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Abstract
It is expected that the first exascale supercomputer will be deployed
within the next 10 years, but the programming model which allows
easy development and high performance is still unknown. APGAS
programming model offers a flexible way for wide range of applica-
tions to express many patterns of concurrency, communication, and
control through the combination of asynchronous operations and a
global view of data. However, the comparative performance of AP-
GAS model with existing standard message passing models such
as MPI remains unclear. In this work, we give a detailed compara-
tive analysis of APGAS model in X10 with the standard message
passing model, by using lattice Quantum Chromodynamics (QCD)
as an example, which is one of the most challenging applications
for supercomputers. We further analyze the performance of lattice
QCD in X10 and apply several optimizations. Our experimental re-
sults show that our X10 implementation scales up to 256 places.
The results also show that the MPI-based implementation performs
2.26x–2.58x faster than the X10 implementation.

Keywords Exascale Computing, Programming Models, Perfor-
mance Analysis

1. Introduction
It is expected that the first exascale supercomputer will be deployed
within the next 10 years. Partitioned Global Address Space (PGAS)
model [4] is a programming model which simplifies parallel pro-
gramming while exposing data/thread locality to enhance perfor-
mance. PGAS model provides a global view of distributed mem-
ory to programmers. Asynchronous PGAS (APGAS) programming
model [5] is a programming model which provides flexible and ef-
ficient parallel processing with simple instructions. APGAS model
offers a flexible way for wide range of applications to express many
patterns of concurrency, communication, and control through the
combination of asynchronous operations and a global view of data.

However, the comparative performance of APGAS model with
existing standard message passing models such as MPI [9] remains
unclear. Although APGAS model provides a good scalability with
high productivity, there is a tradeoff between performance and pro-
ductivity. When compared with standard message passing models,
APGAS model has higher programming productivity while less
tuning flexibility.

In this work, we give a detailed comparative analysis of APGAS
model in X10 and MPI based on lattice Quantum Chromodynam-
ics (QCD) [2], which is an application from theoretical high-energy
physics, on parallel computing platforms. Lattice QCD applica-
tion is one of the most challenging application for supercomputers,
since it requires high memory bandwidth, high network bandwidth,
and high computational power. We implement lattice QCD in X10
by porting an existing lattice QCD implementation in C++ [3] then
parallelize using APGAS programming model. We analyze parallel

efficiency of X10 and compare the performance of our lattice QCD
implementation in X10 with lattice QCD in MPI. We further ana-
lyze the performance of lattice QCD in X10 and apply several op-
timizations. The results show that our X10 implementation scales
up to 256 places. The results also show that MPI implementation
performs 2.26x–2.58x faster than the X10 implementation.

Here is a quick summary of contributions of our work:

• We implement lattice QCD application in X10 with several
optimizations.

• We give a detailed performance analysis on lattice QCD in X10,
including analysis on multi-activities and distributed implemen-
tations.

• We give a comparative performance analysis between X10 and
MPI. We show a limitation of tuning flexibility in current X10
implementation for overlapping communication.

2. Background
In this section, we explain APGAS programming model with X10
programming language. Then we introduce lattice QCD applica-
tion, which is used as a benchmark application for large-scale com-
puting environments.

2.1 APGAS Programming Model and X10
Partitioned Global Address Space (PGAS) model [4] is a program-
ming model which virtualizes distributed memory as a global ad-
dress space where a object can be placed over multiple locations on
the distributed memory. There are several PGAS programming lan-
guages such as Co-Array Fortran [12] and Unified Parallel C [13].

APGAS (Asynchronous PGAS) programming model [5] is a
PGAS model which enables dynamic task creation under program-
mer control. APGAS programming model mainly consists of two
parts: places and activities. A place is simply coherent portion of
the address space; a collection of data together with the activities
that operate on that data. Places have a important property that they
are not required to be single-threaded. That is, multiple activities
may be active simultaneously in a single place. An async is the
denotational mechanism to express activities that perform compu-
tation in a place. An async is launched at a given place and stays at
that place for its lifetime.

X10 [6–8] is a language which implements APGAS program-
ming model. In X10, PGAS memories are called places, where
each place is allocated on a process. Programmer controls places by
moving to other place using at statement. A new activity, which is
allocated on the same place, is created dynamically by using async
statement. There are language specific limitations on how asyncs
reference remote data. In X10, the async cannot access locations
at remote places. If it desires to operate on remote locations it has
access to, it must launch a new async at that place. Asyncs may be
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used not just to run computations at a remote place but also to spec-
ify data-transfers such as array copies from an array at a place p to
an array at a place q. asyncCopy conducts a place-to-place asyn-
chronous data transfer. Activities in a place can be spawned locally
or remotely. To control their execution, finish statement is intro-
duced; a synchronization construct that allows a parent computa-
tion to wait for the completion of all its children activities. finish
captures the very powerful notion of distributed termination detec-
tion.

2.2 Lattice QCD Application
Lattice QCD [2] is a common technique to simulate a field theory
of quantum chromodynamics (QCD) theory of quarks and gluons
on 4D lattice consisting of 3D space and 1D time. The quark fields
are placed on the sites of 4D lattice and the gauge fields are placed
as the links of the lattice sites to represent the effect of the gluons
as the transporters of the quark fields. The simulation of the lattice
QCD uses a finite difference method to solve the interactions.

Lattice QCD computation mainly consists of Monte-Carlo sim-
ulations on 4D lattice. The computation is dominated by solving
a system of linear equations of matrix-vector multiplication using
iterative methods, such as conjugate gradient (CG) method. The
most computation and communication intensive procedure in lat-
tice QCD is solving the following equation for Dirac matrix:

M(U)x = b (1)

where M is the discretized Dirac operator which is a sparse matrix
whose elements are a function of a background field U, and b and
x are the source and solution vectors respectively. Wilson-Dirac
operator is used to calculate the physical exchange between 4D
lattice sites through the effects of the gluon fields , by multiplying
spinor and gauge matrix on 8 neighbors of x, y, z, t dimensions with
positive or negative signs. This problem accounts for the majority
of operations in lattice QCD.

3. Implementation of Lattice QCD Application in
X10

In this section, we explain our implementation of lattice QCD ap-
plication in X10. We have fully ported an existing open source lat-
tice QCD implementation [3] from C++ [1] to X10. We use a se-
quential version of lattice QCD in C++ as the baseline implemen-
tation. Our implementation is in an object-oriented style, which is
composed of objects such as lattice, complex field, communicator,
etc. We use Rail class, which represents 1D array in X10, for stor-
ing 4D arrays of quarks and gluons.

3.1 Parallelization of Lattice QCD in X10
The lattice QCD computation can be parallelized by dividing 4D
lattice into partial lattice in each direction and mapping them to
each place. When the computation is parallelized, each iteration
consists of boundary exchange and bulk computation. The bound-
ary exchanges are required between places after the bulk computa-
tion in each direction for each iteration. The boundary exchanges
are conducted only between neighbor places in each direction in
order to update boundary data for subsequent computation. Com-
putations in each dimension are independent, which means com-
putations in each direction can be shuffled and overlapped among
places.

We parallelize the implementation for distributed memory envi-
ronments. In order to partition 4D lattice into multiple places, the
program calculates memory offsets on each place at the initializa-
tion time. Boundary exchanges are operated using asynchronous
copy functions. We apply several optimizations to our lattice QCD
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Figure 1. Implementation of overlapping on lattice QCD applica-
tion in X10. Overlapping computations and communication in the
4 directions.
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Figure 2. Implementation of overlapping on lattice QCD applica-
tion in MPI. Overlapping computations and communication by us-
ing a pipeline for the independent procedures in the 4 directions.

implementation in X10, including communication optimizations
and hybrid parallelization.

3.2 Communication Optimizations of lattice QCD in X10
We apply an overlapping technique between boundary exchanges
and bulk computations (Figure 1). Communications are overlapped
by using asyncCopy method of Rail class. asyncCopy method
creates a new activity and transfers data asynchronously on the
activity. While the boundary data is being transferred from the
activity, the main activity continues bulk computation. After calling
the bulk computation, the main activity waits the completion of the
boundary exchange by using barrier synchronization.

We also apply another communication optimization by put-wise
data transfer operation, since put-wise communication conducts
one-sided communication while get-wise communication conducts
two-sided communication. One-sided communication has less la-
tency since it does not require the sender to wait for acknowledge-
ment from the receiver. In put-wise communication, the main activ-
ity moves to the place where data source is located by at statement,
then copy the data to destination place by asyncCopy method. On
the other hand, In get-wise communication, the main activity moves
to the destination place where data to be copied, then copy the data
from the source place by asyncCopy method.

In our current implementation, communication may not be fully
overlapped. This is mainly due to the limitation of communication
patterns in X10. Barrier synchronization requires all the places to
synchronize at the same point of computation, which results in the
requirement of barrier synchronizations in each direction. On the
other hand, in our lattice QCD implementation in MPI, instead
of barrier synchronization, process-to-process synchronization is
used in each direction which enables to overlap communications
in multiple directions using simple asynchronous send and receive
operations (Figure 2).
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Figure 3. Comparative strong scaling of multi-threaded lattice
QCD in X10 and OpenMP on problem size of (x, y, z, t) = (16,
16, 16, 32).
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Figure 4. Elapsed time of multi-threaded lattice QCD in X10 and
OpenMP on problem size of (x, y, z, t) = (16, 16, 16, 32).

3.3 Hybrid Parallelization of Lattice QCD in X10
We apply hybrid parallelization on multiple places and activities
into our lattice QCD in X10. The objective of our hybrid paral-
lelization is to find the optimal balance between the number of ac-
tivities and the number of places on each node as well as to avoid
the overhead of using more than the optimal number of activities or
places.

There are two parallelization strategies for places.

1. The main place activates places for each computational part
which can be parallelized. Each parallelized part is synchro-
nized by finish statement.

2. The main place activates places only once at the beginning of
computation. Barrier synchronization is used for synchroniza-
tion among places. finish statement is used only once.

We adopt the strategy 2 in order to reduce the number of synchro-
nizations. We observe calling finish for each part of computation
as the strategy 1. causes increase of synchronization overheads.

There are two parallelization strategies for activities as well.

1. The main activity invokes activities for each computational part
which can be parallelized. Each parallelized part is synchro-
nized by finish statement.

2. The main activity invokes activities only once at the beginning
of computation. Clock-based synchronization is used for syn-
chronization among activities. finish statement is used only
once.

We adopt the strategy 1 since we observe finish performs better
scalability compared with clock-based synchronization.

4. Performance Evaluation
We conducted performance evaluation of our lattice QCD in X10.
The objective of the experiments is to understand parallel effi-
ciency of our lattice QCD in X10. We also investigated comparative
performance with lattice QCD in MPI. We measured the elapsed
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Figure 5. Comparative strong scaling of multi-threaded lattice
QCD in X10 and OpenMP on problem size of (x, y, z, t) = (8, 8, 8,
16).
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Figure 6. Elapsed time of multi-threaded lattice QCD in X10 and
OpenMP on problem size of (x, y, z, t) = (8, 8, 8, 16).

time of iterations of CG method until convergence. Typically CG
method takes 300 to 500 iterations. We compared the performance
of lattice QCD in native X10, which is compiled to C++, with the
baseline implementation in C++ and MPI.

We use two computing environments. One is IBM BladeCenter
HS23 [15] for evaluation of the performance of multi-threaded lat-
tice QCD on single node, and the other is IBM Power 775 [16]
for evaluation of the performance of distributed lattice QCD on
multiple nodes. We used X10 2.4.0 build with -Doptimize=true
-DNO CHECKS=true. IBM BladeCenter HS23 is configured as fol-
lows. We use HS23 7875-C5J model, which has 2 sockets of Xeon
E5-2680 CPU (2.70 GHz, 8 cores, L1, L2, L3 cache sizes are 32KB,
256KB, 20MB, SMT enabled), 32 GB of DDR3 RAM. g++ 4.4.6 is
used for C++ compiler. MPICH2 [10] 1.2.1 is used for MPI. Com-
piler options for native X10 are -x10rt mpi -O -NO CHECKS and
for MPI C++ are -O2 -finline-functions -fopenmp. We use
IBM Power 775 up to 13 compute nodes for scalability study, which
has Power 7 CPU (3.84 GHz, 32 cores, SMT enabled), 128 GB of
memory. xlC r 12.1 is used for C++ compiler. Parallel Active Mes-
saging Interfaces (PAMI) is used for message passing. Compiler
options for native X10 are -x10rt pami -O -NO CHECKS and for
PAMI C++ are -O3 -qsmp=omp.

4.1 Performance of Multi-threaded Lattice QCD
We conducted performance experiments on a single compute node
for measuring the effect of multi-threading. We compared the per-
formance of multi-threaded lattice QCD in X10 with lattice QCD
parallelized in OpenMP [11].

First we evaluated strong scaling of the multi-thread paralleliza-
tion using up to 8 threads using lattice QCD in X10 and in C++ with
OpenMP. Multi-activities are invoked for multi-threading in X10.
Note that one thread is assigned on one activity and only one place
is used. The result of strong scaling based on performance on 1
thread of each implementation on problem size of (x, y, z, t) = (16,
16, 16, 32) is shown in Figure 3 and elapsed time on each number of
threads is shown in Figure 4. The result in Figure 3 exhibits lattice
QCD in X10 performs 4.01 times speedup on 8 threads compared
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Figure 7. Performance breakdown of multi-threaded lattice QCD
in X10 and OpenMP. x-axis shows the elapsed time of each phase,
where white bars show thread invocation time, red bars show com-
putation time, and vertical red lines show the time when thread syn-
chronizations are finished. y-axis shows thread indices for each im-
plementation.

with on 1 thread. We see that the results of lattice QCD in X10 ex-
hibit comparative scalability compared with OpenMP. The result in
Figure 4 exhibits that lattice QCD in X10 performs 71.7% of lattice
QCD in C++ with OpenMP on 8 threads.

We then evaluated the multi-thread parallelization on different
problem size. We used (x, t, z, t) = (8, 8, 8, 16), which is 16 times
smaller than the previous experiment. The results of strong scaling
and elapse time are shown in Figures 5 and 6, respectively. The
result in Figure 5 exhibits that lattice QCD in X10 on 8 thread per-
forms 2.18 times speed up from on 1 thread, which is smaller than
the case on (x, y, z, t) = (16, 16, 16, 32). Figure 6 exhibits that
lattice QCD in X10 performs 33.4% of lattice QCD in C++ with
OpenMP on 8 threads. We breakdown the performance in X10 on
8 threads. Figure 7 shows each phase of consecutive elapsed time
of 460 CG steps in x-plus way computation including thread acti-
vation time, computation time, and threads synchronization time.
The result exhibits thread activation overhead accounts for 20.5%,
and synchronization overhead accounts for 19.2% of total execu-
tion time each other. The result also exhibits computation time is
36.3% slower compared with in OpenMP.

4.2 Performance of Hybrid Multi-threaded Lattice QCD
We compared the performance of hybrid multi-threaded perfor-
mance of lattice QCD in X10 with the baseline implementation in
C++ parallelized by OpenMP and MPI. We parallelized using both
multi-activities and multi-places in X10 on a single node. We vary
the number of processes and threads such that the number of pro-
cesses times the number of threads is constant to be 16 or 32 (as
shown in Figures 8 and 9). We used problem size of (x, y, z, t) =
(16, 16, 16, 32).

The results exhibit 2 threads per node exhibits the best perfor-
mance in X10 in both cases. The results indicate that increasing
the number of processes scales better than increasing the number
of threads. The result also indicates that hybrid parallelization per-
forms better than using only multiple processes or multiple threads
(16 processes with 2 threads performs the best in the experiments).

In the case of using C++ and MPI, The result exhibits using 4
processes and 4 threads performs the best. The result also exhibits
significant performance degradation when the number of processes
times the number of threads is 32 compared with the case of 16.
A possible reason for the degradation is assigning more number
of processes and threads than the number of physical CPU cores
causes resource contention among processes or threads.
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Figure 8. Elapsed time of hybrid multi-threaded lattice QCD in
X10 and MPI + OpenMP, where the number of processes times the
number of threads is equal to 16.
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Figure 9. Elapsed time of hybrid multi-threaded lattice QCD in
X10 and MPI + OpenMP, where the number of processes times the
number of threads is equal to 32.

4.3 Performance of Distributed Lattice QCD
We evaluated scalability of the distributed implementation of lattice
QCD in X10 on multiple compute nodes using IBM Power 775. We
measured strong scaling and weak scaling using up to 256 places
on up to 13 nodes, which means 19 or 20 places are located per
node. We used problem size of (x, y, z, t) = (32, 32, 32, 64) for
strong scaling and (x, y, z, t) = (16, 16, 16, 32) per place for
weak scaling. We also compared the performance of lattice QCD
in X10 with the performance in MPI. Note that we did not apply
hybrid parallelization using multi-activities on one place in the
experiments.

First we show the result of strong scaling performance of lattice
QCD in X10 compared with in C++ and MPI in Figure 10 as well
as elapsed time in Figure 11, where x-axis shows the number of
processes and y-axis shows relative performance based on the per-
formance on 1 process for each implementation. We see that 102.8
times speedup using 256 places compared with using 1 place. The
result also exhibits lattice QCD in MPI performs better scalability
compared with in X10. The performance of lattice QCD in MPI on
256 places performs 2.58 times faster than in X10.

In order to understand the effect of communication optimization
using put-wise data transfer operations, we compared the perfor-
mance of lattice QCD using put-wise operations with using get-
wise operations. We also measured the performance using get-
wise operations with overlapping as much as possible with bar-
rier synchronization, shown in Figure 12. Overlapping multiple
communications using asynchCopy in 4 directions and one bar-
rier synchronization. The result of the comparison are shown in
Figures 13 and 14. As we explained in section 3.2, using put-wise
operations shows better scalability than using get-wise operations,
even though overlapping is more optimized when using get-wise
operations. The reason is that underlying implementation of put-
wise communication uses one-sided communication while get-wise
communication uses two-sided communication in MPI. Note that
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Figure 10. Comparative strong scaling of distributed lattice QCD
in X10 and MPI on problem size of (x, y, z, t) = (32, 32, 32, 64).
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Figure 11. Elapsed time of distributed lattice QCD in X10 and
MPI on problem size of (x, y, z, t) = (32, 32, 32, 64).
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Figure 12. Implementation of overlapping on lattice QCD appli-
cation in X10 using get-wise operations.

overlapping multiple communications should be possible with put-
wise operations as with get-wise operations, however, we did not
get correct results in IBM Power 775 with PAMI. We will further
investigate the reason for this phenomenon.

We also evaluated weak scaling performance with MPI. The
result of weak scaling performance is shown in Figures 15 and 16,
where x-axis shows the number of processes and y-axis shows
relative performance based on the performance on 1 process for
each implementation. The result exhibits the lattice QCD in X10
performs 97.5 times faster on 256 places from 1 place. The result
also indicates the lattice QCD in MPI performs 2.26 times faster
on 256 places, which means the lattice QCD in MPI scales better
than in X10. A possible reason for the performance degradation
when using the number of places is that the lattice QCD in MPI has
larger time region of communication overlapping than in X10. We
plan to further investigate for clarifying the reason and improving
the performance.

4.4 Discussion
From the experiments we conducted, we revealed several important
issues on X10. As for multi-threading, although X10 exhibits com-
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Figure 13. Comparative strong scaling of distributed lattice QCD
in X10 among different communication strategies on problem size
of (x, y, z, t) = (32, 32, 32, 64).
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Figure 14. Elapsed time of distributed lattice QCD in X10 among
different communication strategies on problem size of (x, y, z, t) =
(32, 32, 32, 64).

parable multi-thread scalability with OpenMP, X10 exhibits signif-
icant overhead of thread activation as well as threads synchroniza-
tion, as shown in Figure 7. As for hybrid parallelization, using up to
2 threads per node and increasing there number of places performs
the best in our environment. We see that the increasing the number
of places often scales better than increasing the number of threads.

As for scalability on multiple nodes, our current lattice QCD
implementation in X10 scales but not as much as in MPI. A pos-
sible reason is limited communication overlapping in X10 due to
the lack of tuning flexibility which is related to APGAS program-
ming model in X10, as shown in Figures 1 and 2. In our lattice QCD
in X10, barrier synchronization is used for synchronizing boundary
data exchanges and bulk computations. The reason for using barrier
synchronization is that confirmation of boundary data exchanges
are required for next computation (boundary reconstruct). On the
other hand, in our lattice QCD in MPI, process-to-process synchro-
nization is conducted for neighbor processes in each direction in-
dependently, by using standard asynchronous communication func-
tions such as MPI Isend, MPI Irecv and MPI Wait. This process-
to-process synchronization in MPI makes more use of overlap-
ping compared with the barrier synchronization in X10. How-
ever, there is still rooms for improvements. For example, place-to-
place synchronization in X10 would improve scalability by more
overlapping communication. In our current implementation of lat-
tice QCD in X10, all the places are synchronized at the same
time by barrier synchronization in each computational part. Using
uncountedCopy may enable place-to-place synchronization.

5. Related Work
There is work on high performance large-scale lattice QCD imple-
mentations. Doi et al. work on a peta-scale lattice QCD implemen-
tation [17] on Blue Gene/Q supercomputer [14]. The implementa-
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Figure 15. Comparative weak scaling of distributed lattice QCD
in X10 and MPI, where problem size is (x, y, z, t) = (16, 16, 16, 32)
for each process.
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Figure 16. Elapsed time of distributed lattice QCD in X10 and
MPI on problem size of (x, y, z, t) = (16, 16, 16, 32) for each
process.

tion fully optimizes overlapping communication by computation.
The implementation also applies node-mapping optimizations for
fully utilizing network topology on Blue Gene/Q. In our work, we
compare the scalability of our lattice QCD implementation in X10
with in MPI. Our implementation in MPI also applies overlapping
technique in the same way as this work. Shan et al. work on com-
puting lattice QCD using multiple GPUs [18].

There is work on performance comparison of PGAS program-
ming model with standard message passing model [19]. The au-
thors compare the performance of Co-Array Fortran (CAF) [12]
with standard message passing on micro benchmarks.

There is also work about hybrid programming model of PGAS
and MPI [20]. The authors introduced hybrid programming of
Unified Parallel C (UPC) and MPI, which allows MPI programmers
incremental access of a greater amount of memory by aggregating
the memory of several nodes into a global address space.

6. Conclusion
We gave a detailed comparative analysis of APGAS model in X10
and the standard message passing model with the lattice QCD ap-
plication. We implemented lattice QCD in X10 using APGAS pro-
gramming model with several optimizations. We analyzed parallel
efficiency of X10 and compared the performance of lattice QCD in
X10 with the baseline implementation in C++ and MPI. The results
show that our X10 implementation scales up to 256 places. The re-
sults also indicate the tradeoff between performance and productiv-
ity through the comparison of X10 with MPI.

In future work, we will further investigate the performance bot-
tleneck of our lattice QCD in X10. We will investigate commu-
nication overlapping efficiency in X10 and also consider to use
place-to-place synchronization rather than barrier synchronization.
We will also plan to conduct performance experiments on other
computing environments, such as TSUBAME2.5 [21] and Blue
Gene/Q.
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A. Source Code of Lattice QCD in X10
Source code of our lattice QCD code in X10 as well as in MPI
+ OpenMP can be obtained from the following URL: http://
sourceforge.net/p/x10/code/HEAD/tree/applications/
trunk/LatticeQCD/.

B. Pseudo Code of Lattice QCD in X10
B.1 Lattice QCD with Put-wise data transfer in X10

Algorithm 1 Dirac Operator with Put-wise Data Transfer in X10.
1: class WilsonDslash {
2: def Dopr Put(v: WilsonVectorField, u: SU3MatrixField, w:

WilsonVectorField, cks :Double, bx : LatticeComm) {
3: finish { // compute in T plus direction
4: val iTP = bx.neighbors()(bx.TP);
5: at (Place(iTP)) async { // move to source place
6: MakeTPBnd(bx,w); // boundary data creation
7: bx.Put(bx.TP); // send the boundary data
8: }
9: v.Copy(w);

10: MultTP(v,u,w,-cks); // bulk multiplication
11: }
12: finish { // compute in T minus direction
13: val iTM = bx.neighbors()(bx.TM);
14: at (Place(iTM)) async {
15: MakeTMBnd(bx,w,u);
16: bx.Put(bx.TM);
17: }
18: MultTM(v,u,w,-cks);
19: SetTPBnd(bx,v,u,-cks); // boundary reconstruct
20: }
21: // compute in the other 3 directions (X, Y, Z)
22: ...
23: }
24: }

Algorithm 2 Communicator for Put-wise Data Transfer in X10.
1: class LatticeComm {
2: val bufSend = new Rail[HalfWilsonVectorField](8);
3: val refBufs: PlaceLocalHandle[Rail[GlobalRail[Double]]];
4:
5: def Put(dir: Long)
6: {
7: val size = bufSend(dir).size;
8: Rail.asyncCopy[Double](bufSend(dir).v(),0,

refBufs()(dir),0,size);
9: }

10: }

B.2 Lattice QCD with Get-wise overlapping data transfer in
X10

Algorithm 3 Dirac Operator with Get-wise Overlapping Data
Transfer in X10.

1: class WilsonDslash {
2: def Dopr Get(v: WilsonVectorField, u: SU3MatrixField, w:

WilsonVectorField, cks: Double, bx: LatticeComm)
3: {
4: finish {
5: MakeTPBnd(bx,w); // boundary data creation
6: bx.Send(bx.TP);
7: MakeTMBnd(bx,w,u);
8: bx.Send(bx.TM);
9: // compute in the other 3 directions (X, Y, Z)

10: ...
11: v.Copy(w);
12: // bulk multiplication
13: MultTP(v,u,w,-cks);
14: MultTM(v,u,w,-cks);
15: ...
16: }
17: // boundary reconstruct
18: SetTPBnd(bx,v,u,-cks);
19: SetTMBnd(bx,v,-cks);
20: ...
21: }
22: }

Algorithm 4 Communicator for Get-wise Overlapping Data Trans-
fer in X10.

1: class LatticeComm {
2: val bufSend = new Rail[HalfWilsonVectorField](8);
3: val bufRecv = new Rail[HalfWilsonVectorField](8);
4:
5: def Send(dir : Long) {
6: val bufRef = GlobalRail(bufSend(dir).v());
7: finish {
8: at(Place(iDest)) async {
9: val size = bufRecv(dir).size;

10: finish{
11: Rail.asyncCopy[Double](bufRef,0,

bufRecv(dir).v(),0,size);
12: }
13: }
14: }
15: }
16:
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