
Revisiting Loop Transformations
with X10 Clocks

Tomofumi Yuki
Inria / LIP / ENS Lyon
X10 Workshop 2015

The Problem

n  The Parallelism Challenge
n  cannot escape going parallel
n  parallel programming is hard
n  automatic parallelization is limited

n  There won’t be any Silver Bullet
n X10 as a partial answer

n  high-level language with parallelism in mind
n  features to control parallelism/locality

X10 Workshop 2015

2

Programming with X10

n  Small set of parallel constructs
n  finish/async
n  clocks
n  at (places), atomic, when

n Can be composed freely
n  Interesting for both programmer and compilers

n  also challenging

X10 Workshop 2015

3

But, it seems to be under-utilized

This Paper

n  Exploring how to use X10 clocks

X10 Workshop 2015

4

performance

“usual” way

expressivity

alternative

performance

“usual” way

Context: Loop Transformations

n Key to expose parallelism
n  some times it’s easy

n  but not always

X10 Workshop 2015

5

for i
 for j
 X[i] += ...

for i
 forall j
 X[i] += ...

for i = 1 .. 2N+M
 forall j = /*complex bounds*/
 X[j] = foo(X[2*j-i-1],
 X[2*j-i+1]);

for i = 0 .. N
 for j = 1 .. M
 X[j] = foo(X[j-1],
 X[j+1]);

Automatic Parallelization

n Very sensitive to inputs

X10 Workshop 2015

6

for (i=1; i<N; i++)
 for (j=1; j<M; j++)
 x[i][j] = x[i-1][j] + x[i][j-1];

for (i=1; i <N-1; i++)
 for (j=1; j<M-1; j++)
 y[i][j] = y[i-1][j] + y[i][j-1] + x[i+1][j+1];

 for (t1=2;t1<=3;t1++) {
 lbp=1;
 ubp=t1-1;
#pragma omp parallel for private(lbv,ubv,t3)
 for (t2=lbp;t2<=ubp;t2++) {
 S1((t1-t2),t2);
 }
 }

 for (t1=4;t1<=min(M,N);t1++) {
 S1((t1-1),1);
 lbp=2;
 ubp=t1-2;

#pragma omp parallel for private(lbv,ubv,t3)
 for (t2=lbp;t2<=ubp;t2++) {
 S1((t1-t2),t2);
 S2((t1-t2-1),(t2-1));
 }
 S1(1,(t1-1));
 }

for (t1=M+1;t1<=N;t1++) {
 S1((t1-1),1);
 lbp=2;
 ubp=M-1;
#pragma omp parallel for private(lbv,ubv,t3)
 for (t2=lbp;t2<=ubp;t2++) {
 S1((t1-t2),t2);
 S2((t1-t2-1),(t2-1));
 }
 }
 for (t1=N+1;t1<=M;t1++) {
 lbp=t1-N+1;
 ubp=t1-2;
#pragma omp parallel for private(lbv,ubv,t3)
 for (t2=lbp;t2<=ubp;t2++) {
 S1((t1-t2),t2);
 S2((t1-t2-1),(t2-1));
 }
 S1(1,(t1-1));
 }
 }

for (t1=max(M+1,N+1);t1<=N+M-2;t1++) {
 lbp=t1-N+1;
 ubp=M-1;

#pragma omp parallel for private(lbv,ubv,t3)
 for (t2=lbp;t2<=ubp;t2++) {
 S1((t1-t2),t2);
 S2((t1-t2-1),(t2-1));
 }
 }very difficult to understand

ètrust it or not use it

n Goal: retain the original structure

Expressing with Clocks

X10 Workshop 2015

async
 for (i=1; i<N; i++)
 advance;
 async
 for (j=1; j<M; j++)
 x[i][j] = x[i-1][j] + x[i][j-1];
 advance;
advance;
async
 for (i=1; i <N-1; i++)
 advance;
 async
 for (j=1; j<M-1; j++)
 y[i][j] = y[i-1][j] + y[i][j-1] + x[i+1][j+1];
 advance;

 for (i=1; i<N; i++)

 for (j=1; j<M; j++)
 x[i][j] = x[i-1][j] + x[i][j-1];

 for (i=1; i <N-1; i++)

 for (j=1; j<M-1; j++)
 y[i][j] = y[i-1][j] + y[i][j-1] + x[i+1][j+1];

7

n Goal: retain the original structure

Expressing with Clocks

X10 Workshop 2015

async
 for (i=1; i<N; i++)
 advance;
 async
 for (j=1; j<M; j++)
 x[i][j] = x[i-1][j] + x[i][j-1];
 advance;
advance;
async
 for (i=1; i <N-1; i++)
 advance;
 async
 for (j=1; j<M-1; j++)
 y[i][j] = y[i-1][j] + y[i][j-1] + x[i+1][j+1];
 advance;

8

n Goal: retain the original structure

Expressing with Clocks

X10 Workshop 2015

async
 for (i=1; i<N; i++)
 advance;
 async
 for (j=1; j<M; j++)
 x[i][j] = x[i-1][j] + x[i][j-1];
 advance;
advance;
async
 for (i=1; i <N-1; i++)
 advance;
 async
 for (j=1; j<M-1; j++)
 y[i][j] = y[i-1][j] + y[i][j-1] + x[i+1][j+1];
 advance;

9

1. make many iterations parallel

n Goal: retain the original structure

Expressing with Clocks

X10 Workshop 2015

async
 for (i=1; i<N; i++)
 advance;
 async
 for (j=1; j<M; j++)
 x[i][j] = x[i-1][j] + x[i][j-1];
 advance;
advance;
async
 for (i=1; i <N-1; i++)
 advance;
 async
 for (j=1; j<M-1; j++)
 y[i][j] = y[i-1][j] + y[i][j-1] + x[i+1][j+1];
 advance;

10

1. make many iterations parallel

2. order them by synchronizations

n Goal: retain the original structure

Expressing with Clocks

X10 Workshop 2015

async
 for (i=1; i<N; i++)
 advance;
 async
 for (j=1; j<M; j++)
 x[i][j] = x[i-1][j] + x[i][j-1];
 advance;
advance;
async
 for (i=1; i <N-1; i++)
 advance;
 async
 for (j=1; j<M-1; j++)
 y[i][j] = y[i-1][j] + y[i][j-1] + x[i+1][j+1];
 advance;

11

1. make many iterations parallel

2. order them by synchronizations

compound effect: parallelism
similar to those with loop trans.

Outline

n  Introduction
n X10 Clocks
n  Examples
n Discussion

X10 Workshop 2015

12

clocks vs barriers

n Barriers can easily deadlock

n Clocks are more dynamic

13

//P2
barrier;
S1;

//P1
barrier;
S0;
barrier;

//P2
advance;
S1;

//P1
advance;
S0;
advance;

clocks vs barriers

n Barriers can easily deadlock

n Clocks are more dynamic

14

//P2
barrier;
S1;

//P1
barrier;
S0;
barrier;

deadlock

//P2
advance;
S1;

//P1
advance;
S0;
advance;

clocks vs barriers

n Barriers can easily deadlock

n Clocks are more dynamic

15

//P2
barrier;
S1;

//P1
barrier;
S0;
barrier;

deadlock

//P2
advance;
S1;

//P1
advance;
S0;
advance;

OK

Dynamicity of Clocks

n  Implicit Syntax

n  The process creating a clock is also registered

16

clocked finish
 for (i=1:N)
 clocked async {
 for (j=i:N)
 advance;
 S0;
 }

ç Creation of a clock

ç Each process is registered

ç Each process is un-registered

ç Sync registered processes

Dynamicity of Clocks

n  Implicit Syntax

n  Each process waits until all processes starts
n  The primary process has to terminate first

17

clocked finish
 for (i=1:N)
 clocked async {
 for (j=i:N)
 advance;
 S0;
 }

Dynamicity of Clocks

n  Implicit Syntax

n  Each process waits until all processes starts
n  The primary process has to terminate first

18

clocked finish
 for (i=1:N)
 clocked async {
 for (j=i:N)
 advance;
 S0;
 }

ac
tiv

ity
 1

Dynamicity of Clocks

n  Implicit Syntax

n  Each process waits until all processes starts
n  The primary process has to terminate first

19

clocked finish
 for (i=1:N)
 clocked async {
 for (j=i:N)
 advance;
 S0;
 }

ac
tiv

ity
 1

ac

tiv
ity

 2

Dynamicity of Clocks

n  Implicit Syntax

n  Each process waits until all processes starts
n  The primary process has to terminate first

20

clocked finish
 for (i=1:N)
 clocked async {
 for (j=i:N)
 advance;
 S0;
 }

ac
tiv

ity
 1

ac

tiv
ity

 2

ac
tiv

ity
 3

ac

tiv
ity

 4

ac
tiv

ity
 5

ac

tiv
ity

 6

Dynamicity of Clocks

n  Implicit Syntax

n  The primary process calls advance each time
n  Different synchronization pattern

21

clocked finish
 for (i=1:N) {
 clocked async {
 for (j=i:N)
 advance;
 S0;
 }

 advance; }

Dynamicity of Clocks

n  Implicit Syntax

n  The primary process calls advance each time
n  Different synchronization pattern

22

clocked finish
 for (i=1:N) {
 clocked async {
 for (j=i:N)
 advance;
 S0;
 }

 advance; } advance by primary activity

Dynamicity of Clocks

n  Implicit Syntax

n  The primary process calls advance each time
n  Different synchronization pattern

23

clocked finish
 for (i=1:N) {
 clocked async {
 for (j=i:N)
 advance;
 S0;
 }

 advance; } advance by primary activity

ac
tiv

ity
 1

ac

tiv
ity

 2

ac
tiv

ity
 3

ac

tiv
ity

 4

ac
tiv

ity
 5

ac

tiv
ity

 6

Outline

n  Introduction
n X10 Clocks
n  Examples
n Discussion

X10 Workshop 2015

24

Example: Skewing

n  Skewing the loops is not easy
for (i=1:N)
 for (j=1:N)
 h[i][j] = foo(h[i-1][j],  
 h[i-1][j-1],
 h[i][j-1])

skewing

25

Example: Skewing

n  Skewing the loops is not easy
for (i=1:2N-1)
 forall (j=max(1,i-N):min(N,i-1))
 h[i][j] = foo(h[(i-j)-1][j],  
 h[(i-j)-1][j-1],
 h[(i-j)][j-1])

skewing

26

Example: Skewing

n  Skewing the loops is not easy
for (i=1:2N-1)
 forall (j=max(1,i-N):min(N,i-1))
 h[i][j] = foo(h[(i-j)-1][j],  
 h[(i-j)-1][j-1],
 h[(i-j)][j-1])

skewing

changes to ���
loop bounds and indexing

27

Example: Skewing

n  Equivalent parallelism without changing loops

28

clocked finish
 for (i=1:N) {
 clocked async
 for (j=1:N) {
 h[i][j] = foo(h[i-1][j],
 h[i-1][j-1],
 h[i][j-1]);
 advance;
 }
 advance;
 }

Example: Skewing

n  Equivalent parallelism without changing loops

29

clocked finish
 for (i=1:N) {
 clocked async
 for (j=1:N) {
 h[i][j] = foo(h[i-1][j],
 h[i-1][j-1],
 h[i][j-1]);
 advance;
 }
 advance;
 }

locally sequential

the launch of the entire block is deferred

Example: Skewing

n You can have the same skewing
clocked finish
 for (j=1:N) {
 clocked async
 for (i=1:N) {
 h[i][j] = foo(h[i-1][j], h[i-1][j-1], h[i][j-1]);
 advance;
 }
 advance;
 }

skewing

30

Example: Skewing

n You can have the same skewing
clocked finish
 for (j=1:N) {
 clocked async
 for (i=1:N) {
 h[i][j] = foo(h[i-1][j], h[i-1][j-1], h[i][j-1]);
 advance;
 }
 advance;
 }

skewing

note: interchange
outer parallel loop with clocks

31

Example: Skewing

n You can have the same skewing
clocked finish
 for (j=1:N) {
 clocked async
 for (i=1:N) {
 h[i][j] = foo(h[i-1][j], h[i-1][j-1], h[i][j-1]);
 advance;
 }
 advance;
 }

skewing

32

advance;

Example: Loop Fission

n Common use of barriers

X10 Workshop 2015

33

forall (i=1:N)
 S1;
 S2;

forall (i=1:N)
 S1;

forall (i=1:N)
 S2;

for (i=1:N)
 async {
 S1;
 S2;
 }

for (i=1:N)
 async {
 S1;
 advance;
 S2;
 }

Example: Loop Fusion

n Removes all the parallelism

X10 Workshop 2015

34

for (i=1:N)
 S1;
for (i=1:N)
 S2;

for (i=1:N)
 S1;
 S2;

async
 for (i=1:N)
 S1; advance; advance;
advance;
async
 for (i=1:N)
 S2; advance; advance;

Example: Loop Fusion

n  Sometimes fusion is not too simple

X10 Workshop 2015

35

for (i=1:N-1)
 S1(i);
for (i=2:N)
 S2(i);

S1(1);
 for (i=2:N-1)
 S1(i);
 S2(i);
S2(N);

async
 for (i=1:N-1)
 S1; advance; advance;
advance;
async
 for (i=2:N)
 S2; advance; advance;

code structure stays
of advance è control

What can be expressed?

n  Limiting factor: parallelism
n  difficult to use for sequential loop nests
n  works for wave-front parallelism

n  Intuition
n  clocks defer execution
n  deferring parent activity has cumulative effect

X10 Workshop 2015

36

Discussion

n  Learning curve
n  behavior of clock
n  takes time to understand

n How much can you express?
n  1D affine schedules for sure
n  loop permutation is not possible
n  what if we use multiple clocks?

X10 Workshop 2015

37

Potential Applications

n  It might be easier for some people
n  have multiple ways to write code

n Detect X10 fragments with such property
n  convert to forall for performance

X10 Workshop 2015

38

X10 Workshop 2015

39

