the future is a Non-Uniform Cluster Computing
(NUCC) system with nodes that are built out of multi-core
SMP chips with non-uniform memory hierarchies, and in-
terconnected in horizontally scalable cluster configurations
such as blade servers. Unlike previous generations of hard-
ware evolution, this shift will have a major impact on exist-
ing software. Current OO language facilities for concurrent
and distributed programming are inadequate for addressing
the needs of NUCC systems because they do not support
the notions of non-uniform data access within a node, or of
tight coupling of distributed nodes.

We have designed a modern object-oriented programming
language, X10, for high performance, high productivity pro-
gramming of NUCC systems. A member of the parti-
tioned global address space family of languages, X10 high-
lights the explicit reification of locality in the form of places;

∗IBM T.J. Watson Research Center, P.O. Box 704, York-
town Heights, NY 10598, USA.
†UCLA Computer Science Department, Boelter Hall, Los
Angeles, CA 90095, USA.
‡IBM Toronto Laboratory, 8200 Warden Avenue, Markham
ON L6G 1C7, Canada.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’05,October 16–20, 2005, San Diego, California, USA.
Copyright 2005 ACM 1-59593-031-0/05/0010 ...$5.00.

lightweight activities embodied in async, future, foreach, and
ateach constructs; a construct for termination detection con-
struct (finish); the use of lock-free synchronization (atomic
blocks); and the manipulation of cluster-wide global data
structures. We present an overview of the X10 program-
ming model and language, experience with our reference
implementation, and results from some initial productivity
comparisons between the X10 and JavaTM languages.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Pro-
gramming—Distributed programming, Parallel program-
ming ; D.3.2 [Programming Languages]: Language Clas-
sifications—Concurrent, distributed, and parallel languages,
Object-oriented languages; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Concurrent
programming structures

General Terms
Languages, Performance, Design

Keywords
X10, Java, Multithreading, Non-uniform Cluster Comput-
ing (NUCC), Partitioned Global Address Space (PGAS),
Places, Data Distribution, Atomic Blocks, Clocks, Scalabil-
ity, Productivity

1. INTRODUCTION
Modern OO languages, such as JavaTM and C], together

with their runtime environments, libraries, frameworks and
tools, have been widely adopted in recent years. Simultane-
ously, advances in technologies for managed runtime envi-
ronments and virtual machines (VMs) have improved soft-
ware productivity by supporting features such as portability,
type safety, value safety, and automatic memory manage-
ment. These languages have also made concurrent and dis-
tributed programming accessible to application developers,
rather than just system programmers. They have supported
two kinds of platforms: a uniprocessor or shared-memory
multiprocessor (SMP) system where one or more threads

execute against a single shared heap in a single VM, and a
loosely-coupled distributed computing system in which each
node has its own VM and communicates with other nodes
using inter-process protocols, such as Remote Method Invo-
cation (RMI) [36].

However, recent hardware technology trends have estab-
lished that the device scaling predicted by Moore’s Law is
no longer a viable option for increasing the clock frequency
of future uniprocessor systems at the rate that had been sus-
tained during the last two decades. As a result, future sys-
tems are rapidly moving from uniprocessor to multiproces-
sor configurations. Parallelism is replacing frequency scal-
ing as the foundation for increased compute capacity. We
believe future server systems will consist of multi-core SMP
nodes with non-uniform memory hierarchies, interconnected
in horizontally scalable cluster configurations such as blade
servers. We refer to such systems as Non-Uniform Cluster
Computing (NUCC) systems to emphasize that they have
attributes of both Non-Uniform Memory Access (NUMA)
systems and cluster systems.

Current OO language facilities for concurrent and
distributed programming, such as threads, the java.

util.concurrent library and the java.rmi package, are in-
adequate for addressing the needs of NUCC systems. They
do not support the notions of non-uniform access within
a node or tight coupling of distributed nodes. Instead, the
state of the art for programming NUCC systems comes from
the High Performance Computing (HPC) community, and
is built on libraries such as MPI [51]. These libraries are
accessible primarily to system experts rather than OO ap-
plication developers. Further, even for the system experts,
it is now common wisdom that the increased complexity
of NUCC systems has been accompanied by a decrease in
software productivity across the application development,
debugging, and maintenance life-cycle [33]. As an example,
current HPC programming models do not offer an effective
solution to the problem of combining multithreaded pro-
gramming and distributed-memory communications. Given
that the majority of future desktop systems will be SMP
nodes, and the majority of server systems will be tightly-
coupled, horizontally scalable clusters, we believe there is an
urgent need for a new OO programming model for NUCC
systems. Such a model will continue to make concurrent
and distributed programming accessible to application pro-
grammers on current architectures.

X10 [16, 17, 47] is an experimental new language currently
under development at IBM in collaboration with academic
partners. The X10 effort is part of the IBM PERCS project
(Productive Easy-to-use Reliable Computer Systems). By
2010, the project aims to deliver new adaptable, scalable
systems that will provide a 10× improvement in develop-
ment productivity for parallel applications. To accomplish
this goal, PERCS is using a hardware-software co-design
methodology to integrate advances in chip technology, ar-
chitecture, operating systems, compilers, programming lan-
guage and programming environment design.

X10 is a “big bet” in the PERCS project. It aims to de-
liver on the PERCS 10× promise by developing a new pro-
gramming model, combined with a new set of tools (as laid
out in the PERCS Programming Tools agenda, [50]). X10
is intended to increase programmer productivity for NUCC
systems without compromising performance. X10 is a type-
safe, modern, parallel, distributed object-oriented language,

with support for high performance computation over dis-
tributed multi-dimensional arrays. Work on X10 began in
February 2004 using the PERCS Programming Model [50] as
a starting point, and the core design was stabilized in a few
months. To date, we have designed the basic programming
model; defined the 0.41 version of the language (and writ-
ten the Programmers’ Manual); formalized its semantics [47]
and established its basic properties; built a single-VM ref-
erence implementation; and developed several benchmarks
and applications. We are at an early stage in the life-cycle
of the language. We expect the ongoing work on several
cutting-edge applications, tools for the X10 programmer,
and an efficient compiler and multi-VM runtime system to
significantly inform further development of the language.

This paper serves as an overview of the design of X10
v 0.41. Section 2 summarizes the motivation for X10, and
the principles underlying the X10 design. Section 3 con-
tains an overview of the X10 programming model. Sec-
tion 4 discusses some common X10 idioms for concurrent
and distributed programming of NUCC systems, and con-
trasts them with idioms employed in current programming
models. Section 5 contains a productivity analysis for X10
that uses publicly available benchmark programs to compare
the programming effort required for parallelizing a serial ap-
plication using mechanisms currently available in Java vs.
X10. Section 6 summarizes our current reference implemen-
tation, and outlines the implications for an efficient imple-
mentation of X10. Finally, Section 7 discusses related work.
Section 8 contains our conclusions, and mentions several ar-
eas of future work including future extensions to the X10
programming model.

2. X10 DESIGN RATIONALE
In this section, we outline the language and developmental

principles underlying the X10 design.

2.1 Goals
To enable delivery of productivity and performance on

NUCC platforms, X10 balances four major goals: safety,
analyzability, scalability, and flexibility.

Safety.The X10 programming model is intended to be safe,
in the interests of productivity. Large classes of errors com-
mon in HPC applications, such as illegal pointer references,
type errors, initialization errors, buffer overflows are to be
ruled out by design. Modern memory-managed OO lan-
guages such as the Java language show how this can be ac-
complished for sequential languages. Additionally, common
patterns of usage are to be guaranteed to preserve determi-
nacy and avoid deadlocks.

Analyzability. X10 programs are intended to be analyzable
by programs (compilers, static analysis tools, program refac-
toring tools). Simplicity and generality of analyses requires
that the programming constructs – particularly those con-
cerned with concurrency and distribution – be conceptually
simple, orthogonal in design, and combine well with as few
limitations and corner cases as possible. For this a lan-
guage close to the machine, (e.g. C) is not as attractive as a
language with strong data-encapsulation and orthogonality
properties such as the Java language.

Ideally, it should be possible to develop a formal seman-

tics for the language and establish program refactoring rules
that permit one program fragment to be replaced by another
while guaranteeing that no new observable behaviors are in-
troduced. With appropriate tooling support (e.g. based
on Eclipse) it should be possible for the original developer,
or a systems expert interested in optimizing the behavior
of the program on a particular target architecture, to visu-
alize the computation and communication structure of the
program, and refactor it (e.g. by aggregating loops, separat-
ing out communication from computation, using a different
distribution pattern etc). At the same time analyzability
contributes to performance by enabling static and dynamic
compiler optimizations.

Scalability. A program is scalable if the addition of com-
putational resources (e.g. processors) leads to an increase
in performance (e.g. reduction in time to completion). The
scalability of a program fundamentally depends on the prop-
erties of the underlying algorithm, and not the program-
ming language. However a particular programming lan-
guage should not force the programmer to express such
algorithms through language concurrency and distribution
constructs that are themselves not scalable. Conversely, it
should help the programmer identify hot spot design pat-
terns in the code that mitigate against scalability (e.g. in-
ner loops with large amounts of communication). Scalability
contributes to performance, and also productivity because
the effort required to make an application scale can be a
major drain on productivity.

Flexibility. Scalable applications on NUCC systems will
need to exploit multiple forms of parallelism: data paral-
lelism, task parallelism, pipelining, input parallelism etc. To
this end it is necessary that the data-structuring, concur-
rency and distribution mechanisms be general and flexible.
For instance, a commitment to a single processor multiple
data (SPMD) program model would not be appropriate.

Figure 1 outlines the software stack that we expect to see
in future NUCC systems, spanning the range from tools and
very high level languages to low level parallel and commu-
nication runtime systems and the operating system. X10
has been deliberately positioned at the midpoint, so that it
can serve as a robust foundation for parallel programming
models and tools at higher levels while still delivering scal-
able performance at lower levels. and thereby achieve our
desired balance across safety, analyzability, scalability and
flexibility.

2.2 Key Design Decisions
With these goals in mind, we made five key design deci-

sions at the start of the X10 project:

1. Introduce a new programming language, instead of re-
lying on other mechanisms to support new program-
ming models.

2. Use the Java programming language as a starting
point for the serial subset of the new programming
model.

3. Introduce a partitioned global address space (PGAS)
with explicit reification of locality in the form of places.

4. Introduce dynamic, asynchronous activities as the
foundation for concurrency constructs in the language.

5. Include a rich array sub-language that supports dense
and sparse distributed multi-dimensional arrays.

New programming language.Our first design decision
was to pursue a solution based on a new programming lan-
guage, rather than introducing new libraries, frameworks,
or pseudo-comment directives to support our programming
model. Our belief is that future hardware trends towards
NUCC systems will have a sufficiently major impact on soft-
ware to warrant introducing a new language, especially in
light of the safety, analyzability goals and flexibility outlined
above.

Extend a modern OO foundation.Our second decision
was to use the Java programming language as the foun-
dation for the serial subset of X10. A strong driver for
this decision is the widespread adoption of the Java lan-
guage and its accompanying ecosystem of documentation,
libraries, and tools. Second, it supported our safety, ana-
lyzability and flexibility goals. Third, it enabled us to take
advantage of the significant work that has already been done
(e.g. in the context of the Java Grande Forum) to inves-
tigate and remove the limitations of the Java language for
high-performance computing [43]. Other than a few con-
structs that are present in the X10 serial subset but not in
the Java serial subset (notably nullable, value types, multi-
dimensional arrays, region iterators and extern), the serial
subsets of both languages are very similar.

This was a controversial decision because the Java lan-
guage has not as yet proved itself as a viable platform for
scalable high-performance computing. Based on the future
roadmap projected for virtual machine and dynamic com-
pilation technologies, we decided to bet that the perfor-
mance gap between high performance Java applications and
C/C++ applications will be eliminated (if not reversed) by
the 2010 timeframe.

Partitioned Global Address Space.A key limitation in
using the Java language on NUCC systems is that its pro-
gramming model is tied to the notion of a single uniform
heap. Past experience with shared virtual memory systems
and cluster virtual machines e.g., [3], has revealed significant
scalability problems in trying to automatically map a uni-
form heap onto a non-uniform cluster. Thus, we decided to
introduce a partitioned global address space in X10, with ex-
plicit reification of locality in the form of places (Section 3.3).
Places address our scalability goal by enabling X10 program-
mers to control which objects and activities are co-located
in a NUCC system. Other PGAS languages that have been
developed in the past include Titanium [30], UPC [19] and
Co-Array Fortran [44].

Focus on dynamic asynchronous activities.Another lim-
itation of the Java language is that its mechanisms for intra-
node parallelism (threads) and inter-node parallelism (mes-
sages and processes) are too heavyweight and cumbersome
for programming large-scale NUCC systems. We decided to
introduce the notion of asynchronous activities as a foun-
dation for lightweight “threads” that can be created locally
or remotely. Asynchronous activities address the require-
ments of both thread-based parallelism and asynchronous
data transfer in a common framework. When created on

Figure 1: Position of X10 Language in Software Stack for NUCC Systems

a remote place, an asynchronous activity can be viewed as
a generalization of active messages [55]. A number of lan-
guage constructs have been developed to create and coor-
dinate asynchronous activities in an X10 program — async,
future, foreach, ateach, finish, clocks, and atomic blocks (Sec-
tion 3).

An array sub-language.We decided to include a rich
array sub-language that supports dense and sparse, dis-
tributed, multi-dimensional arrays. An X10 array object
(Section 3.4) is a collection of multiple elements that can be
indexed by multi-dimensional points that form the underly-
ing index region for the array. An array’s distribution speci-
fies how its elements are distributed across multiple places in
the PGAS — this distribution remains unchanged through-
out the program’s execution.

While the previous design decisions are applicable to
general-purpose programming in multiple domains, this de-
cision was specifically targeted to high-performance com-
puting domains which include a significant amount of array
processing.

2.3 Methodological Issues
Additionally, we adopted a few methodological principles

which ended up having a significant technical impact:

Focus. Identify the core issues to be tackled, solve them
completely and cleanly, declare other problems, regardless
of their technical attraction, out of scope.

In any new OO programming language design effort the
temptation to tackle all that is broken in current languages
is very strong. Because of limited resources we explicitly

adopted a layered design approach. Several programming
language issues deemed not to be at the core were postponed
for future work even though they were of significant techni-
cal interest to members of the language team. These include:
the design of a new module and component system (elim-
inating class-loaders); the design of new object-structuring
mechanisms (e.g. traits, multi-dispatching); the design of
a generic, place-based, type system integrated with depen-
dent types (necessary for arrays); design for user-specified
operator overloading; design of a new Virtual Machine layer;
design of a weak memory model. We expect these and other
related language issues to be revisited in subsequent iter-
ations of the X10 language design (see Section 8.1). We
expect to realize appropriate designs for these issues that
would not require major revision of the core X10 model.

Build. Build early. Build often. Use what you build. We
wrote a draft Language Report very early, and committed
to building a prototype reference implementation as quickly
as possible. This enabled us to gain experience with pro-
gramming in the language, enabled us to run productivity
tests with programmers who had no prior exposure to X10,
and to bring application developers on board.

This methodological commitment forced us to reconsider
initial technical decisions. We had originally intended to
design and implement a technically sophisticated type sys-
tem that would statically determine whether an activity was
accessing non-local data. We soon realized that such a sys-
tem would take much too long to realize. Since we had
to quickly build a functional prototype, we turned instead
to the idea of using runtime checks which throw exceptions
(e.g. BadPlaceExceptions) if certain invariants associated

with the abstract machine were to be violated by the current
instruction.

This design decision leaves the door open for a future in-
tegration of a static type system. It regards such a type
system as helping the programmer obtain static guarantees
that the execution of the program “can do no wrong”, and
providing the implementation with information that can be
used to execute the program more efficiently (e.g. by omit-
ting runtime checks).

3. X10 PROGRAMMING MODEL
This section provides an overview of the X10 program-

ming model, using example code fragments to illustrate the
key concepts. Figure 2 contains a schematic overview of
the X10 programming model based on the five major de-
sign decisions outlined in the previous section. Briefly, X10
may be thought of as the Java language with its current
support for concurrency, arrays and primitive built-in types
removed, and new language constructs introduced that are
motivated by high-productivity high-performance parallel
programming for future non-uniform cluster systems.

3.1 Places
Figure 2 contains a schematic overview of places and ac-

tivities in X10. A place is a collection of resident (non-
migrating) mutable data objects and the activities that op-
erate on the data. Every X10 activity runs in a place; the
activity may obtain a reference to this place by evaluating
the constant here. The set of places are ordered and the
methods next() and prev() may be used to cycle through
them.

X10 0.41 takes the conservative decision that the number
of places is fixed at the time an X10 program is launched
Thus there is no construct to create a new place. This is
consistent with current programming models, such as MPI,
UPC, and OpenMP, that require the number of processes to
be specified when an application is launched. We may revisit
this design decision in future versions of the language as
we gain more experience with adaptive computations which
may naturally require a hierarchical, dynamically varying
notion of places.

Places are virtual — the mapping of places to physical lo-
cations in a NUCC system is performed by a deployment step
(Figure 1) that is separate from the X10 program. Though
objects and activities do not migrate across places in an X10
program, an X10 deployment is free to migrate places across
physical locations based on affinity and load balance con-
siderations. While an activity executes at the same place
throughout its lifetime, it may dynamically spawn activities
in remote places as illustrated by the outbound activities in
Figure 2.

3.2 Asynchronous Activities
An X10 computation may have many concurrent activi-

ties “in flight” at any given time in multiple places. An
asynchronous activity is created by a statement async (P)

S where P is a place expression and S is a statement. The
statement async S is treated as shorthand for async(here)
S, where here is a constant that stands for the place at which
the activity is executing.

X10 requires that any method-local variable that is ac-
cessed by more than one activity must be declared as final1.
1This restriction is similar to the constraint that must be

This permits an implementation to copy the value (if nec-
essary) when spawning a child activity, and maintain the
invariant that the state of the stack remains private to the
activity. Yet it is expressive enough to permit the determi-
nate transmission of information from a parent activity to
its children activities.

Example 1 (Copy) Consider the following piece of code,
executing at some place i by activity A0. It is intended that
at Line 7 t.val contains a reference to an object allocated
at another place (specifically, place i+1).

Line 1 stores in the local variable Other a reference to
the next place. Line 2 creates a new T object at the current
place, and loads a reference into the local variable t. Line 3
spawns a new activity (call it A1) at Other, and waits until it
finishes (Section 3.2.1). A1 creates a new object (which must
be located in the same place as A1, i.e. at Other), and stores
it in a final local variable t1. A1 may refer to the variable
t (Line 5) in a lexically enclosing scope (even though t is
located at a different place) because t is declared to be final.
A1 spawns a new activity (call it A2) at the place where t is
located. This activity is permitted to read t1 because t1 is
declared final. A2 writes a reference to t1 into t.val (a
field located in the same place).

final place Other = here.next(); //1
final T t = new T(); //2
finish async (Other){ //3

final T t1 = new T(); //4
async (t) t.val = t1; //5

} //6
//7

Note that creating X10 activities is much simpler than
creating Java threads. In X10, it is possible for multiple
activities to be created in-line in a single method. Of course
the body of an activity may specify arbitrary computation,
not just a single read or write; this leads to considerable
flexibility in combining computation with communication.
In contrast, the Java language requires that a thread be
separated out into a new class with a new run() method
when adding a new thread.

3.2.1 Activity Termination, Rooted Exceptions, and
Finish

X10 distinguishes between local termination and global ter-
mination of a statement. The execution of a statement by an
activity is said to terminate locally when the activity has fin-
ished all the computation related to that statement. For ex-
ample, the creation of an asynchronous activity terminates
locally when the activity has been created. A statement
is said to terminate globally when it has terminated locally
and all activities that it may have spawned (if any) have,
recursively, terminated globally.

An activity may terminate normally or abruptly. A state-
ment terminates abruptly when it throws an exception that
is not handled within its scope; otherwise it terminates nor-
mally. The semantics of abrupt termination is straightfor-
ward in a serial context, but gets complicated in a paral-
lel environment. For example, the Java language propa-
gates exceptions up the call stack until a matching han-
dler is found within the thread executing the statement
terminated abruptly. If no such handler is found, then
an uncaughtException method is invoked for the current
thread’s ThreadGroup. Since there is a natural parent-child

obeyed in the body of methods of inner classes in Java.

Figure 2: Overview of X10 Activities, Places and Partitioned Global Address Space (PGAS)

relationship between a thread and a thread that it spawns in
all multi-threaded programming languages, it seems desir-
able to propagate an exception to the parent thread. How-
ever, this is problematic because the parent thread continues
execution in parallel with the child thread, and may termi-
nate prior to the child thread. Therefore it may not be
available to catch exceptions thrown by the child thread.

The statement finish S in X10 converts global termi-
nation to local termination. finish S terminates locally
(and globally) when S terminates globally. If S terminates
normally, then finish S terminates normally and A con-
tinues execution with the next statement after finish S.
Because finish requires the parent activity to suspend, it
is also a very natural collection point for exceptions thrown
by children activities. X10 requires that if S or an activity
spawned by S terminates abruptly, then finish S termi-
nates abruptly and throws a single exception formed from
the collection of all exceptions thrown by S or its spawned
activities.

There is an implicit finish statement surrounding the
main program in an X10 application. Exceptions throw by
this statement are caught by the runtime system and result
in an error message printed on the console.

Example 2 (Copy, revisited) Consider Example 1. The
finish on Line 3 ensures global termination of both A1 and
A2; thus under normal execution A0 advances to Line 7 only
after t.val is not null. A1 may terminate abruptly, e.g.
with an OutOfMemoryException thrown at Line 4. This will
cause A0 to terminate abruptly with an exception thrown at
Line 3; A0 will not progress to Line 7.

3.3 Partitioned Global Address Space
X10 has a global address space. This means that it is

possible for any activity to create an object in such a way
that any other activity has the potential to access it.2 The
address space is said to be partitioned in that each mutable

2For contrast MPI is said to have a local address space.
An object allocated by an MPI process is private to the
process, and must be communicated explicitly to another
process through a communication action such as a send.

location and each activity is associated with exactly one
place, and places do not overlap.

A scalar object in X10 is allocated completely at a single
place. In contrast, the elements of an array (Section 3.4)
may be distributed across multiple places.

X10 supports a Globally Asynchronous Locally Syn-
chronous (GALS) semantics [12] for reads/writes to mutable
locations. Say that a mutable variable is local for an activity
if it is located in the same place as the activity; otherwise
it is remote. An activity may read/write only local vari-
ables (this is called the Locality Rule), and it may do so
synchronously. Any attempt by an activity to read/write
a remote mutable variable results in a BadPlaceException.
Within a place, activities operate on memory in a sequen-
tially consistent fashion [38], that is, the implementation en-
sures that each activity reads and writes a location in one in-
divisible step, without interference with any other activity.3

However, an activity may read/write remote variables only
by spawning activities at their place. Thus a place serves
as a coherence boundary in which all writes to same datum
are observed in the same order by all activities in the same
place. In contrast inter-place data accesses to remote vari-
ables have weak ordering semantics. The programmer may
explicitly enforce stronger guarantees by using sequencing
constructs such as finish, force (Section 3.8) or clocks

(Section 3.6).

Example 3 (Copy, once again) Consider Example 1
again. Both the asyncs are necessary to avoid a
BadPlaceException in any execution of the program
with more than one place.

3.4 Arrays, Regions and Distributions
An array is associated with a (possibly multi-dimensional)

set of index points called its region. For instance, the re-
gion [0:200,1:100] specifies a collection of two-dimensional
points (i,j) with i ranging from 0 to 200 and j ranging
from 1 to 100. Points are used in array index expressions to
pick out a particular array element. A distribution specifies

3As outlined in Section 3.7, atomic blocks are used to ensure
atomicity of groups of intra-place read/write operations.

a place for each point in the region. Several built in distribu-
tions are provided in X10, e.g. the constant distribution, a
block distribution, a blockCyclic distribution etc. Various
general combinators are also provided that create new re-
gions from existing regions (e.g. set union, intersection, dif-
ference), and new distributions from existing distributions
and regions.

The region and distribution associated with an array do
not change during its lifetime. Regions and distributions are
first-class constructs that can also be used independently of
arrays.

Syntactically, an array type is of the form T[.] where T is
the base type, and [.] is the multi-dimensional, distributed
array constructor.4 X10 permits value arrays (in analogy
with value classes, Section 3.9), arrays whose elements can-
not be updated; such arrays are of type T value [.] and
must be initialized at creation time. When allocating an
[.] X10 array, A, it is necessary to specify its distribution.
The distribution and region associated with an array are
available through the fields .region and .distribution.
New arrays can be created by combining multiple arrays,
performing pointwise operations on arrays (with the same
distribution), and by using collective operations (e.g. scan)
that are executed in parallel on existing (distributed) arrays
to create new (distributed) arrays.

Example 4 The following X10 statement

int value [.] A = new int[[1:10,1:10]]
(point[i,j]) { return i+j; } ;

creates an immutable 10×10 array of ints such that element
A[i,j] contains the value i+j.

3.5 For, Foreach, and Ateach
Points, regions and distributions provide a robust founda-

tion for defining three pointwise iterators in X10: 1) point-
wise for for sequential iteration by a single activity, 2) point-
wise foreach for parallel iteration in a single place, and
3) pointwise ateach for parallel iteration across multiple
places.

The statement for (point p : R) S supports sequential
iteration over all the points in region R, by successively as-
signing their values to index variable p in their canonical
lexicographic order. The scope of variable p is restricted to
statement S. When an iteration terminates locally and nor-
mally, the activity continues with the next iteration; the
for loop terminates locally when all its iterations have ter-
minated locally. If an iteration throws an exception, then
the for statement also throws an exception and terminates
abruptly.

A common idiom in X10 is to use pointwise iterators to
iterate over an array’s region:

for (point p : A) A[p] = f(B[p]) ;

(X10 permits a distribution or an array to be used af-
ter the : instead of a region; in both cases the un-
derlying region is used.) The above code will throw an
ArrayIndexOutOfBounds exception if p does not lie in B’s
region, and a BadPlaceException if all the elements in A

4For simplicity, X10 v0.41 permits the expression T[] as a
type whose elements are all the arrays of T defined over the
single-dimensional region 0:n-1 (for some integer n), all of
whose points are mapped to the place here.

and B in the given region are not located here. However,
it makes no assumption about the rank, size and shape of
the underlying region. If needed, standard point operations
can be used to extract individual index values from p e.g.,
p[0] and p[1] return integer index values of the first and
second dimensions of p.

The statement foreach (point p : R) S supports par-
allel iteration over all the points in region R. inally, the state-
ment ateach (point p : D) S supports parallel iteration
over all the points in a distribution D, by launching an iter-
ation for each point p in D.region at the place designated
by D[p].

This is especially convenient for iterating over a dis-
tributed array e.g.,

ateach (point [i,j] : A) A[i,j] = f(B[i,j]) ;

3.6 Clocks
A commonly used construct in Single Program Multiple

Data (SPMD) programs [15] is a barrier. For MPI programs,
a barrier is used to coordinate all members of a process group
in a communicator [51]. Two major limitations with this
approach to coordinating processes are as follows:

1. It is inconvenient to perform MPI barrier operations
on dynamically varying sets of processes. To do so,
the user must explicitly construct each such set as a
distinct process group.

2. It is possible to enter deadlock situations with MPI
barriers, either when a process exits before performing
barriers that other processes are waiting on, or when
different processes operate on different barriers in dif-
ferent orders.

X10’s clocks are designed to support a robust barrier-like
functionality for varying sets of activities, while still guaran-
teeing determinate, deadlock-free parallel computation. At
any step of program execution, a clock C is in a given phase
and has a set of activities that are registered on C. Likewise,
an activity may be registered on multiple clocks. An activ-
ity can perform a next operation to indicate that it is ready
to advance all the clocks that it is registered on. When all
activities that are registered on C enter this quiescent state,
then clock C can be advanced and thereby enable all the ac-
tivities registered on C to resume execution (assuming that
they are not waiting on some other clock as well).

Each activity is spawned with a known set of clocks and
may dynamically create new clocks. At any given time an
activity is registered with zero or more clocks. It may reg-
ister newly created activities with a clock, un-register itself
with a clock, suspend on a clock or require that a state-
ment (possibly involving execution of new async activities)
be executed to completion before the clock can advance.

3.7 Atomic Blocks
An unconditional atomic block is a statement atomic S,

where S is a statement. X10 permits the modifier atomic on
method definitions as a shorthand for enclosing the body of
the method in atomic.

An atomic block is executed by an activity as if in a single
step during which all other concurrent activities in the same
place are suspended. Compared to user-managed locking as
in the synchronized constructs in the Java language, the

X10 user only needs to specify that a collection of state-
ments should execute atomically and leaves the responsibil-
ity of lock management and other mechanisms for enforcing
atomicity to the language implementation. Commutative
operations, such as updates to histogram tables and inser-
tions in a shared data structure, are a natural fit for atomic
blocks when performed by multiple activities.

An atomic block may include method calls, conditionals,
and other forms of sequential control flow. From a scalability
viewpoint, it is important to avoid including blocking or
asynchronous operations in an atomic block.

Example 5 (Linked List) atomic {
node = new Node(data, head);
node.next = head;
head = node;

}

By declaring the block as atomic, the user is able to main-
tain the integrity of a linked list data structure in a mul-
tithreaded context, while avoiding irrelevant details such as
locking structure.

An X10 implementation may use various techniques (e.g.
non-blocking techniques) for implementing atomic blocks
[29, 41, 49]. For simplicity of implementation, X10 speci-
fies isolation only during normal execution. If S terminates
abruptly, then atomic S terminates abruptly. It is the re-
sponsibility of the user to ensure that any side-effects per-
formed by S are cleaned up.

Atomicity is guaranteed for the set of instructions actually
executed in the atomic block. If the atomic block terminates
normally, this definition is likely to coincide with what the
user intended. If the atomic block terminates abruptly by
throwing an exception, then atomicity is only guaranteed for
the instructions executed before the exception is thrown. If
this is not what the user intended, then it is their responsibil-
ity to provide exception handlers with appropriate compen-
sation code. However, compared to user-managed locking in
other languages, the X10 user need not worry about guaran-
teeing atomicity in the presence of multiple locks, since lock
management is the responsibility of the X10 system and is
hidden from the user who programs at the level of atomic
blocks and other high level constructs.

X10 guarantees that any program written using the par-
allel constructs that have been described so far (async,
finish, foreach, ateach, clock, atomic) will never dead-
lock [47].

3.7.1 Conditional atomic blocks
X10 also includes a powerful conditional atomic block,

when (c) S. Execution of when (c) S suspends until a state
is reached in which the condition c is true. In this state the
statement S is executed atomically. atomic S can be seen as
the special case when (true) S. This construct is closely re-
lated to the conditional critical regions of [31, 26]. All other
synchronization constructs can be implemented in terms of
conditional atomic blocks. However, the unrestricted use of
this construct can cause deadlock. Further we have not yet
encountered programming idioms in the high performance
computing space which require the full power of conditional
atomic blocks. Therefore while this construct is in the lan-
guage, its use is currently deprecated.

3.8 Asynchronous Expression and Future

We briefly describe futures, as they are incorporated
in X10. When an activity A0 executes the expression
future(P) E, it spawns an activity A1 at place P to exe-
cute the expression E, and terminates locally yielding a fu-
ture [25], F. When A desires to access the result of computing
E it executes a .force() operation on F: this may block if the
value has not yet been computed. Like async statements,
futures can be used as the foundation for many parallel pro-
gramming idioms including asynchronous DMA operations,
message send/receive, and scatter/gather operations.

3.9 Scalar Reference and Value Classes
An X10 scalar class has fields, methods and inner types

(interfaces or classes), subclasses another class (unless it is
the root class x10.lang.Object, and implements zero or
more interfaces. X10 classes live in a single-inheritance code
hierarchy with root x10.lang.Object. There are two kinds
of scalar classes: reference classes and value classes.

A reference class can contain updatable fields. Objects of
such a class may not be freely copied from place to place.
Methods may be invoked on such an object only by an ac-
tivity in the same place.

A value class must not have updatable fields (defined di-
rectly or through inheritance), and allows no reference sub-
classes. It is declared in the same way as a reference class,
with the keyword value used in place of class. Fields of
value classes may be of a reference class type and therefore
may contain references to objects with mutable state. In-
stances of value classes may be freely copied from place to
place (with copies bottoming out on fields of reference type).
Methods may be invoked on these instances from any place.

X10 has no primitive classes. However, the standard li-
brary x10.lang supplies (final) value classes boolean, byte,
short, char, int, long, float, double, complex and String.
The user may define additional arithmetic value classes us-
ing the facilities of the language.

4. X10 EXAMPLES
In this section, we use sample programs to illustrate X10’s

features to implement concurrent and distributed computa-
tions, and contrast the resulting programs with the patterns
employed in existing multithreaded and message-passing
programming models.

4.1 MonteCarlo
The MonteCarlo benchmark [35] illustrates how X10’s

high-level threading features enable a seamless transition
from a sequential to a multi-threaded program with data
parallelism.

Figure 3 shows two variants of the main computation loop
in the program, first the serial Java version, then the parallel
X10 version. The difference between the serial and the paral-
lel version is merely that the sequential for loop is replaced
by the parallel foreach construct available in X10. Note
that Vector is an implementation of a collection that em-
ploys locks in the Java version (synchronized) and atomic
methods in the X10 version to achieve thread-safety.

The multithreaded Java version of the benchmark (which
we do not show here due to space constraints, see [35]) is
quite different: it is far more complicated than the serial
Java version (38 lines instead of 10 lines) because it involves
defining a new Runnable class for the thread instances, ex-
plicit thread creation, and the slicing of the iteration space

Serial Java version:

public void runSerial() {
results = new Vector(nRunsMC);
PriceStock ps;
for (int iRun=0; iRun < nRunsMC; iRun++) {

ps = new PriceStock();
ps.setInitAllTasks((ToInitAllTasks) initAllTasks);
ps.setTask(tasks.elementAt(iRun));
ps.run();
results.addElement(ps.getResult());

}
}

Multithreaded X10 version:

public void runThread() {
results = new Vector(nRunsMC);
finish foreach (point [iRun] : [0:(nRunsMC-1)]) {

PriceStock ps = new PriceStock();
ps.setInitAllTasks((ToInitAllTasks) initAllTasks);
ps.setTask(tasks.elementAt(iRun));
ps.run();
results.addElement(ps.getResult());

}
}

Figure 3: Comparison of Java vs. X10 codes for MonteCarlo benchmark

across the thread instances.

4.2 SPECjbb
A frequently used pattern in concurrent programming is

that of a phased computation, where threads ’meet’ repeat-
edly at synchronization points (e.g., to exchange intermedi-
ate results) but operate independently during the rest of the
computation.

The SPECjbb benchmark [54] is an example of such a
phased computation. Figure 4 shows a fragment of the Java
version of the benchmark, which was developed during 1996–
2000 and hence uses basic thread primitives rather than the
more recent Java concurrency utilities [40].

There are two classes of activities in SPECjbb, the master
activity, which controls the overall program execution along
a sequence of operation modes, and one or several ware-
house/terminal threads that issue requests to a simulated
database and business logic. The master thread starts the
warehouse threads and repeatedly synchronizes with them
to communicate the current operation mode.

In the Java version, the current operation mode is
explicitly communicated through a shared global vari-
able (Company.mode) from the master thread to the ware-
houses. The warehouses in turn communicate their
progress (initialized, stopped) to the master thread through
global counter variables (Company.initThreadsCount and
Company.stopThreadsCount). Access to these global coun-
ters must occur in an appropriate synchronized block to
avoid inconsistency due to concurrent conflicting updates.
Coordination among the master and warehouse threads is
accomplished through wait/notify primitives. The imple-
mentation is quite sophisticated because the two classes of
threads wait on different condition variables. Each invoca-
tion of wait must be matched by a call to notify/notifyAll
on the same condition variable (see arrows in Figure 4); the
synchronization necessary to communicate the ramp-down
of all warehouse threads to the master is implemented sim-
ilarly.

In contrast, the implementation in X10 (Figure 5) just
uses a single clock to coordinate the work being done by the
master and the warehouse/terminal activities. A next op-
eration is used to enforce the first phase transition which
marks the end of the initializations performed by ware-
house activities (upper arrow in Figure 5). Similarly, a sec-

ond next operation enforces the end of processing in each
warehouse activity after the ramp-down mode is set (lower
arrow, phase 2 in Figure 5). Note that the master and
warehouse/terminal activities synchronize through the same
clock, and that the counters that had to be explicitly man-
aged in the Java implementation are implicit in the use of
clocks in X10.

4.3 RandomAccess
While the previous examples focused on single-place par-

allelism, we use the RandomAccess HPC Challenge bench-
mark [32] to demonstrate that a distributed computation
in X10 can be implemented as an incremental extension of
a serial program. This is in contrast to approaches that
distribute and communicate data according to the message
passing model, where the implementation and algorithm of a
distributed program can significantly differ from the parallel
or the sequential program.

Figure 4.3 outlines an X10 implementation of the Ran-
domAccess HPC Challenge benchmark [32]. The key X10
features used in this example are distributed arrays, ateach,
and collective operations (array sum). First, a large global
array is allocated with a in a block distribution across
all places; this global array is referenced through variable
Table. The initialization code executes in parallel for each
array element at its appropriate place (akin to the ateach

construct). SmallTable refers to a value array; such arrays
can be replicated at each place since value arrays are im-
mutable.

The computational kernel of RandomAccess is a long run-
ning sequential loop which is executed by one activity in each
place using the ateach construct. The iteration space of the
ateach construct is a unique distribution, which associates
a single index value with each place. Each iteration initi-
ates an atomic read-xor-write operation on a randomly se-
lected element, Table[j], in the global array by creating an
async activity at place Table.distribution[j] to ensure
that the Locality Rule is satisfied. The finish operation
ensures global termination of all ateach and async activi-
ties before the sum operation is performed. X10’s standard
library includes several standard distributions (like block)
and collective operations (like sum) that make it convenient
to operate on global arrays.

This example illustrates the use of asynchronous activi-

Figure 4: Outline of Java version of SPECjbb

Figure 5: Outline of X10 version of SPECjbb

public boolean run() {
long[.] Table = new long[dist.factory.block(TABLE_SIZE)] (point [i]) { return i; };
long value[.] SmallTable = new long value[S_TABLE_SIZE] (point [i]) { return i*S_TABLE_INIT; };

finish ateach (point [i]: dist.factory.unique()) {
long ran = initRandom(N_UPDATES_PER_PLACE*i);
for (point [count]: 1:N_UPDATES_PER_PLACE) {

ran = nextRandom(ran);
final int J = f(ran);
final long K = SmallTable[g(ran)];
async(Table.distribution[J]) atomic Table[J]^=K;

}
}
return Table.sum() == EXPECTED_RESULT;

}

Figure 6: RandomAccess example in X10

ties and of partitioned global data in X10. In contrast, the
MPI version of RandomAccess [32] is far more complicated
because it needs to manage variable numbers of nonblocking
message sends and receives on each processor to support the
random communication patterns in this application. The
MPI version uses nonblocking communications in the form
of MPI Isend and MPI Irecv calls, and completion opera-
tions in the form of MPI Test, MPI Wait, and MPI WaitAll

calls, in addition to hard-coding into the program the logic
for distributing a global array across nodes.

5. PRODUCTIVITY ANALYSIS —
PARALLELIZING SERIAL CODE

This section presents a productivity assessment of the X10
language. The focus of this assessment is on the effort re-
quired to convert a serial application to a) a shared-memory
multithreaded parallel version, and b) a distributed-memory
message-passing parallel version. Additional studies are be-
ing planned at IBM to assess other productivity aspects of
X10 for different application work flows e.g., writing new
parallel code from scratch, porting from other languages to
X10, and parallel programming with refactoring tools.

This assessment was performed using the publicly avail-
able Java Grande Forum Benchmark Suite [35] which con-
tains benchmarks with source code available in three ver-
sions — serial, multithreaded [52] and message-passing
based on mpiJava [53]. The key metric used to measure
effort is code size. In general, code size metrics are known
to be a reliable predictor of effort, but not of functionality:
it has been empirically observed that a piece of code with a
larger size will require more effort to develop and maintain,
but there is no guarantee that a piece of code with larger size
has more functionality than a piece of code with smaller size.
This limitation of code size as a metric is not an issue for
this productivity analysis since the functionality of the code
is standardized by the characteristics of the benchmark.

For robustness, we use two metrics for measuring code
size:

1. Source Lines Of Code (SLOC) — the number of non-
comment non-blank lines in the source code of the pro-
gram.

2. Source Statement Count (SSC) — the number of syn-
tactic statements in the source program.

The SLOC metric is used widely, but is prone to varia-
tion based on coding styles such as placement of braces
and of multiple statements in the same line. We use the
SSC metric to guard against these variations. For X10,
Java, and other languages with similar syntax, there are
two rules for counting syntactic statements: 1) any sequence
of non-semicolon lexical tokens terminated by a semicolon
is counted as a statement (this includes variable declara-
tions and executable statements), 2) a statement header is
counted as a statement. Statement headers include com-
pound statement headers (if, while, for, foreach, ateach,
switch, etc.), case/default labels, class headers, interface
headers, and method headers.

Consider the following code fragment as an example:

class Main {

public static void main(String [] args)

{

int percentage = 0;

if (args.length > 0)

{

percentage = 100 / args.length;

}

System.out.println("percentage = " +

percentage);

}

}

The SLOC metric for this example is 12, but the SSC metric
is only 6 since there are exactly 6 syntactic statements in the
example:

1. class Main

2. public static void main(String [] args)

3. int percentage = 0;

4. if (args.length > 0)

5. percentage = 100 / args.length;

6. System.out.println("percentage = " +

percentage);

This example exhibits a 2× gap between SLOC and SSC
metrics. However, for the benchmarks studied in this paper,
the SLOC metric is approximately 1.25× the SSC metric.

Benchmark Code size metric Serial Java Multithreaded Java MPI Java
crypt Classes/SLOC 3/255 4/310 3/335
(Section 2) Total statement count (SSC) 206 252 268

SSC ratio, relative to Serial version 1.22 1.30
Statements deleted, relative to Serial version 50 11
Statements inserted, relative to Serial version 96 73
Change ratio, relative to serial 0.71 0.41

lufact Total size (classes/SLOC) 3/317 6/502 3/449
(Section 2) Total statement count (SSC) 252 399 351

SSC ratio, relative to Serial version 1.58 1.39
Statements deleted, relative to Serial version 36 13
Statements inserted, relative to Serial version 183 112
Change ratio, relative to serial 0.87 0.50

series Total size (classes/SLOC) 3/131 4/175 3/204
(Section 2) Total statement count (SSC) 91 128 146

SSC ratio, relative to Serial version 1.41 1.60
Statements deleted, relative to Serial version 14 10
Statements inserted, relative to Serial version 51 65
Change ratio, relative to serial 0.71 0.82

sor Total size (classes/SLOC) 3/93 4/184 3/240
(Section 2) Total statement count (SSC) 72 149 178

SSC ratio, relative to Serial version 2.07 2.47
Statements deleted, relative to Serial version 10 19
Statements inserted, relative to Serial version 87 125
Change ratio, relative to serial 1.35 2

sparsematmult Total size (classes/SLOC) 3/95 4/185 3/169
(Section 2) Total statement count (SSC) 80 156 139

SSC ratio, relative to Serial version 1.95 1.74
Statements deleted, relative to Serial version 9 18
Statements inserted, relative to Serial version 85 77
Change ratio, relative to serial 1.18 1.19

moldyn Total size (classes/SLOC) 5/384 8/530 5/437
(Section 3) Total statement count (SSC) 346 454 390

SSC ratio, relative to Serial version 1.31 1.13
Statements deleted, relative to Serial version 92 20
Statements inserted, relative to Serial version 200 64
Change ratio, relative to serial 0.84 0.24

montecarlo Total size (classes/SLOC) 15/1134 16/1175 15/1195
(Section 3) Total statement count (SSC) 892 926 940

SSC ratio, relative to Serial version 1.04 1.05
Statements deleted, relative to Serial version 14 9
Statements inserted, relative to Serial version 48 57
Change ratio, relative to serial 0.07 0.07

raytracer Total size (classes/SLOC) 13/592 16/696 13/654
(Section 3) Total statement count (SSC) 468 552 511

SSC ratio, relative to Serial version 1.18 1.09
Statements deleted, relative to Serial version 17 11
Statements inserted, relative to Serial version 101 54
Change ratio, relative to serial 0.25 0.14

jgfutil Total size (classes/SLOC) 2/253 2/271 2/290
(Section 3) Total statement count (SSC) 185 196 210

SSC ratio, relative to Serial version 1.06 1.14
Statements deleted, relative to Serial version 2 9
Statements inserted, relative to Serial version 13 34
Change ratio, relative to serial 0.08 0.23

TOTAL Total size (classes/SLOC) 50/3254 64/4028 50/3973
(all benchmarks) SLOC ratio, relative to Serial version 1.24 1.22

Total statement count (SSC) 2592 3212 3133
SSC ratio, relative to Serial version 1.24 1.21
Total number of statements changed 1108 781
Change ratio for statements, relative to Serial 0.43 0.30

Table 1: SLOC and SSC metrics for serial and parallel versions of benchmarks written in Java

Single-place Multi-place
Benchmark Code size metric Serial X10 Multi-activity X10 Multi-activity X10
crypt Total size (classes/SLOC) 3/246 4/280 3/248
(Section 2) Total statement count (SSC) 197 229 201

SSC ratio, relative to Serial version 1.16 1.02
Statements deleted, relative to Serial version 43 23
Statements inserted, relative to Serial version 75 27
Change ratio, relative to serial .60 .25

lufact Total size (classes/SLOC) 3/304 3/314 3/316
(Section 2) Total statement count (SSC) 246 263 264

SSC ratio, relative to Serial version 1.07 1.07
Statements deleted, relative to Serial version 74 77
Statements inserted, relative to Serial version 91 95
Change ratio, relative to serial .67 .70

series Total size (classes/SLOC) 3/134 4/171 3/151
(Section 2) Total statement count (SSC) 98 127 108

SSC ratio, relative to Serial version 1.30 1.10
Statements deleted, relative to Serial version 44 19
Statements inserted, relative to Serial version 73 29
Change ratio, relative to serial 1.19 .49

sor Total size (classes/SLOC) 3/77 3/80 3/84
(Section 2) Total statement count (SSC) 66 68 73

SSC ratio, relative to Serial version 1.03 1.11
Statements deleted, relative to Serial version 2 5
Statements inserted, relative to Serial version 4 12
Change ratio, relative to serial .09 .26

sparsematmult Total size (classes/SLOC) 3/94 3/138 3/139
(Section 3) Total statement count (SSC) 81 128 132

SSC ratio, relative to Serial version 1.58 1.63
Statements deleted, relative to Serial version 27 29
Statements inserted, relative to Serial version 74 80
Change ratio, relative to serial 1.25 1.35

moldyn Total size (classes/SLOC) 5/376 5/420 5/419
(Section 3) Total statement count (SSC) 337 380 403

SSC ratio, relative to Serial version 1.13 1.20
Statements deleted, relative to Serial version 7 7
Statements inserted, relative to Serial version 50 73
Change ratio, relative to serial .17 .24

montecarlo Total size (classes/SLOC) 14/1080 14/1080 14/1080
(Section 3) Total statement count (SSC) 857 857 857

SSC ratio, relative to Serial version 1 1
Statements deleted, relative to Serial version 1 2
Statements inserted, relative to Serial version 1 2
Change ratio, relative to serial 0.00 0.00

raytracer Total size (classes/SLOC) 13/534 13/534 13/544
(Section 3) Total statement count (SSC) 410 411 420

SSC ratio, relative to Serial version 1 1.02
Statements deleted, relative to Serial version 2 10
Statements inserted, relative to Serial version 3 20
Change ratio, relative to serial 0.01 0.07

jgfutil Total size (classes/SLOC) 2/262 2/262 2/262
(Section 3) Total statement count (SSC) 191 191 191

SSC ratio, relative to Serial version 1 1
Statements deleted, relative to Serial version 0 0
Statements inserted, relative to Serial version 0 0
Change ratio, relative to serial 0 0

TOTAL Total size (classes/SLOC) 49/3107 51/3279 49/3243
(all benchmarks) SLOC ratio, relative to Serial version 1.06 1.04

Total statement count (SSC) 2483 2654 2649
SSC ratio, relative to Serial version 1.07 1.07
Total number of statements changed 571 510
Change ratio for statements, relative to Serial 0.23 0.21

Table 2: Classes and SLOC changed, added and deleted to obtain parallel versions of a serial X10 program

This difference between SLOC and SSC is our main moti-
vation for collecting both sets of metrics to ensure the ro-
bustness of our results. Fortunately, our results show that
the code size ratios that are computed to compare different
versions of the same code are approximately the same for
SLOC metrics or SSC metrics.

Table 1 summarizes the statistics for the publicly available
serial, multithreaded and message-passing versions of the
eight Java benchmark programs in the Java Grande Forum
(JGF) Benchmark Suite [35] for which all three versions are
available — crypt, lufact, series, sor, sparsematmult,
moldyn, montecarlo, and raytracer. In addition, jgfutil
contains a common library that is shared by all eight bench-
marks. Five of the eight benchmarks come from Section 2
of the benchmark suite, which contains kernels that are fre-
quently used in high performance applications. The remain-
ing 3 come from Section 3, which includes more complete
applications. We did not include any examples from Section
1, since they consist of low level “microkernel” operations,
which are not appropriate for productivity analysis.

Table 1 displays the SLOC and SSC code size metrics for
the serial, multithreaded, and MPI Java versions of the eight
benchmarks and the jgfutil library. An aggregate of the
metrics is shown at the bottom of the table. In addition
to the totals for the SLOC and SSC metrics, a SLOC ratio
and an SSC ratio are included to capture the expansion in
source code size that occurs when going from the serial Java
version to the multithreaded and MPI Java versions. For
the SSC metrics, we also report the number of statements
deleted and inserted, when comparing the serial version with
the multithreaded version and the MPI version. These num-
bers contribute to a change ratio for SSC metrics, which is
defined as (# insertions + # deletions)/(original size). The
change ratio helps identify cases where significant changes
may have been performed, even if the resulting code size
expansion ratio is close to 1. In general, we see that the
use of Java’s multithreaded programming model for par-
allelization increased the code size by approximately 24%
compared to the serial Java version, and the use of MPI
Java increased the code size by approximately 21% - 22%.
(These expansion factors are almost identical for both SLOC
and SSC metrics.) Using Java threads also led to 14 addi-
tional classes being created. The JGF benchmarks do not
contain any examples of combining Java threads with Java
MPI, which is what’s ultimately needed for programming
NUCC systems. Since both levels of parallelism are orthog-
onal, it is not unreasonable to expect that the SLOC/SSC
increase (compared to the serial version) for a combination
of both the threading and Java MPI programming models
will approximately equal the sum of the individual increases
i.e., approximately 24% + 21% = 45%. Finally, the SSC
change ratios at the bottom of the table adds up to approx-
imately 43% + 30% = 73% for both models, indicating that
the extent of code change is larger than just the code size
increase.

In contrast, Table 2 displays the same metrics for serial,
single-place multi-activity, and multi-place multi-activity
versions of the eight benchmarks translated to X10. All X10
versions reported in the table were executed and validated
using the X10 reference implementation described in Sec-
tion 6. The serial X10 version is usually very similar to the
serial Java version. Comparing Table 2 with Table 1, we see
that the multi-place multi-activity case for X10 increased the

code size by 4% to 7% depending on whether SLOC metrics
or SSC metrics are used. This is less than one-third of the
code size increase observed in the Java case. In addition,
the change ratio is approximately 21% to 23% for X10, com-
pared to 30% to 43% for Java. Of course, the comparison
with Java becomes more significant when compared with
the estimated 73% increase for combining Java threads and
Java MPI.

These results underscore the fact that the effort required
for writing parallel versions of an X10 application is signif-
icantly smaller than the effort required for writing multi-
threaded and MPI versions of a Java application.

6. X10 IMPLEMENTATION
We have two implementations of X10 in progress. Sec-

tion 6.1 describes the reference implementation, and Sec-
tion 6.2 outlines our plans for the scalable optimized imple-
mentation.

6.1 Reference Implementation
We have constructed a reference implementation that pro-

vides a prototype development environment for X10 which
can be used to obtain feedback on the language design
through experimentation and productivity assessments of
sample X10 programs. Programs executing on this imple-
mentation can emulate multiple places on a single node.

The reference implementation supports all language con-
structs presented in Section 3. As shown in Figure 7, the
core components of the X10 reference implementation con-
sist of the following:

1. A source-to-source translator from the X10 language
to the Java language, obtained by modifying and ex-
tending the Polyglot [45] infrastructure. The trans-
lator consists of an X10 parser (driven by the X10
grammar), analysis passes, and a code emitter. The
analysis passes and code templates are used to imple-
ment the necessary static and dynamic safety checks
required by the X10 language semantics. The output
Java program is compiled into classfiles using the stan-
dard javac compiler in the JDK.

2. An X10 execution environment, which consists of a
Java compiler and runtime environment, an X10 mul-
tithreaded runtime system (RTS), and efficient dy-
namic linkage with extern code.

3. A Performance and Environment Monitoring (PEM)
system [56] that (optionally) generates two kinds of
PEM output events from an X10 program execution
— summary abstract performance metrics, and trace
events that can be visualized by the Performance Ex-
plorer [28] tool.

The X10 RTS is written in the Java programming lan-
guage and thus can take advantage of object oriented lan-
guage features such as garbage collection, dynamic type
checking and polymorphic method dispatch.

The Java bytecodes generated from the X10 program ex-
ecute on an unmodified JVM in the X10 Execution Envi-
ronment. This environment contains the X10 RTS which
provides abstractions for places, regions, distributions, ar-
rays and clocks. Some RTS functions are directly available
to the X10 programmer in the form of x10.lang.* libraries.

Figure 7: Structure of X10 Reference Implementation

Figure 8: Structure of a single X10 place

Other RTS functions are only accessible to the Java code
generated by the X10 compiler. In addition to implementing
the core features of the X10 language, the runtime system is
instrumented to collect data about the dynamic execution
characteristics of an application using PEM. For example,
the number of activities initiated remotely can be reported
for each place. This kind of data provides valuable infor-
mation for tuning load balance and data distribution, in-
dependent of the performance characteristics of the target
machine. Lower-level tuning for a given parallel machine
will only be meaningful for the optimized implementation
outlined in the next section.

The reference implementation operates in a single node
and multiple X10 places are supported in a single JVM in-
stance executing on that node. The design of a place cor-
responds to the executor pattern [39]. A place acts as an
executor that dispatches individual activities to a pool of
Java threads, as outlined in Figure 8. Activities in X10 can
be created by async statements, future expressions, foreach
and ateach constructs, and array initializers. The thread
pool model makes it possible to reuse a thread for multiple
X10 activities. However, if an X10 activity blocks, e.g., due
to a force operation on a future, or a next operation on a
clock, its thread will not be available until the activity re-
sumes and completes execution. In that case, a new Java
thread will need to be created to serve any outstanding ac-
tivities. As a result, the total number of threads that can be
created in a single place is unbounded in the reference imple-
mentation. For the scalable optimized implementation, we

are exploring techniques that will store the execution con-
text of an activity and thereby bound the number of threads
in a single place.

Conditional and unconditional atomic blocks are imple-
mented using a single mutual exclusion lock per place. While
this implementation strategy limits parallelism, it is guar-
anteed to be deadlock-free since no X10 computation can
require the implementation to acquire locks for more than
one place.

The X10 language includes support for rectangular multi-
dimensional arrays, in addition to the nested arrays available
in the Java language. An X10 multi-dimensional array is
flattened and represented internally as a combination of an
X10 array descriptor object and a single-dimensional Java
array [42]. The array descriptor is part of a boxed array
implementation which provides information on the distribu-
tion and shape of the array, as well as convenient support
for collective operations.

X10 also provides for convenient and efficient inter-
operability with native code via the extern declaration.
Though rich in functionality, the Java Native Interface (JNI)
is neither convenient nor efficient for many common cases
such as invoking a high-performance mathematical library
on multi-dimensional arrays created by a Java application.
JNI does not allow direct manipulation of Java objects, and
so passing a large array to a native library requires either
copying the array within some native wrapper code, or mod-
ifying the library to use the JNI API to manipulate the ar-
ray. X10 allows direct manipulation of arrays from native
code, and simplifies the interface. An array descriptor is also
passed to the native code so that multi-dimensional arrays
can be handled if required. Any array that is used by an
extern call has its memory pinned so it will not be moved
by garbage collection.

The X10 extern declaration allows programs written in
other languages such as C and Fortran direct access to X10
data. To implement this feature, the system will accommo-
date restrictions on the layout of objects imposed by the
extern language as well as allow pointers to X10 objects
to leave the controlled confines of the virtual machine for
periods of time.

6.2 Scalable Optimized Implementation
In this section, we outline our plans for a multi-VM multi-

node implementation that can be used to deliver scalable
performance on NUCC systems, using IBM’s high perfor-
mance communication library, LAPI [10]. There are a num-
ber of design issues that arise when constructing such a

multi-VM implementation. For example, the standard mem-
ory management and garbage collection implementations for
Java will need to be enhanced for X10, to take into account
the fact that object references can cross cluster boundaries in
a NUCC system. Most other PGAS implementations, such
as UPC [19], place the memory management burden on the
programmer and hence need not worry about supporting
garbage collection (GC). Also, the extensively distributed
nature of X10 programs implies that the implementation
must be engineered to exploit Ahead Of Time (AOT) com-
pilation and packaging more often than is seen in typical
Java systems.

X10 activities are created, executed and terminated in
very large numbers and must be supported by an efficient
lightweight threading model. The thread scheduler will ef-
ficiently dispatch activities as they are created or become
unblocked (and possibly re-use threads that are currently
blocked). The scheduler will also attempt to schedule activ-
ities in such a way as to reduce the likelihood of blocking.
The compilers (source and JIT) also reduce the demands on
the threading system by optimizations such as coalescing of
asynchronous statements and futures, where possible.

Global arrays are X10 arrays in the global address space.
That is, there is a single canonical name for an array, but
the actual storage for it is distributed across multiple places.
When a global array is dereferenced (recall that only the lo-
cal section may be directly operated on in an X10 program)
the address is devirtualized and mapped to local storage at
the specific place where the dereference occurs. Fat Point-
ers are used as canonical handles for global objects such as
these arrays. A fat pointer consists of a globally unique VM
name (an integer) identifying the VM (or node within the
cluster) where the global array’s constructor was invoked,
and a VM-unique (i.e., unique within a given VM) name for
the array. This allows for a unique name without using a
central registry. Each place will provide a mapping from the
fat pointer to the corresponding locally allocated storage.

Clocks are implemented as value objects with an internal
reference to a mutable object o stored at the place at which
the clock instance is created. Each place has a local copy of
this value object, with a fat pointer to o. Communication is
performed through the LAPI library.

Unlike Java, X10 allows header-less value class objects to
be embedded (inlined) in other objects or created on the
stack, similar to C] structs. The production design will en-
sure efficient inlining for multi-dimensioned arrays of value
types, such as complex. The inlined array will contain ex-
actly one header for the element value type in the array de-
scriptor, thereby reducing the overhead of including a header
for each array element. The array descriptor contains a ref-
erence to its distribution (which, in turn, refers to its region
and index bounds). Relative to a Java implementation,
this scheme complicates both bounds checking operations
and GC, because the structure of objects containing nested
header-less objects is more complicated.

The extensively distributed nature of X10 programs (and
other characteristics of HPC programs) implies that the im-
plementation must be engineered to exploit more AOT com-
pilation and packaging than is seen in typical Java systems.

The current implementation uses active messages transfer
capabilities of the LAPI library [10]. Future implementa-
tions will make more effective use of these. In particular, the
data involved in a large message will be stored in a mem-

ory region that does not interfere with frequent lightweight
GC passes, as in a generational collector. The inter-place
communication system will also provide efficient support for
operations on X10 clocks (comparable to the support pro-
vided for barriers in other languages). The compilation and
runtime systems will be improved to aggregate LAPI calls in
many cases. For example, when one place rapidly executes
a series of asyncs at another place as it might in a loop, a
customized active message that encapsulate the minor differ-
ences in program state between the large set of asynchronous
activities will be used. As the language evolves and the
implementation becomes more mature, bytecodes with X10
specific semantics will be added to the VM. Among other
things, these will support future X10 features such as gener-
ics (which are more powerful than those available in current
Java implementations.) They will also better support op-
timized implementations of existing X10 features such as
atomic blocks [49].

7. RELATED WORK
X10 is a class-based, single-inheritance, mostly statically-

typed object-oriented language that shares many common
features with Java [24] and C] [18]. In particular, X10
adopts important safety properties from these languages,
including a safe object model (objects are accessed through
unforgeable reference) and automated memory management
(garbage collection) to guarantee safe memory accesses.
What distinguishes X10 from past object-oriented languages
is the set of constructs available for managing concurrency
and data distribution that enable X10 to target a wide range
of parallel system configurations, including the NUCC sys-
tems discussed in Section 1. The following sections elaborate
on the relationship between X10 and past work on parallel
programming models and languages.

7.1 Language vs. Library
X10 follows, like, e.g., Split-C [37], CILK [14], HPF [20],

Co-Array Fortran [44], Titanium [30], UPC [19], ZPL [11],
Chapel [34], and Fortress [2], a language-based approach to
concurrency and distribution, i.e., concurrency and distribu-
tion are controlled by first-class language constructs, rather
than library extensions or pseudo-comment directives. The
language-based approach facilitates the definition of pre-
cise semantics for synchronization constructs and the shared
memory model [7] and enables a compiler to include con-
currency related constructs in the static analysis and op-
timization. SHMEM [5], MPI [51], and PVM [23] in con-
trast, are library extensions of existing sequential languages,
as are programming models for Grid computing [21]. The
OpenMP [46] approach is based on pseudo-comment direc-
tives so that the parallelism can be enabled for platforms
that support OpenMP, while the underlying program can
still run correctly in sequential mode on other platforms
by ignoring the pseudo-comment directives. While there
are pragmatic reasons for pursuing an approach based on
libraries or directives, our belief is that future hardware
trends towards NUCC systems will have a sufficiently major
impact on software to warrant introducing a new language.

7.2 Concurrency and Distribution
While HPF, ZPL, UPC and Titanium follow an SPMD

style control-flow model where all threads execute the same
code [15], CILK, X10, Chapel, and Fortress choose a more

flexible model and allow more general forms of control flow
among concurrent activities. This flexibility removes the
implicit co-location of data and processing, that is charac-
teristic of the SPMD model. X10’s async and finish are
conceptually similar to CILK’s spawn and sync constructs.
However, X10 is more general than CILK in that it permits
a parent activity to terminate while its child/descendant
activities are still executing, thereby enabling an outer-level
finish to serve as the root for exception handling and global
termination. Fortress offers library support that enables the
runtime system to distribute arrays and to align a struc-
tured computation along the distribution of the data. X10
is somewhat different, in that it introduces places as a lan-
guage concept and abstraction used by the programmer to
explicitly control the allocation of data and processing. A
place is similar to a locale in Chapel and a site in Obliq [8].
Like X10, each object in Obliq is allocated and bound to a
specific site and does not move; objects are accessed though
“network references that can be transmitted from site to
site without restrictions” [8]. In Obliq, arrays cannot be
distributed across multiple sites. Chapel’s model of alloca-
tion is different from X10 and Obliq because Chapel does not
require that an object be bound to a unique place during
its lifetime or that the distribution of an array remain fixed
during its lifetime.

One of the key difference between X10 and earlier dis-
tributed shared object systems such as Linda [1], Munin [6],
and Orca [4] is that those systems presented a uniform data
access model to the programmer, while using compile-time
or runtime techniques under the covers to try and address
the locality and consistency issues of the underlying dis-
tributed platform. X10, in contrast, makes locality and
places explicitly visible to the user, in keeping with the po-
sitioning of X10 in the NUCC software stack that was dis-
cussed in Section 2.

7.3 Communication
X10 activities communicate through the PGAS. The pro-

gramming model and access mechanisms to the PGAS differ
in X10 from other PGAS languages, like Split-C, Titanium,
and UPC. In these languages, there is a uniform way to
access shared memory, irrespective of whether the target lo-
cation of the access is allocated on the local or a remote
processor. Given an object reference p, it can be hard to
tell from manual inspection if a field access of the form p->x

or p.x will generate a non-local communication in these lan-
guages. This lack of performance transparency can in turn
be a productivity bottleneck for performance tuning, since
there’s no indication a priori as to which data accesses in
the program generate non-local communications. X10 fol-
lows the GALS model when accessing the PGAS, and has
two key benefits compared to other PGAS languages. First,
all non-local data accesses are explicitly visible in the code,
and the language is well suited to source code level transfor-
mations that optimize communication e.g., aggregation of
two data accesses to the same place in a single “message”
(activity). Second, the dynamic checking associated with
the Locality Rule helps guide the user when an attempt is
inadvertently made to access a non-local datum. We expect
this level of locality checking to deliver the same kinds of
productivity benefits to programming NUCC applications
that has been achieved by null pointer and array bounds
checking in modern serial applications.

7.4 Synchronization
X10 eschews monitors and locks, which are the main

means of synchronization in Java, C], and Titanium, in fa-
vor of atomic blocks [27]. Chapel [34] and Fortress [2] have
similar language features: Fortress implements a transaction
model with explicit abort; an abort or conflict of a trans-
action can be detected and handled similar to exceptions
(tryatomic). Atomic blocks in X10 do not have such an
abort mechanism and explicitly violate transaction seman-
tics if an unhandled exception occurs during the execution of
an atomic block. Unlike Chapel and Fortress, X10 supports
conditional atomic blocks (when).

Clocks are a synchronization mechanism that is unique
to X10. From an abstract viewpoint, clocks resemble (split)
barriers, which are known, e.g., in UPC, Titanium, and other
languages that adopt their control flow from the SPMD
model. Clocks generalize split barriers in several ways:
Clock synchronization is not necessarily global and may in-
volve only a subset of activities in the overall system. Clocks
operate in phases, where a phase corresponds to the number
of times that the activities transited over the clock. A con-
sequence of this phased computation model is a new class of
variables, so-called clocked final variables, that are affiliated
with a specific clock and are guaranteed to have a constant
value during each phase of that clock. There are certain
restrictions on the usage of clocks that enable a compiler
to verify that clock-based synchronization is free from dead-
lock [47].

8. FUTURE WORK AND CONCLUSIONS

8.1 Future Work
In future work we plan to investigate the impact of X10

on high productivity and high performance.

8.1.1 Array Expressions
Our experience with writing applications in X10 indicates

that many HPC programs can be expressed much more suc-
cinctly if the language is extended with richer support for
operations on arrays, regions and distributions.

We are investigating the suitability of X10 to sophisticated
HPC programs such as adaptive mesh refinement programs,
and those involving multiple physics. It is conceivable that
this work might lead us in a direction where it is natural to
create more places dynamically (e.g. reflecting the need to
create more concurrent locales for execution, based on the
physics of the situation).

An allied notion is that of a hierarchical region, as devel-
oped for instance in the notion of hierarchically tiled arrays
[22]. Here each point in a region is itself a region; thus
one gets a hierarchy of regions. This leads naturally to the
notion of hierarchical distributions, a concept that may be
appropriate for handling adaptive mesh refinement.

Similarly, the need to handle sparse matrix computations
naturally yields the idea of permitting region transforma-
tions, maps that transform one region to another. Consider
a sparse 2-dimensional matrix represented as a single array
a, along with an array row who’s ith entry specifies the in-
dex in a of the first entry in the ith row, and an array col

who’s ith entry specifies the column of the ith entry in a.
Now consider the region ri given by [row[i]:row[i+1]-1].
This specifies the indices of all the elements in a that corre-
spond to the ith row of the matrix. Applying the array col

to this region pointwise yields another region, designated
by col[ri], which represents the column indices of all the
non-zero entries in the ith row of a. Now the dot product of
the ith row of a and a column vector x may be represented
simply by ((a | ri)* (x | col[ri])).sum().5 Such an
implicit presentation of iteration over an array subregion
clearly represents the programmer’s design intent and per-
mits a compiler to generate much more efficient code.

We believe that these extensions will be useful for both
productivity and performance.

8.1.2 Type System
We intend to develop a rich place-based, clock-aware type

system that lets a programmer declare design intent, and
enables bugs related to concurrency and distribution to be
captured at compile time. For instance we intend to develop
a type-checker that can ensure (for many programs) that the
program will not throw a ClockUseException.

We are exploring the use of semantic annotations [13].
For instance a method could be labeled with a modifier now
to indicate that its execution does not invoke a resume or
next operation on any clock. Similarly a modifier here on
a statement may indicate that all variables accessed during
the execution of the statement are local to the current place.

We are developing the notion of clocked final data. A
variable declared to be clocked(c) final, for a clocked c

is guaranteed to be final in each phase of the clock c. It
may be read and written only by activities registered on
c. Assignment to a clocked final variable is thought of as
setting the value of the variable for the next phase of the
clock; this value is switched over to be the current value
when the clock transitions to the next phase. Clocked fi-
nal values may be accessed freely from any place because
they can only be accessed by activities to which they ap-
pear as final. Many applications (e.g. Moldyn in the JGF
benchmarks) can be written to use clocked final arrays. This
annotation succinctly captures design intent as well as pro-
vides information to the implementation that can be used
to improve performance.

8.1.3 Determinate, Deadlock-free Computation
We have recently built on the clocked final idea to propose

a general framework for determinate, parallel, deadlock-free
imperative computation (the clocked final (CF) computa-
tion model, [48]). We intend to develop this computation
model further and instantiate it in X10.

8.1.4 Development of Refactoring Tools
Work is underway to exploit the semantics of X10 and de-

sign refactoring tools that take advantage of X10’s concur-
rency and distribution primitives. We believe such tools will
offer a substantially more productive experience to the ap-
plication programmer than tools based on Sequential Java.

8.1.5 Performance-oriented Compiler
We intend to develop an efficient compiler and multi-node

runtime system for X10, in line with the work described in

5Here a | ri is X10 syntax for the sub-array formed by in-
tersecting the region of a with ri, * represents pointwise
multiplication of two arrays defined over an equinumerous
region, and .sum() represents the sum-reduction of the ar-
ray.

Section 6. This work is critical to establishing the viability
of X10 for the high-performance computing marketplace.

8.1.6 Integration with Continuous Program Opti-
mization

The application of X10 to dynamic HPC problems such
as adaptive mesh refinement requires that the runtime dy-
namically manage the mapping from places to hardware
nodes. We are contemplating the design of a “job control
language” intended to interact with the continuous program
optimization engine [9]. A programmer may write code in
this language to customize the load-balancing algorithm. In
an extension of the language which creates new places, such
a layer would also specify the hardware location at which
these places are to be constructed.

8.2 Conclusion
Future NUCC systems built out of multi-core chips and

tightly-coupled cluster configurations represent a significant
departure from current systems, and will have a major im-
pact on existing and future software. The ultimate chal-
lenge is supporting high-productivity, high-performance par-
allel programming: that is, designing a programming model
that is simple and widely usable and yet efficiently imple-
mentable on current and proposed architectures without re-
quiring “heroic” compilation and optimization efforts. This
challenge has been plaguing the High Performance Comput-
ing community for decades, but the future trends towards
NUCC systems suggest that its impact will be felt by the
software industry as a whole.

Current OO languages are inadequate for addressing the
needs of NUCC systems. We have designed a modern
object-oriented language, X10, for high-productivity high-
performance parallel programming in the presence of non-
uniform data accesses. In this paper, we presented the moti-
vation and principles underlying the X10 design, an overview
of the language itself, discussion of examples written in X10
compared to current programming models, a productivity
analysis focused on the problem of parallelizing serial code,
and a summary of the current implementation status. Our
early experiences with the X10 design, implementation, ap-
plication studies, and productivity analyses indicate that
X10 has the potential to help address the grand challenge of
high-productivity high-performance parallel programming,
while using modern OO programming principles as its foun-
dation.

Acknowledgments
X10 is being developed in the context of the IBM
PERCS (Productive Easy-to-use Reliable Computing Sys-
tems) project, which is supported in part by DARPA un-
der contract No. NBCH30390004. We are grateful to the
following people for their feedback on the design and im-
plementation of X10: George Almasi, David Bacon, Bob
Blainey, Calin Cascaval, Perry Cheng, Julian Dolby, Frank
Tip, Guang Gao, David Grove, Radha Jagadeesan, Maged
Michael, Robert O’Callahan, Filip Pizlo, V.T. Rajan, Ar-
mando Solar-Lezama, Mandana Vaziri, and Jan Vitek. We
also thank the PI of the PERCS project, Mootaz Elnozahy,
for his support and encouragement.

9. REFERENCES
[1] Sudhir Ahuja, Nicholas Carriero, and David Gelernter.

Linda and friends. IEEE Computer, 19(8):26–34,
August 1986.

[2] Eric Allan, David Chase, Victor Luchangco,
Jan-Willem Maessen, Sukyoung Ryu, Guy L. Steele
Jr., and Sam Tobin-Hochstadt. The Fortress language
specification version 0.618. Technical report, Sun
Microsystems, April 2005.

[3] Yariv Aridor, Michael Factor, and Avi Teperman.
cJVM: A single system image of a JVM on a cluster.
In Proceedings of the International Conference on
Parallel Processing (ICPP’99), pages 4–11, September
1999.

[4] Henri E. Bal and M. Frans Kaashoek. Object
distribution in Orca using compile-time and run-time
techniques. In Proceedings of the Conference on
Object-Oriented Programming Systems, Languages and
Applications (OOPSLA’93), pages 162–177, November
1993.

[5] Ray Barriuso and Allan Knies. SHMEM user’s guide.
Technical report, Cray Inc. Research, May 1994.

[6] John K. Bennett, John B. Carter, and Willy
Zwaenepoel. Munin: Distributed shared memory
based on type specific memory coherence. In
Proceedings of the Symposium on Principles of
Programming Languages (POPL’95), pages 168–176,
March 1990.

[7] Hans Boehm. Threads cannot be implemented as a
library. In Proceedings of the Conference on
Programming Language Design and Implementation
(PLDI’05), pages 261–268, June 2005.

[8] Luca Cardelli. A language with distributed scope. In
Proceedings of the Symposium on Principles of
Programming Languages (POPL’95), pages 286–297,
January 1995.

[9] Calin Cascaval, Evelyn Duesterwald, Peter F.
Sweeney, and Robert W. Wisniewski. Multiple page
size modeling and optimization. In Proceedings of the
Conference on Parallel Architectures and Compilation
Techniques (PACT’05), September 2005.

[10] IBM International Technical Support
Organization Poughkeepsie Center. Overview of lapi.
Technical report sg24-2080-00, chapter 10, IBM,
December 1997.
www.redbooks.ibm.com/redbooks/pdfs/sg242080.pdf.

[11] Bradford L. Chamberlain, Sung-Eun Choi, Steven J.
Deitz, and Lawrence Snyder. The high-level parallel
language ZPL improves productivity and performance.
In Proceedings of the IEEE International Workshop on
Productivity and Performance in High-End
Computing, 2004.

[12] Elaine Cheong, Judy Liebman, Jie Liu, and Feng
Zhao. TinyGALS: A Programming model for
event-driven embedded systems. In Proceedings of
2003 ACM Symposium on Applied Computing, 2003.

[13] Brian Chin, Shane Markstrum, and Todd Millstein.
Semantic type qualifiers. In Proceedings of the
Conference on Programming Language Design and
Implementation (PLDI’05), pages 85–95, June 2005.

[14] CILK-5.3 reference manual. Technical report,
Supercomputing Technologies Group, June 2000.

[15] F. Darema, D.A. George, V.A. Norton, and G.F.
Pfister. A Single-Program-Multiple-Data
Computational model for EPEX/FORTRAN. Parallel
Computing, 7(1):11–24, 1988.

[16] Kemal Ebcioğlu, Vijay Saraswat, and Vivek Sarkar.
X10: Programming for hierarchical parallelism and
nonuniform data access (extended abstract). In
Language Runtimes ’04 Workshop: Impact of Next
Generation Processor Architectures On Virtual
Machines (colocated with OOPSLA 2004), October
2004.
www.aurorasoft.net/workshops/lar04/lar04home.htm.

[17] Kemal Ebcioğlu, Vijay Saraswat, and Vivek Sarkar.
X10: an experimental language for high productivity
programming of scalable systems (extended abstract).
In Workshop on Productivity and Performance in
High-End Computing (P-PHEC), February 2005.

[18] ECMA. Standard ecma-334: C] language
specification. http://www.ecma-
international.org/publications/files/ecma-st/Ecma-
334.pdf, December
2002.

[19] Tarek El-Ghazawi, William W. Carlson, and Jesse M.
Draper. UPC Language Specification v1.1.1, October
2003.

[20] High Performance Fortran Forum. High performance
fortran language specification version 2.0. Technical
report, Rice University Houston, TX, October 1996.

[21] Ian Foster and Carl Kesselman. The Globus toolkit.
The Grid: Blueprint of a New Computing
Infrastructure, pages 259–278, 1998.

[22] Basilio B. Fraquela, Jia Guo, Ganesh Bikshandi,
Maria J. Garzaran, Gheorghe Almasi, Jose Moreira,
and David Padua. The hierarchically tiled arrays
programming approach. In Proceedings of the
Workshop on Languages, Compilers, and Runtime
Support for Scalable Systems (LCR’04), pages 1–12,
2004.

[23] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng
Jiang, Robert Manchek, and Vaidy Sunderam. PVM –
Parallel Virtual Machine: A Users’ Guide and
Tutorial for Networked Parallel Computing. MIT
Press, 1994.

[24] James Gosling, Bill Joy, Guy Steele, and Gilad
Bracha. The Java Language Specification. Addison
Wesley, 2000.

[25] Robert H. Halstead. MULTILISP: A language for
concurrent symbolic computation. ACM Transactions
on Programming Languages and Systems,
7(4):501–538, 1985.

[26] Per Brinch Hansen. Structured multiprogramming.
CACM, 15(7), July 1972.

[27] Timothy Harris and Keir Fraser. Language support for
lightweight transactions. In Proceedings of the
Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’03),
pages 388–402, October 2003.

[28] Matthias Hauswirth, Peter F. Sweeney, Amer Diwan,
and Michael Hind. Vertical profiling: Understanding
the behavior of object oriented applications. In
Proceedings of the Conference on Object-Oriented
Programming, Systems, Languages, and Applications

(OOPSLA’04), October 2004.

[29] Maurice Herlihy. Wait-free synchronization. ACM
Transactions on Programming Languages and
Systems, 13(1):124–149, January 1991.

[30] Paul Hilfinger, Dan Bonachea, David Gay, Susan
Graham, Ben Liblit, Geoff Pike, and Katherine Yelick.
Titanium Language Reference Manual. Technical
Report CSD-01-1163, University of California at
Berkeley, Berkeley, Ca, USA, 2001.

[31] C.A.R. Hoare. Monitors: An operating system
structuring concept. CACM, 17(10):549–557, October
1974.

[32] HPC challenge benchmark.
http://icl.cs.utk.edu/hpcc/.

[33] HPL Workshop on High Productivity Programming
Models and Languages, May 2004.
http://hplws.jpl.nasa.gov/.

[34] Cray Inc. The Chapel language specification version
0.4. Technical report, Cray Inc., February 2005.

[35] The Java Grande Forum benchmark suite.
http://www.epcc.ed.ac.uk/javagrande/javag.html.

[36] The Java RMI Specification.
http://java.sun.com/products/jdk/rmi/.

[37] Arvind Krishnamurthy, David E. Culler, Andrea
Dusseau, Seth C. Goldstein, Steven Lumetta,
Thorsten von Eicken, and Katherine Yelick. Parallel
programming in Split-C. In Proceedings of the 1993
ACM/IEEE Conference on Supercomputing, pages 262
– 273, 1993.

[38] L. Lamport. How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE
Transactions on Computers, 28(9), 1979.

[39] Doug Lea. Concurrent Programming in Java, Second
Edition. Addison-Wesley, Inc., Reading,
Massachusetts, 1999.

[40] Doug Lea. The Concurreny Utilities, 2001. JSR 166,
http://www.jcp.org/en/jsr/detail?id=166.

[41] Maged M. Michael and Michael L. Scott. Simple, fast,
and practical non-blocking and blocking concurrent
queue algorithms. In PODC ’96: Proceedings of the
fifteenth annual ACM symposium on Principles of
distributed computing, pages 267–275. ACM Press,
1996.

[42] Jose Moreira, Samuel Midkiff, and Manish Gupta. A
comparison of three approaches to language, compiler,
and library support for multidimensional arrays in
Java computing. In Proceedings of the ACM Java
Grande - ISCOPE 2001 Conference, June 2001.

[43] Jose E. Moreira, Samuel P. Midkiff, Manish Gupta,
Pedro V. Artigas, Marc Snir, and Richard D.
Lawrence. Java programming for high-performance
numerical computing. IBM Systems Journal,
39(1):21–, 2000.

[44] Robert W. Numrich and John Reid. Co-Array Fortran
for parallel programming. ACM SIGPLAN Fortran
Forum Archive, 17:1–31, August 1998.

[45] Nathaniel Nystrom, Michael R. Clarkson, and
Andrew C. Myers. Polyglot: An extensible compiler
framework for Java. In Proceedings of the Conference
on Compiler Construction (CC’03), pages 1380–152,
April 2003.

[46] OpenMP specifications.
http://www.openmp.org/specs.

[47] Vijay Saraswat and Radha Jagadeesan. Concurrent
clustered programming. In Proceedings of the
International Conference on Concurrency Theory
(CONCUR’05), August 2005.

[48] Vijay Saraswat, Radha Jagadeesan, Armando
Solar-Iezama, and Christoph von Praun. Determinate
imperative programming: A clocked interpretetation
of imperative syntax. Submitted for publication,
available at http://www.saraswat.org/cf.html,
September 2005.

[49] V. Sarkar and G. R. Gao. Analyzable atomic sections:
Integrating fine-grained synchronization and weak
consistency models for scalable parallelism. Technical
report, CAPSL Technical Memo 52, February 2004.

[50] Vivek Sarkar, Clay Williams, and Kemal Ebcioğlu.
Application development productivity challenges for
high-end computing. In Workshop on Productivity and
Performance in High-End Computing (P-PHEC),
February 2004.
http://www.research.ibm.com/arl/pphec/pphec2004-
proceedings.pdf.

[51] Anthony Skjellum, Ewing Lusk, and William Gropp.
Using MPI: Portable Parallel Programming with the
Message Passing Iinterface. MIT Press, 1999.

[52] Lorna A. Smith and J. Mark Bull. A multithreaded
java grande benchmark suite. In Proceedings of the
Third Workshop on Java for High Performance
Computing, June 2001.

[53] Lorna A. Smith, J. Mark Bull, and Jan Obdrzalek. A
parallel Java Grande benchmark suite. In Proceedings
of Supercomputing 2001, Denver, Colorado, November
2001.

[54] Standard Performance Evaluation Corporation
(SPEC). SPECjbb2000 (java business benchmark).
http://www.spec.org/jbb2000.

[55] Thorsten von Eicken, David E. Culler, Seth C.
Goldstein, and Klaus E. Schauser. Active messages: a
mechanism for integrated communication and
computation. In Proceedings of the Annual
International Symposium on Computer Architecture
(ISCA’92), pages 256–266, May 1992.

[56] Robert W. Wisniewski, Peter F. Sweeney, Kartik
Sudeep, Matthias Hauswirth, Evelyn Duesterwald,
Calin Cascaval, and Reza Azimi. Performance and
Environment Monitoring for Whole-System
Characterization and Optimization. In Conference on
Power/Performance interaction with
Architecture,Circuits, and Compilers, 2004.

