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Worker-local Pools

Examples:

UTS: counting nodes in an unbalanced tree

BC: calculate a property of each node in a graph
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GLB

Task pool framework for inter-place load balancing

Utilizes cooperative work stealing

Tasks are free of side effects and can spawn new task at
execution time

Final result computed by reduction

Only one worker per place

Worker-private pool

4 / 18



GLB Fault Tolerance Scheme Experimental Results

GLB’s main processing loop

do {

while (process(n)) {

Runtime.probe();

distribute();

reject();

}

} while (steal());
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Conceptual Ideas

One backup-place per place (cyclic)

Write backup periodically and when necessary (stealing)

Exploit stealing-induces redundancy

Write incremental backups whenever possible

Each information at exactly two places
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Incremental Backup of stable Tasks
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Actor Scheme

No blocking constructs (except one outer finish)

split and merge have to operate on the bottom of the
Task Pool

Actor Scheme

Worker is passive entity (only processing tasks)
Worker becomes active when a message is received
Two kinds of messages:

executed directly or
stored and processed later

→ Worker stays responsive

9 / 18



GLB Fault Tolerance Scheme Experimental Results

Stealing Protocol

F
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Asynchronism
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Asynchronism with Fault-Tolerance
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Detection of dead Places

Cannot use DeadPlaceExceptions

Check relevant places regularly via isDead(), as well as
the own backup place

What if a place P is inactive?

Does not check its backup-place for lifeness
But its predecessor Forth(P) does check P

If P is active, it checks lifeness of Back(P)
Recursive process
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Setup

Experiments were conductet on an Infiniband-connected
Cluster

One place per node

Up to 128 Nodes

Configuration:

small UTS: -d=13
large UTS: -d=17
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UTS, small
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UTS, small
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Thank you for your attention!

Please feel free to ask questions.
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