
GLB Fault Tolerance Scheme Experimental Results

Towards an Efficient Fault-Tolerance

Scheme for GLB

Claudia Fohry, Marco Bungart and Jonas Posner

Programming Languages / Methodologies

June 14, 2015

1 / 18

mailto:marco.bungart@uni-kassel.de

GLB Fault Tolerance Scheme Experimental Results

Global Load Balancing

1 Global Load
Balancing

2 Fault Tolerance
Scheme

3 Experimental
Results

2 / 18

GLB Fault Tolerance Scheme Experimental Results

Worker-local Pools

Examples:

UTS: counting nodes in an unbalanced tree

BC: calculate a property of each node in a graph

3 / 18

GLB Fault Tolerance Scheme Experimental Results

GLB

Task pool framework for inter-place load balancing

Utilizes cooperative work stealing

Tasks are free of side effects and can spawn new task at
execution time

Final result computed by reduction

Only one worker per place

Worker-private pool

4 / 18

GLB Fault Tolerance Scheme Experimental Results

GLB’s main processing loop

do {

while (process(n)) {

Runtime.probe();

distribute();

reject();

}

} while (steal());

5 / 18

GLB Fault Tolerance Scheme Experimental Results

Fault Tolerance Scheme

1 Global Load
Balancing

2 Fault Tolerance
Scheme

3 Experimental
Results

6 / 18

GLB Fault Tolerance Scheme Experimental Results

Conceptual Ideas

One backup-place per place (cyclic)

Write backup periodically and when necessary (stealing)

Exploit stealing-induces redundancy

Write incremental backups whenever possible

Each information at exactly two places

7 / 18

GLB Fault Tolerance Scheme Experimental Results

Incremental Backup of stable Tasks

s

A
R

R

...

t-1

...

R
A

s

R
A

s...

R
A

s
t-1... ...

R

s

A

snap snap snap
t-1

backup

t

min
t-2

min
t-1

s
t-2

send

s
t-2

8 / 18

GLB Fault Tolerance Scheme Experimental Results

Actor Scheme

No blocking constructs (except one outer finish)

split and merge have to operate on the bottom of the
Task Pool

Actor Scheme

Worker is passive entity (only processing tasks)
Worker becomes active when a message is received
Two kinds of messages:

executed directly or
stored and processed later

→ Worker stays responsive

9 / 18

GLB Fault Tolerance Scheme Experimental Results

Stealing Protocol

F

trySteal

steal-backup

VBack(F) Back(V)

● continue
processing
non-stolen
tasks

● record
stolen tasks
in Open(F)

● valid = false
● update

backup

link to V

save link
insert
 +
process

Fend
BVend

STLack

BFack

give

valid = true

At next backup of F:

non-incremental

● delete
Open(F)

delOpen

XYack

● update
backup

● delete link
to V

V1

V2

V3

10 / 18

GLB Fault Tolerance Scheme Experimental Results

Asynchronism

11 / 18

GLB Fault Tolerance Scheme Experimental Results

Asynchronism with Fault-Tolerance

12 / 18

GLB Fault Tolerance Scheme Experimental Results

Detection of dead Places

Cannot use DeadPlaceExceptions

Check relevant places regularly via isDead(), as well as
the own backup place

What if a place P is inactive?

Does not check its backup-place for lifeness
But its predecessor Forth(P) does check P

If P is active, it checks lifeness of Back(P)
Recursive process

13 / 18

GLB Fault Tolerance Scheme Experimental Results

Experimental Results

1 Global Load
Balancing

2 Fault Tolerance
Scheme

3 Experimental
Results

14 / 18

GLB Fault Tolerance Scheme Experimental Results

Setup

Experiments were conductet on an Infiniband-connected
Cluster

One place per node

Up to 128 Nodes

Configuration:

small UTS: -d=13
large UTS: -d=17

15 / 18

GLB Fault Tolerance Scheme Experimental Results

UTS, small

0

10

20

30

40

50

60

0 10 20 30 40 50 60

T
im

e
(s

ec
on

ds
)

Places

GLB
FTGLB

FTGLB-Incremental

16 / 18

GLB Fault Tolerance Scheme Experimental Results

UTS, small

0

500

1000

1500

2000

0 10 20 30 40 50 60

T
im

e
(s

ec
on

ds
)

Places

GLB
FTGLB

FTGLB-Incremental

17 / 18

GLB Fault Tolerance Scheme Experimental Results

Thank you for your attention!

Please feel free to ask questions.

18 / 18

	Global Load Balancing
	prelim

	Fault Tolerance Scheme
	Concept
	incremental
	actor
	stealing
	restore

	Experimental Results
	Setup

