
Porting MPI based HPC Applications to X10

Hiroki Murata† Michihiro Horie† Koichi Shirahata‡ Jun Doi†

Hideki Tai† ∗ Mikio Takeuchi† Kiyokuni Kawachiya†

†IBM Research - Tokyo ‡Tokyo Institute of Technology
†{mrthrk,horie,doichan,mtake,kawatiya}@jp.ibm.com ‡koichi-s@matsulab.is.titech.ac.jp

Abstract
X10 is a high-productivity programming language that internally
supports parallel and distributed computing. X10 is based on an
APGAS (Asynchronous Partitioned Global Address Space) pro-
gramming model. Applications written in X10 can run on multiple
places, which are abstractions of computation nodes, createactiv-
ities to perform parallel computations in the same place by using
async statements, or perform distributed computing by changing
the execution places by usingat statements. In this paper, we re-
port on our experiences in porting typical applications for high-
performance computing to X10. These applications were originally
written in C with MPI, and the ported applications were written in
pure X10. We confirmed that the X10 port of these applications
showed comparable performance and scalability in a large-scale,
parallel, and distributed environment such as PowerR⃝ 775, which
is one of IBMR⃝’s latest supercomputers. We also report several
techniques to obtain good performance in X10 for typical coding
patterns such as array accesses, broadcasts, and data exchanges of
ghost regions of data.

Categories and Subject DescriptorsD.1.3 [PROGRAMMING
TECHNIQUES]: Concurrent Programming

General Terms Languages, Performance

Keywords X10, APGAS, SPMD, MPI, HPC, high performance
computing, proxy applications, CoMD, MCCK

1. Introduction
For simulating real parallel and distributed applications such as an-
alyzing nuclear reactors, community groups calledco-design cen-
tersprovide parallel and distributed applications, which are called
proxy applications (orproxy apps). Proxy apps can be used to ob-
serve and explore parallelism and memory layouts in distributed
environments.

X10 is a modern object-oriented programming language that in-
troduces new constructs significantly simplify scale-out program-
ming based on an APGAS (Asynchronous Partitioned Global Ad-
dress Space) programming model. One fundamental goal of X10 is
to enable scalable, high-performance, high-productivity program-
ming for high-end computers for traditional numerical computa-
tion workloads such as weather simulation, molecular dynamics,
and particle transport problems.

We are studying the applicability of X10 by using proxy apps.
These proxy apps were developed by the co-design centers, named
the Center for Exascale Simulation of Advanced Reactors (CE-
SAR) [1], the Exascale Co-design Center for Materials in Ex-
treme Environments (ExMatEx) [2], and the Center for Exascale

∗ Hideki Tai is currently self-employed. He can be reached at
hidekit55@gmail.com.

Simulation of Combustion in Turbulence (ExaCT) [3]. Serial ver-
sions of these proxy apps were implemented in C, C++, Fortran,
Python, etc. To parallelize the proxy apps, MPI [4], OpenMP [5],
or OpenCL [6] was used in many cases.

In this paper, we show our experience to port two applications
to X10. One of the proxy apps is CoMD [7], which is an applica-
tion of classical molecular dynamics (MD) algorithms used in ma-
terial science. The other is MCCK [9], which is an application of
Monte Carlo simulation for investigating the communication cost
of the domain decomposed particle tracking algorithm. We then
compared the original apps and the X10 ports of the apps, and con-
firmed that the X10 ports of these applications showed comparable
performance and scalability in a large-scale, parallel and distributed
environment such as PowerR⃝ 775, which is one of IBMR⃝’s latest
supercomputers. We also report several techniques to obtain good
performance in X10 for typical coding patterns such as array ac-
cesses, broadcasts, and data exchanges of ghost regions of data.

Here are the main contributions of our work:

• CoMD and MCCK proxy applications in X10 tuned to achieve
performance nearly comparable to the original code.

• Porting tips which include APGAS code that can replace MPI-
based communication patterns.

• Performance evaluations of the code on an IBMR⃝ PowerR⃝ 775
cluster.

2. Background
2.1 X10 Language

X10 features flexible support for concurrency, distribution, and lo-
cality. X10 uses a model called APGAS (Figure 1). In this model,
a global address space is divided into small regions calledplaces.
X10 introduced places as an abstraction for a computational con-
text with a locally synchronous view of shared memory. An X10
computation can run across a large collection of places. Each place
hosts some of the data and runs one or moreactivities. Activities
are extremely lightweight threads of execution. An activity may
synchronously (and atomically) use one or more memory locations
in its place and create other activities with theasync statement,
exploiting the performance of current symmetric multiprocessor
(SMP) technology. It can move to other places by using theat
statement to access data in those places.PlaceLocalHandle, an
X10 type is used to access data in other places. It bundles multiple
remote references to the objects at different places.

2.2 Applications

We ported two applications to X10 and compared each of them to
the original versions.

1

Figure 1. APGAS model

2.2.1 CoMD

CoMD (Co-design for Molecular Dynamics) is an application for
Molecular Dynamics (MD) workloads as used in materials science.
MD is a well-known simulation for the physical movements of
atoms and molecules. MD is widely used in the areas of chemical
physics, material science, biology, and engineering.

As described in [7], the methods of MD simulation involve the
evaluation of the force acting on each atom due to all of the other
atoms in the system and the numerical integration of the Newtonian
equations of motion for each of the atoms.

The reference version of CoMD 1.1 written in C with MPI and
a geometric domain decomposition SPMD programming model.
CoMD uses a linked-cell structure to determine the interaction
neighborhood and supports both the Lennard-Jones potential and
the Embedded-Atom Method potential.

We used the CoMD source code revision 90def13d8c at [8].

2.2.2 MCCK

The Monte Carlo Communication Kernel (MCCK) was developed
to simulate particle movement in the domain of a nuclear reactor. In
MCCK, initially a number of particles exist in each physical node.
A particle at a node can move to another node that is next to its
current node. In addition, as time advances, nuclear fission occurs,
so the number of particles to calculate is gradually reduced.

A main use of MCCK is to investigate the communication
costs when data is exchanged among physical nodes. The original
MCCK was implemented in C with MPI.

We used the MCCK source code at [9].

2.2.3 Basic Porting Strategy

For porting these applications, we used the following strategy and
kept the original code structure as much as possible: mapping an
MPI process to an X10 place; transforming C array to X10Rail
which is an abstraction of fixed-sized indexed storage; mapping C
struct to X10 class (X10 struct cannot be used because it is im-
mutable); and transforming MPI point to point communication to
Rail.asyncCopy method call. However, because it was not pos-
sible to achieve comparable performance, we applied some opti-
mizations. In the next two sections, we explain our optimizations
and porting tips: basic modifications in Section 3 and modifications
related to MPI in Section 4.

3. Basic Modifications
This section explains the basic modification patterns to port the
applications described in Section 2.2 to X10. Figures 2 and 3 show
the examples of the basic modification patterns. Figure 2 shows the
original C code and Figure 3 shows the X10 code.

3.1 Memory Allocation

C/C++ programs can use complex data structure as local vari-
ables on stack. This does not degrade the application performance,
even in loops. However, allocating complex data structures on the

heap in loops may degrade the performance on object oriented lan-
guages.

Replace local variable with field variable Memory allocation in
a method called in loop may degrade the application performance,
especially when large objects are allocated. In this case, replacing
a local variable with a field variable will improve the performance.
A transformation example for Line 3 of Figure 2 becomes Line 2
of Figure 3.

Move allocation statements in loop to out of loopMemory allo-
cation in a loop also degrades the application performance. In this
case, moving the allocation statements in the loop outside of the
loop will improve the performance. A transformation example is
Line 25 of Figure 2 becomes Line 10 of Figure 3.

Allocate object on stack (experimental)Adding@StackAllocate
annotation to allocation sites in a loop may improve the application
performance by reducing the overhead of allocation. Although it is
experimental, it would be an alternative when the above rewritings
are hard to apply.

3.2 Object Access

Use val as much as possibleIn X10, there are two type of vari-
able declarations,val andvar. Whenval is used, X10 compiler
analyzes its type and generates better code. Lines 2, 5, 10 and oth-
ers of Figure 3 are examples.

Unify common expressions When porting C/C++ applications
onto X10, aCell is sometimes used to replace a pointer param-
eter. Accessing the content in aCell is slower than accessing the
variable in the original C code. Unifying common expressions in-
cludingCell access avoids this performance degradation. A trans-
formation example involves Lines 13–14 of Figure 2 becoming
Lines 16–18 of Figure 3. This is similar forPlaceLocalHandle.

Hoist loop invariant Since C struct is mapped to X10 class,
nested C structs are transformed to nested X10 classes. The gen-
erated code from the nested X10 classes is currently not optimized
by the backend compiler. Hoisting them in a loop can improve the
application performance. A transformation example involves trans-
forming s->atom->r on the right side of Line 21 of Figure 2 tor
on the right sides of Lines 26, 28, and 30 with Line 20 of Figure 3.

Flatten a multi-dimensional array index and its loop In these
ports, C array is transformed toRail. The generated code for a
nestedRail in X10 currently does not fit the pattern for optimiza-
tion by the backend compiler. Flattening a multi-dimensional array
index can improve the application performance. An example in-
volves transformingr[jOff][m] on the right side of Line 21 of Fig-
ure 2 intor(...) on the right side of Lines 26, 28, and 30 of Figure 3.

Replace short array with variables Replacing a short array with
variables can improve the performance by eliminating the array al-
location and array index calculations. An example involves trans-
forming d[m] on the left side of Line 21 of Figure 2 tod0, d1, d2
on the left side of Lines 26, 28, and 30 of Figure 3.

The X10 compiler depends for the code optimization on the
backend compiler. However the generated code for the latter four
modifications in this section by X10 currently do not fit the pattern
for optimization by the backend compiler, but it is possible to
optimize them by using X10. We plan to extend X10 to support
these optimizations.

3.3 Others

Set class as final Setting a class as final may improve the appli-
cation performance by inlining the class method.

2

1 void sort(Link* boxes, ...) {
2 int nA = boxes->nA[iBox];
3 Msg tmp[nA];
4 ...
5 }
6
7 int force(SF* s) {
8 ...
9 for (int iBox=0; ...) {

10 ...
11 for (int iOff= ...) {
12 ...
13 s->atom->p[iOff][0] -= dP * dr / r; // dP is double
14 s->atom->p[iOff][1] += dP * dr / r;
15 ...
16 for (int jOff= ...) {
17 double d[3];
18 ...
19 double r2 = 0.0;
20 for (int m=0; m<3; m++) {
21 d[m] = s->atom->r[jOff][m];
22 r2 += d[m] * d[m];
23 }
24 ...
25 double pT;
26 ip(&pT);
27 for (int m=0; m<3; m++) {
28 s->atom->f[jOff][m] += pT * d[m];
29 }
30 }
31 }
32 }
33 }
34
35 void ip(double* df) {
36 *df = ...
37 }

Figure 2. Original C code for memory allocation and object access

Forcibly inline method called in loop Adding @Inline annota-
tion to any methods called in a loop may improve the application
performance by inlining the methods. For example, this is suitable
to transform macros with parameters.

Prepare dedicated methodX10 sometimes prepares very gener-
alized APIs, but these have some overhead. For critical operations,
a dedicated method is better for performance.

4. Modifications related to MPI
This section describes modifications related to MPI.

4.1 Initialization

MPI applications typically use the MPI functions through locally
defined functions, for example, initCommunicator() for MPIInit(),
destroyCommunicator() for MPIFinalize(), and so on. The main()
starts by calling initCommunicator() and ends by calling destroy-
Communicator(), and any initializations are done between init-
Communicator() and destroyCommunicator().

X10 providesbroadcastFlat() API to execute its parameter
in SPMD style. However, data used independently by each place
should be created asPlaceLocalHandle before parallel sections
start. The main() function can be transformed as shown in Figures 4
and 5. First, the constructor ofBuffersallocates buffers at all places.
Then, the original sequence betweeninitCommunicator()andde-
stroyCommunicator()is passed as a function tobroadcastFlat()
via initCommunicator().

4.2 Point-to-Point Communication

The sending and receiving of messages by processes is the basic
MPI communication mechanism. MPI provides blocking send and
receive operations, nonblocking communications, and send-receive
operations. MPI blocking operations are two-sided which synchro-
nize the sender and the receiver, butat statement in X10 is one-
sided which does not synchronize activities in source and destina-

1 public class Calc {
2 val tmp = new Rail[Msg](Links.MAXA);
3
4 public def sort(boxes:Links.Link, ...):void {
5 val nA = boxes.nA(iBox);
6 ...
7 }
8
9 public def force(s:Types.SF):Int {

10 val pT = new Cell[Double](0.0);
11 ...
12 for (var iBox:Int=0n; ...) {
13 ...
14 for (var iOff:Int=...) {
15 ...
16 val tmp2 = dP.value * dr / r; // dP:Cell[Double]
17 s.atom.p(iOff)(0) -= tmp2;
18 s.atom.p(iOff)(1) += tmp2;
19 ...
20 val r = s.atom.r;
21 val f = s.atom.f;
22 for (var jOff:Int = ...) {
23 val jOff3 = jOff*3;
24 ...
25 var r2:Double = 0.0;
26 val d0 = r(jOff3);
27 r2 += d0 * d0;
28 val d1 = r(jOff3+1);
29 r2 += d1 * d1;
30 val d2 = r(jOff3+2);
31 r2 += d2 * d2;
32 ...
33 ip(pT);
34 val tmp3 = pT.value;
35 f(jOff3) += tmp3 * d0;
36 f(jOff3+1) += tmp3 * d1;
37 f(jOff3+2) += tmp3 * d2;
38 }
39 }
40 }
41 }
42
43 @Inline public static def ip(df:Cell[Double]) {
44 df.value = ...
45 }
46 }

Figure 3. Memory allocation and object access

tion places. MPI nonblocking operations have accompanying func-
tions to query the status of the operations, butasync statement in
X10 does not have a query mechanism. Therefore, rewriting MPI
point-to-point communications on X10 is not a simple task.

CoMD uses the send-receive operation for its communications.
The send-receive operation sends a message to one process and re-
ceives another message from another process. This is very useful
for executing a shift operation across a chain of processes. How-
ever, to correctly order the sends and receives is important to pre-
vent cyclic dependencies that may lead to deadlock.

Figure 6 is a coding example of send-receive operation us-
ing MPI Sendrecv()andMPI Get count(). Its parameters,sendBuf,
sendLen, dest, recvBuf, recvLen, andsourcespecify the address of
the send buffer, the length of send buffer, the process id of the
destination process, the address of the receive buffer, the length
of the receive buffer, and the process id of the source process, re-
spectively. The recvdLen returns the length of the received data.
MPI Sendrecv()is the main part and its parameters specify the send
and receive buffers, the ranks of the destination and source pro-
cesses, and so on.MPI Get count()is used to obtain the length of
the received message.

X10 doesn’t provide an API compatible withMPI Sendrecv(),
but provides APIs to copy data remotely and APIs to synchro-
nize activities separately. Therefore a programmer can implement
MPI Sendrecv()with these API calls. Figure 7 is a coding exam-
ple of send-receive operation in X10. Its parameters’ names and
meanings are the same as those of C version.MyLatch is our
own implementation of latch to release multiple activities under
waits. First, it notifies the destination that it is ready to send data

3

1 int main(int argc, char** argv) {
2 initCommunicator(&argc, &argv);
3 // initialization part
4 // main loop
5 // finalization part
6 destroyCommunicator();
7 return 0;
8 }
9

10 void initCommunicator(int* argc, char*** argv) {
11 MPI_Init(argc, argv);
12 }
13
14 void destroyCommunicator() {
15 MPI_Finalize();
16 }

Figure 4. Original C code for initialization

1 public class Application {
2
3 public static def main(args:Rail[String]):void {
4 val comm = new Communicator(args);
5 initCommunicator(args, comm,
6 (args:Rail[String], comm:Communicator)=>{
7 // initialization part
8 // main loop
9 // finalization part

10 });
11 destroyCommunicator();
12 }
13
14 static def initCommunicator(args:Rail[String],
15 comm:Communicator,
16 body:(Rail[String], Communicator)=>void):void {
17 PlaceGroup.WORLD.broadcastFlat(()=>{body(args, comm);});
18 }
19
20 static def destroyCommunicator():void {
21 }
22 }
23
24 public class Communicator {
25 // Class for preparing PlaceLocalHandle for buffers
26 // and communication
27
28 public this(args:Rail[String]) {
29 // execute a part of the original initialization
30 // to calculate the number and size of buffers
31
32 // then allocate and initialize PlaceLocalHandle
33 // for the buffers
34 }
35 }

Figure 5. Initialization

(Lines 31–33). Then it waits until the source becomes ready to send
the data (Line 40), and its receives the data from the source and
notifies the source that the data reception is complete (Lines 45–
56). Rail.asyncCopy() in these lines is an API to copy data
between a localRail to a GlobalRail (a rail at remote place)
asynchronously.Rail.asyncCopy() in Lines 48–49 copies data
of sendBuf at source place to local recvBuf, and one in Lines 50–51
copies sendLen at source place to local recvdLen. Then it waits for
the notification of data reception completion from the destination
(Line 60). We are considering to provide this send-receive imple-
mentation as a library.

MCCK uses the sequence of MPIBarrier, MPI Isend, MPIIrecv,
and MPIWaitall for its communication. This sequence can be im-
plemented by executing barrier synchronization and then moving
to the other place by using theat statement asynchronously with
theasync statement and accessing the data in the new place.

4.3 Collective Operations

Almost all of the collective operations are already prepared in the
X10 “Team” API [10], but the APIs corresponds to two prede-
fined operators,MPI MINLOC andMPI MAXLOC, of global re-

duce operations are not defined. The operatorMPI MINLOC is
used to compute a global minimum and also an index attached to
the minimum value.MPI MAXLOC similarly computes a global
maximum and index. Instead of these operators, the X10 “Team”
API offers Team.indexOfMin() and Team.indexOfMax() that
return the index of the place with the minimum or maximum value,
respectively. The global reduce operations withMPI MINLOC
or MPI MAXLOC can be implemented by combining them with
global reduce operations of the X10 “Team” API,Team.reduce()
andTeam.allreduce(). Figure 8 and 9 is the transformation ex-
ample fromMPI Allreducewith MPI MINLOC in C toTeam.allreduce()
with Team.indexOfMin() in X10.

5. Evaluation
This section evaluates the X10 ports of the proxy apps compared to
the original implementations. The experimental environment was
an IBM R⃝ PowerR⃝775 server. It has 13 nodes and each node has
32 cores of POWER7R⃝ at 3.84 GHz with 128 GB memory. The
OS was Red Hat Enterprise LinuxR⃝ Server release 6.2. The X10
2.4.1 and the IBMR⃝ XL C V12.1 compilers were used. X10 was
used in a native back-end. The compile options for the original
code were “xlC r -O3 -qinline”, and for the native X10 we
used “x10c++ -x10rt pami -O -NO CHECKS”. The source code
of CoMD ported to X10 is available at [11], and MCCK is at [12].

The top and middle graphs in Figure 10 show the weak scaling
performance of CoMD. The problem size is 256,000 atoms/node.
CoMD implemented in X10 with “Embedded-Atom Method po-
tential” is from 9% to 25% slower than the original version (the
top graph of Figure 10), and with “Lennard-Jones potential” it is
from 6% faster to 11% slower than the original (the middle graph
of Figure 10).

The performance loss of the “Embedded-Atom Method poten-
tial” version in X10 is due to both calculation and communication
factors. For the calculations, the “Embedded-Atom Method poten-
tial” version uses a table to calculate the potential of the atoms.
The table values are stored in arrays and the potential calculation
accesses the arrays and this is slower time than the original. For the
communications, the CoMD X10 implementation uses the send-
receive operation shown in Figure 7. This send-receive operation
does two remote copies to send the data (Lines 48–49) and to send
the received length (Lines 50–51), while the original C implemen-
tation needs only one remote copy. We are considering adding an-
other API to do these two copies in one step.

The performance reduction of the “Lennard-Jones potential”
version in X10 is due to the communications. Since it uses less
communications than the “Embedded-Atom Method potential” ver-
sion, its performance degradation due to communication overhead
is smaller.

However, both potential versions scale well up to 392 (7x7x8)
places. Since each of the MPI processes is sequential, we can run
up to 416 (13x32) places.

The bottom graph of Figure 10 shows the relatively weak scal-
ing of MCCK. The problem size is 20,000,000 particles/node with
0.2 leakage. MCCK implemented on X10 is from 30% faster
to 17% slower than the original version, and on average 1.8%
slower.This performance is due to the calculation. Since MCCK
is a benchmark for communication, its calculation part decreases
the particles stochastically, packs the remaining particles in an ar-
ray while sorting, then unpacks the exchanged particles in the array
while sorting. Based on the basic modifications explained in Sec-
tion 3, the sort is implemented as a dedicated method, and the
compare function used by the sort is inlined. While the original
version sorts an array of structs, the X10 version sorts an array of
pointers (to objects). In the results, the calculation part is acceler-
ated. The communications are slower than in the original version,

4

1 void sendReceive(void* sendBuf, int sendLen, int dest,
2 void* recvBuf, int recvLen, int source,
3 int* recvdLen) {
4 MPI_Status status;
5 MPI_Sendrecv(sendBuf, sendLen, MPI_BYTE, dest, 0,
6 recvBuf, recvLen, MPI_BYTE, source, 0,
7 MPI_COMM_WORLD, &status);
8 MPI_Get_count(&status, MPI_BYTE, recvdLen);
9 }

Figure 6. Implementation example of send-receive operation in C

since it emulates point-to-point communication while moving to
the other place and accessing its data. However the communication
time varies irregularly, its rate of variation is similar to that of the
original version. It scales well up to 360 places,but is limited by
memory capacity.

6. Related Work
Karlin et al [13] ported the proxy application LULESH (Livermore
Unstructured Lagrangian Explicit Shock Hydrodynamics) [14] to
four emerging programming models, Chapel [15], Charm++ [16],
Liszt [17], and Loci [18], and comparing the performance with
the original implementations, OpenMP and MPI. Chapel achieves
more than 80% efficiency at 16 cores although its single-core per-
formance is significantly worse compared to OpenMP. Charm++
weak scales extremely well and its performance is comparable to
the MPI implementation. The Liszt MPI back end’s on-node perfor-
mance was about 50% worse than the native MPI implementation.
Inserting native C++ code into their Liszt program, the performance
improved to within 10% of the MPI implementation. Loci’s strong
scaling on a node outperforms OpenMP by up to 15%. Overall,
its scaling is a bit worse than OpenMP. Weak scaling performance
of the Loci implementation comes close to that of MPI implemen-
tation. In our results, the performance of CoMD ported onto X10
is 11% and 25% worse than that of the MPI implementation and
MCCK ported to X10 is comparable to the MPI implementation,
are comparable to their results.

Since PGAS programs may have many fine-grained shared ac-
cesses that lead to performance degradation, much research has
been done towards improving the performance. For example, data
coalescing [19–21, 24], splitting request and completion of shared
accesses [21–23], and so on. Rewriting applications from scratch
for the X10 APGAS model and applying those optimizations may
result in higher than original performance. However, we didn’t
rewrite any applications from scratch nor use any of those opti-
mizations. We ported the applications directly in this study.

7. Conclusion
We described the rewriting patterns for porting two proxy ap-
plications, CoMD and MCCK onto X10. The performance was
measured on an IBMR⃝ PowerR⃝ 775 cluster. The performance of
CoMD ported to X10 with the Embedded-Atom Method potential
was from 9% to 25% slower, and CoMD in X10 with the Lennard-
Jones potential was from 6% faster to 11% slower, compared to the
original. The performance of MCCK ported to X10 is quite close to
the original. Those applications ported to X10 scaled well and was
comparable performance with the original. All of the ported code
are available at X10 sites. We are planning to provide the utility
libraries of common porting patterns.

Acknowledgments
We would like to thank the members of X10 project in IBM T.
J. Watson Research Center and IBM Research - Tokyo, for their

1 public class Communicator {
2 val startLatch = PlaceLocalHandle[Rail[MyLatch]];
3 val finishLatch = PlaceLocalHandle[Rail[MyLatch]];
4
5 def this() {
6 this.startLatch =
7 PlaceLocalHandle.make[Rail[MyLatch]](Place.places(),
8 ()=>new Rail[MyLatch](Place.MAX_PLACES));
9 this.finishLatch =

10 PlaceLocalHandle.make[Rail[MyLatch]](Place.places(),
11 ()=>new Rail[MyLatch](Place.MAX_PLACES));
12 }
13
14 public def sendReceive[T](
15 sendBuf:PlaceLocalHandle[Rail[T]],
16 sendLen:PlaceLocalHandle[Rail[Int]], dest:Int,
17 recvBuf:PlaceLocalHandle[Rail[T]], recvLen:Int,
18 source:Int, recvdLen:PlaceLocalHandle[Rail[Int]]) {
19 val me = here.id() as Int;
20 if (me == dest && me == source) {
21 val len = sendLen()(0);
22 Rail.copy[T](sendBuf(), 0, recvBuf(), 0,
23 len as Long);
24 recvdLen()(0) = len;
25 } else {
26 finish {
27 // 1. Trigger asyncCopy(me -> dest)
28 at (Place.place(dest)) async {
29 // Notify the "dest" that
30 // "me" is ready to send
31 startLatch()(me).release();
32 }
33
34 // 2.1. Wait for the "source" ready to send
35 val recvBufRef = GlobalRail(recvBuf());
36 val recvdLenRef = GlobalRail(recvdLen());
37 // Wait for a notification from the "source"
38 startLatch()(source).await();
39 // Now both recvBuf at "me" and sendBuf
40 // at the "source" are ready for asyncCopy
41
42 // 2.2. Perform asyncCopy(source -> me)
43 at (Place.place(source)) async {
44 val len2 = sendLen()(0);
45 finish {
46 Rail.asyncCopy[T](sendBuf(), 0,
47 recvBufRef, 0, len2 as Long);
48 Rail.asyncCopy[Int](sendLen(), 0,
49 recvdLenRef, 0, 1);
50 }
51 // Notify the "source" the completion
52 // of asyncCopy(source -> me)
53 finishLatch()(me).release();
54 }
55
56 // 3. Wait for a notification of the completion
57 // of asyncCopy(me -> dest)
58 finishLatch()(dest).await();
59 }
60 }
61 }
62 }

Figure 7. Implementation example of send-receive operation in
X10

various suggestions and valuable comments. This material is based
upon work supported by the Department of Energy under award
DE-FOA-0000619.

References
[1] Center for Exascale Simulation of Advanced Reactors (CESAR),

http://cesar.mcs.anl.gov/

[2] Exascale Co-design Center for Materials in Extreme Environments
(ExMatEx), http://www.exmatex.org/

[3] Center for Exascale Simulation of Combustion in Turbulence (ExaCT),
http://exactcodesign.org/

[4] Message Passing Interface Forum, http://www.mpi-forum.org/

[5] The OpenMP API Specification for Parallel Programming,
http://openmp.org/wp/

[6] The open standard for parallel programming of heterogeneous systems,
https://www.khronos.org/opencl/

5

1 typedef struct {
2 double value;
3 int rank;
4 } RankReduceData;
5
6 void minRankDouble(
7 RankReduceData* sBuf, RankReduceData* rBuf, int count) {
8 MPI_Allreduce(sBuf, rBuf, count,
9 MPI_DOUBLE_INT, MPI_MINLOC, MPI_COMM_WORLD);

10 }
11
12 void stats(void) {
13 RankReduceData sBuf[numOfT], rBuf[numOfT];
14 minRankDouble(sBuf, rBuf, numOfT);
15 ...
16 }

Figure 8. Implementation example of MPIMINLOC in C

1 public class Communicator {
2 static class RankReduceData {
3 var value:Double = 0.0;
4 var rank:Int = 0n;
5 }
6
7 public def minRankDouble(sendBuf:Rail[RankReduceData],
8 recvBuf:Rail[RankReduceData], count:Int):void {
9 val sendBuf2 = new Rail[Double](count);

10 val recvBuf2 = new Rail[Double](count);
11 for (var i:Int = 0n; i < count; i++) {
12 sendBuf2(i) = sendBuf(i).value;
13 }
14 team.allreduce[Double](sendBuf2, 0, recvBuf2, 0,
15 count as Long, Team.MIN);
16 for (var i:Int = 0n; i < count; i++) {
17 recvBuf(i).rank = team.indexOfMin(sendBuf(i).value,
18 sendBuf(i).rank);
19 recvBuf(i).value = recvBuf2(i);
20 }
21 }
22 }
23
24 public class Perf {
25 val comm:Communicator;
26 val sBuf = new Rail[Communicator.RankReducedData](numOfT);
27 val rBuf = new Rail[Communicator.RankReducedData](numOfT);
28
29 public def this(comm:Communicator) {
30 this.comm = comm;
31 }
32
33 def stats():void {
34 comm.minRankDouble(sBuf, rBuf, numOfT);
35 ...
36 }
37 }

Figure 9. Implementation example of MPIMINLOC in X10

[7] Co-design for Molecular Dynamics (CoMD),
http://www.exmatex.org/comd.html

[8] CoMD GitHub, https://github.com/exmatex/CoMD

[9] Monte Carlo Communication Kernel (MCCK),
https://cesar.mcs.anl.gov/content/software/neutronics

[10] X10 Language Specification
http://x10.sf.net/documentation/languagespec/x10-latest.pdf

[11] CoMD ported onto X10,
http://svn.code.sf.net/p/x10/code/applications/trunk/CoMD/

[12] MCCK ported onto X10,
http://svn.code.sf.net/p/x10/code/applications/trunk/MCCK/

[13] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z.
DeVito, R. Haque, D. Laney, E. Luke, F. Wang, D. Richards, M.
Schulz, and C. H. Still. Exploring Traditional and Emerging Parallel
Programming Models Using a Proxy Application, Proceedings of
2013 IEEE 27th International Symposium on Parallel & Distributed
Processing, pp. 919-932, 2013.

[14] Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics
(LULESH), https://codesign.llnl.gov/lulesh.php

Figure 10. Weak scaling performance of applications (elapsed
time relative to the original on 1 place)

[15] B. Chamberlain, D. Callahan, and H. Zima. Parallel Programmability
and the Chapel Language, International Journal of High Performance
Computing Applications, Vol. 21, No. 3, pp. 291-312, Aug. 2007.

[16] L. Kale and S. Krishnan. CHARM++: A Portable Concurrent Object
Oriented System Based on C++, in Proceedings of OOPSLA ’93, pp.
91-108, September 1993.

[17] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M.
Barrientos, E. Elsen, F. Ham, A. Aiken, K. Duraisamy, E. Darve, J.
Alonso, and P. Hanrahan. Liszt: a domain specific language for building
portable mesh-based PDE solvers, Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC 11, 2011.

[18] E. A. Luke and T. George. Loci: A rule-based framework for
parallel multi-disciplinary simulation synthesis, Journal of Functional
Programming, Special Issue on Functional Approaches to High-
Performance Parallel Programming, Vol. 15, No. 03, pp. 477-502, 2005.

[19] W.-Y. Chen, C. Iancu, and K. Yelick. Communication Optimizations
for Fine-Grained UPC Applications. Proceedings of the 14th Interna-
tional Conference on Parallel Architectures and Compilation Techniques,
PACT ’05, pp. 267-278, 2005.

[20] D. Chavarria-Miranda and J. Mellor-Crummey. Effective Commu-
nication Coalescing for Data-Parallel Applications. Proceedings of the
10th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), pp. 14-25, 2005.

[21] M. Gupta, E. Schonberg, and H. Srinivasan. A Unified Framework
for Optimizing Communication in Data-Parallel Programs. IEEE
Transactions on Parallel and Distributed Systems, 7:689-704, 1996.

6

[22] W.-Y. Chen, D. Bonachea, C. Iancu, and K. Yelick. Automatic
nonblocking communication for partitioned global address space
programs. Proceedings of the 21st annual international conference on
Supercomputing (ICS ’07), pp. 158-167.

[23] Y. Dotsenko, C. Coarfa, and J. Mellor-Crummey. A Multi-Platform
Co-Array Fortran Compiler. Proceedings of the 13th International
Conference on Parallel Architectures and Compilation Techniques,
PACT ’04, pp. 29-40.

[24] M. Alvanos, M. Farreras, E. Tiotto, J. N. Amaral, and X. Martorell.
Improving communications in PGAS environments: static and dynamic
coalescing in UPC, Proceedings of the 27th international ACM
conference on International conference on supercomputing ICS’13,
pp. 129-138, 2013.

IBM, Power, and POWER7 are the trademarks of International Business Machines
Corporation in the United States, other countries, or both. Linux is a registered
trademark of Linus Torvalds in the United States, other countries, or both.

7

