
Introduction to X10

Olivier Tardieu
IBM Research

This material is based upon work supported by the Defense Advanced Research Projects
Agency, by the Air Force Office of Scientific Research, and by the Department of Energy.

Take Away

§  X10 is
§  a programming language

§  derived from and interoperable with Java
§  an open source tool chain

§  compilers, runtime, IDE
§  developed at IBM Research since 2004 with support from DARPA, DoE, and AFOSR
§  >100 contributors (IBM and Academia)

§  a growing community
§  >100 papers
§  workshops, tutorials, courses

§  X10 tackles the challenge of programming at scale
§  first HPC, then clusters, now cloud
§  scale out: run across many distributed nodes
§  scale up: exploit multi-core and accelerators
§  elasticity and resilience
§  double goal: productivity and performance

2

Links

§  Main X10 website
http://x10-lang.org

§  X10 Language Specification
http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf

§  A Brief Introduction to X10 (for the HPC Programmer)
http://x10.sourceforge.net/documentation/intro/intro-223.pdf

§  X10 2.5.3 release (command line tools only)
http://sourceforge.net/projects/x10/files/x10/2.5.3/

§  X10DT 2.5.3 release (Eclipse-based IDE)
http://sourceforge.net/projects/x10/files/x10dt/2.5.3/

3

Current IBM X10 Team

4

Agenda

§  X10 overview
§  APGAS programming model
§  X10 programming language

§  Tool chain

§  Implementation

§  Applications

§  2014/2015 Highlights
§  Grid X10

5

X10 Overview

6

Asynchronous Partitioned Global Address Space (APGAS)

Memory abstraction
§  Message passing

§  each task lives in its own address space; example: MPI
§  Shared memory

§  shared address space for all the tasks; example: OpenMP
§  PGAS

§  global address space: single address space across all tasks
§  partitioned address space: each partition must fit within a shared-memory node
§  examples: UPC, Co-array Fortran, X10, Chapel

Execution model
§  SPMD

§  symmetric tasks progressing in lockstep; examples: MPI, OpenMP 3, UPC, CUDA
§  APGAS

§  asynchronous tasks; examples: Cilk, X10, OpenMP 4 tasks

7

Task parallelism
§  async S
§  finish S

Place-shifting operations
§  at(p) S
§  at(p) e

…
……

…	

Tasks	

Local	
 	

Heap	

Place	
 0	

……
…	

Tasks	

Local	
 	

Heap	

Place	
 N	

…	

Global	
 Reference	

Places and Tasks

Concurrency control
§  when(c) S
§  atomic S

Distributed heap
§  GlobalRef[T]
§  PlaceLocalHandle[T]

8

Idioms

§  Remote procedure call
v = at(p) evalThere(arg1, arg2);

§  Active message
at(p) async runThere(arg1, arg2);

§  Divide-and-conquer parallelism
def fib(n:Long):Long {
 if(n < 2) return n;
 val f1:Long;
 val f2:Long;
 finish {
 async f1 = fib(n-1);
 f2 = fib(n-2);
 }
 return f1 + f2;
}

§  SPMD
finish for(p in Place.places()) {
 at(p) async runEverywhere();
}

§  Atomic remote update
at(ref) async atomic ref() += v;

§  Computation/communication overlap
val acc = new Accumulator();
while(cond) {
 finish {
 val v = acc.currentValue();
 at(ref) async ref() = v;
 acc.updateValue();
 }
}

9

BlockDistRail.x10

public class BlockDistRail[T] {

 protected val sz:Long; // block size

 protected val raw:PlaceLocalHandle[Rail[T]];

 public def this(sz:Long, places:Long){T haszero} {

 this.sz = sz;

 raw = PlaceLocalHandle.make[Rail[T]](PlaceGroup.make(places), ()=>new Rail[T](sz));

 }

 public operator this(i:Long) = (v:T) { at(Place(i/sz)) raw()(i%sz) = v; }

 public operator this(i:Long) = at(Place(i/sz)) raw()(i%sz);

 public static def main(Rail[String]) {

 val rail = new BlockDistRail[Long](5, 4);

 rail(7) = 8; Console.OUT.println(rail(7));

 }

}

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0
Place 0 Place 1 Place 2 Place 3

Like Java

§  Objects
§  classes and interfaces

§  single-class inheritance, multiple interfaces
§  fields, methods, constructors
§  virtual dispatch, overriding, overloading, static methods

§  Packages and files
§  Garbage collector
§  Variables and values (final variables, but final is the default)

§  definite assignment (extended to tasks)
§  Expressions and statements

§  control statements: if, switch, for, while, do-while, break, continue, return
§  Exceptions

§  try-catch-finally, throw
§  Comprehension loops and iterators

11

Beyond Java

§  Syntax
§  types “x:Long” rather than “Long x”
§  declarations val, var, def
§  function literals (a:Long, b:Long) => a < b ? a : b
§  ranges 0..(size-1)
§  operators user-defined behavior for standard operators

§  Types
§  local type inference val b = false;
§  function types (Long, Long) => Long
§  typedefs type BinOp[T] = (T, T) => T;
§  structs headerless inline objects; extensible primitive types
§  arrays multi-dimensional, distributed; implemented in X10
§  properties and constraints extended static checking
§  reified generics templates; constrained kinds

12

gradual typing

Tool Chain

13

Tool Chain

§  Eclipse Public License

§  “Native” X10 implementation
§  C++ based; CUDA support
§  distributed multi-process (one place per process + one place per GPU)
§  C/POSIX network abstraction layer (X10RT)
§  x86, x86_64, Power; Linux, AIX, OS X, Windows/Cygwin, BG/Q; TCP/IP, PAMI, MPI

§  “Managed” X10 implementation
§  Java 6/7 based; no CUDA support
§  distributed multi-JVM (one place per JVM)
§  pure Java implementation over TCP/IP or using X10RT via JNI (Linux & OS X)

§  X10DT (Eclipse-based IDE) available for Windows, Linux, OS X
§  supports many core development tasks including remote build & execute facilities

14

Compilation and Execution

X10
Source

Parsing /
Type Check

AST Optimizations
AST Lowering X10 AST

X10 AST

Java Code
Generation

C++ Code
Generation

Java Source C++ Source

Java Compiler Platform Compilers XRJ XRC XRX

 Java Byteode Native executable

X10RT

X10 Compiler Front-End

Java
Back-End

C++
Back-End

Native Environment
(CPU, GPU, etc) Java VMs

JNI

Managed X10 Native X10

Existing Java Application Existing Native (C/C++/
etc) Application

Java Interop

Cuda Source

15

X10DT

Building

Editing

Browsing

Debug

Source navigation, syntax
highlighting, parsing errors,

folding, hyperlinking, outline
and quick outline, hover

help, content assist, type
hierarchy, format, search,

call graph, quick fixes
- Java/C++ support
- Local and remote

Launching

16

Implementation

17

Runtime

§  X10RT (X10 runtime transport)
§  core API: active messages
§  extended API: collectives & RDMAs
§  emulation layer
§  two versions: C (+JNI bindings) or pure

Java

§  Native runtime
§  processes, threads, atomic ops
§  object model (layout, RTTI, serialization)
§  two versions: C++ and Java

§  XRX (X10 runtime in X10)
§  async, finish, at, when, atomic
§  X10 code compiled to C++ or Java

§  Core X10 libraries
§  x10.array, io, util, util.concurrent

18

Native Runtime

XRX

X10 Application

X10RT

PAMI TCP/IP

X10 Core
Class Libraries

MPI CUDA SHM

APGAS Constructs

§  One process per place

§  Local tasks: async & finish
§  thread pool; cooperative work-stealing scheduler

§  Remote tasks: at(p) async
§  source side: synthetize active message

§  async id + serialized heap + control state (finish, clocks)
§  compiler identifies captured variables (roots); runtime serializes heap reachable from roots

§  destination side: decode active message
§  polling (when idle + on runtime entry)

§  Distributed finish
§  complex and potentially costly due to message reordering
§  pattern-based specialization; program analysis

19

Applications

20

HPC Challenge 2012 – X10 at Petascale – Power 775

589231 22.4

18.0

16.00

18.00

20.00

22.00

24.00

0

200000

400000

600000

800000

0 16384 32768

G
flo

ps
/p

la
ce

G
flo

ps

Places

G-HPL

396614

7.23

7.12

0

5

10

15

0

100000

200000

300000

400000

500000

0 27840 55680

G
B

/s
/p

la
ce

G
B

/s

Places

EP Stream (Triad)

844

0.82
0.82

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

100

200

300

400

500

600

700

800

900

0 8192 16384 24576 32768

G
up

s/
pl

ac
e

G
up

s

Places

G-RandomAccess

26958

0.88

0.82

0.00
0.20
0.40
0.60
0.80
1.00
1.20

0
5000

10000
15000
20000
25000
30000

0 16384 32768
G

flo
ps

/p
la

ce

G
flo

ps

Places

G-FFT

356344

596451
10.93 10.87

10.71

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0

100000

200000

300000

400000

500000

600000

700000

0 13920 27840 41760 55680

M
ill

io
n

no
de

s/
s/

pl
ac

e

M
ill

io
n

no
de

s/
s

Places

UTS

21

Community and Applications

§  X10 applications and frameworks
§  ANUChem, [Milthorpe IPDPS 2011], [Limpanuparb JCTC 2013]
§  ScaleGraph [Dayarathna et al X10 2012]
§  Invasive Computing [Bungartz et al X10 2013]
§  XAXIS [Suzumura et al X10 2012]; used in Megaffic (IBM Mega Traffic Simulator)
§  Global Matrix Library: distributed sparse and dense matrices
§  Global Load Balancing [Zhang et al PPAA 2014]

§  X10 as a coordination language for scale-out
§  SatX10 [Bloom et al SAT’12 Tools]
§  Power system contingency analysis [Khaitan & McCalley X10 2013]

§  X10 as a target language
§  MatLab [Kumar & Hendren X10 2013]
§  StreamX10 [Wei et al X10 2012]

22

2014/2015 Highlights

23

2014/2015 Community Papers

§  A Resilient Framework for Iterative Linear Algebra Applications in X10 (PDSEC’15)
§  High Throughput Indexing for Large-scale Semantic Web Data (SAC'15)
§  Malleable Invasive Applications (ATPS'15)
§  Dynamic deadlock verification for general barrier synchronisation (PPoPP’15)
§  Solving Hard Stable Matching Problems via Local Search and Cooperative Parallelization

(AAAI-15)
§  IMSuite: A benchmark suite for simulating distributed algorithms (Journal of Parallel and Distributed

Computing)
§  Design and Evaluation of Parallel Hashing over Large-scale Data (HiPC'14)
§  Towards Scalable Distributed Graph Database Engine for Hybrid Clouds (DataCloud’14)
§  Massively Parallel Reasoning under the Well-Founded Semantics using X10 (ICTAI'14)
§  Robust and Skew-resistant Parallel Joins in Shared-Nothing Systems (CIKM'14)
§  MIX10: compiling MATLAB to X10 for high performance (OOPSLA'14)
§  Productivity in Parallel Programming: A Decade of Progress (ACM Queue)
§  Resolutions of the Coulomb Operator: VIII. Parallel implementation using the modern programming

language X10 (Journal of Computational Chemistry)
§  Scalable Parallel Numerical CSP Solver (CP'14)
§  A two-tier index architecture for fast processing large RDF data over distributed memory (HT '14)
§  Semantics of (Resilient) X10 (ECOOP’14)

24

Releases

§  X10 2.5.0 – October 2014
§  elastic X10 (includes backward incompatible changes to Place API)
§  X10 runtime as a service

§  X10 2.5.1 – December 2014
§  major upgrade of resilient X10 (fixed thread leak)
§  grid X10 (resilient data store, Hazelcast integration)

§  X10 2.5.2 – March 2015
§  ghost regions for distributed arrays
§  MPI 3 transport

§  X10 2.5.3 – June 2015
§  new parser

§  dramatically improved error recovery in X10DT
§  minor syntax tweaks (backward incompatible)

25

Grid X10

Problem
§  failures are increasingly common in distributed systems
§  available resources vary dynamically

Our Approach
§  support programming fault tolerance and resource management
§  bake in only fundamental capabilities, build the rest as libraries

Design space

MPI, X10
fast

Old school Transparent Programmable

Grid X10
flexible

Hadoop, Spark, checkpoint/restart
slow

26

Motivation

§  Application-level failure recovery
§  if the computation is approximate: trade accuracy for reliability
§  if the computation is repeatable: replay it
§  if lost data is unmodified: reload it
§  if data is mutated: checkpoint it

§  Example: K-Means clustering
§  algorithm: iterative refinement computation

§  massively parallel
§  large immutable input data
§  small state
§  frequent global synchronization

§  resilient algorithm: checkpoint state after each iteration but not input data
§  on failure divide inputs associated with lost place into remaining places

§  reload state from checkpoint
§  reload lost input data from disk

27

Programming Model

§  Place granularity
§  places can be added and removed
§  fail-stop model
§  report changes with exceptions (loss) and callbacks (loss or addition)

§  Resilient control
§  execution continues at healthy places
§  execution order is preserved (happen-before invariance)

§  Resilient data
§  data at failed place is lost
§  data in resilient store is preserved

§  resilient store does not belong to any place (but shards can be hosted within X10 places)

Same language; richer semantics (extension); substantial changes to runtime

28

Happens Before Invariance

Failure of a place should not
alter the happens before
relationship. finish

activity

finish

activity

Place 0 Place 1

val gr = GlobalRef(new Cell[Int](0));
try {
 finish at (Place(1)) async {
 finish at (Place(0)) async {
 gr()(10); // A
 }
 }

} catch (e:MultipleExceptions) { }
gr()(3); // B
assert gr()() != 10;

A happens before B, even if place 1 dies.

Without this property, avoiding race conditions would be very hard.

But guaranteeing it is non-trivial, requires more runtime machinery.

Waits-for
graph

Implied
synchronization

orphan

29

Runtime Improvements for Resilient X10

§  Distributed resilient finish requires cross-place transactional updates of finish
control state to ensure consistent view of happens-before relationship on
Place failure
§  Initial Resilient X10 implementation relied on synchronous messages which could

degenerate into needing a thread for every X10 activity
§  New implementation overcomes this issuecomponents to allow transactional

update of finish control state without needing unbounded number of threads
§  Stratify remote messages into two classes: immediate and normal
§  Immediate messages must be non-blocking, finite, handled by dedicated immediate

network processing thread(s) in each Place
§  Tasks waiting on a response to an immediate message can safely suspend without

spanwing a new thread to ensure global progress
§  Redesign finish state update protocols to only use immediate messages

§  Resilient X10 and classic X10 now support the same levels of concurrency
and remote activity creation

30

Elastic X10: YARN integration

§  New integration with the YARN cluster manager, allowing X10 programs to
be launched on a YARN-managed (Hadoop 2.x) cluster.

§  Added the ability for an X10 program to request new places from the
launcher, so we can add places on-demand. Resource requests are handled
by YARN, and new places join the existing ones.

§  Any X10 place or its host machine can fail at any time, and YARN can reuse
the newly freed resources.

§  YARN’s design does not provide resiliency for the ResourceManager or
ApplicationMaster, which monitor the cluster itself and the individual
containers holding the X10 runtimes. We do not attempt to improve this, so
these are single points of failure, but these are outside of X10 itself.

§  X10 programs are launched on YARN by specifying -x10rt yarn as an
argument to the x10 script.

31

