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Abstract
X10 is a programming language that internally supports distributed
computing. X10 applications can run over multiple “places” (com-
puting nodes), and perform distributed computing by changing the
execution place using “at” statements. However, in a conventional
X10 environment, when a node that handles a place fails, the en-
tire processing of that X10 application is aborted. To address this
problem, we have been extending X10 to “Resilient X10”, where
a node failure is reported as aDeadPlaceException and the ex-
ecution can continue using the remaining nodes. In this paper, we
explain how to construct fault-tolerant distributed applications us-
ing Resilient X10 functions. Three basic methods are introduced
to handle the node failures: (a)Ignore failures and use the results
from the remaining nodes, (b)Reassignthe failed node’s work to
the remaining nodes, or (c)Restorethe computation from a peri-
odic snapshot. We also describe a fault-tolerant extension of the
existing distributed X10 libraryDistArray. These modifications
to add fault tolerance were very small, and the modified code can
still run on standard X10 as long as node failure does not occur. The
impacts on execution performance caused by the modifications are
also evaluated.

Categories and Subject DescriptorsD.1.3 [Programming Tech-
niques]: Concurrent Programming—distributed programming

General Terms Reliability, Algorithms, Language, Design, Ex-
perimentation

Keywords Resilient X10, Fault tolerance, Distributed program-
ming

1. Introduction
X10 [25] is a programming language that supports distributed com-
puting. However in the original X10 implementation, when a com-
puting node crashes, the whole X10 application is aborted even if
the other nodes are alive. This may become a problem especially in
exascale computing where a massive number of nodes are used for
the computation. For example, there is a report that MTBF (Mean
Time Between Failures) for 1,408 compute nodes was 15.8 hours
[18]. To address this problem, we are developing an extended ver-
sion of X10 called “Resilient X10” [3], where the node failure is
reported as an exception and the execution can continue using the
remaining nodes. This paper explains how fault-tolerant distributed
applications can be constructed using Resilient X10 functions.

For the execution model on a distributed environment, X10 uses
PGAS (Partitioned Global Address Space) [15]. As the name in-
dicates, the PGAS model provides a global address space, but it
is partitioned into multipleplaces, each of which basically cor-
responds to a computing node. Data can be referenced from any
place, but an activity must move to the place using an “at” state-
ment to access the data.

A node failure can be considered as the death of a place in X10,
which means that data on the place become inaccessible. However,
since the address space is explicitly partitioned, it is relatively easy
in the PGAS model to continue the execution bydetachingthe
failed node (place). For example, when the target place of anat
statement dies, the processing can continue if the caller receives
some kind of notification. In the Resilient X10 we are developing, a
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Figure 1. Execution model of X10.

newly defined exception,DeadPlaceException, is raised for this
situation.

Unfortunately, simple notification of the place death is not suf-
ficient to continue the application. To achieve fault tolerance, the
application (or libraries) must reconfigure the processing appropri-
ately based on the notification. In this paper, we introduce the fol-
lowing three basic methods to handle the notification: (a) Ignore
failures and use the results from the remaining nodes, (b) Reas-
sign the failed node’s work to the remaining nodes, or (c) Restore
the computation from a periodic snapshot. Programming examples
for these three methods in Resilient X10 are provided. We also
show a fault-tolerant extension of the existing distributed X10 li-
brary DistArray. These modifications to add fault tolerance are
very small, and the modified code can still run on standard X10 as
long as node failure does not occur. The major contributions of this
paper are:
• An analysis of multiple approaches to add fault tolerance to ex-

isting distributed applications, proving that they can be imple-
mented with minimal modifications using Resilient X10.
• An evaluation of the developed fault-tolerant applications from

various perspectives in a real distributed environment.

2. Fault Tolerance Support in Resilient X10
For programming parallel and distributed applications, it is very
important how the parallelism and distributed memory structure are
exposed to the programmer. The upper figures in Figure 1 show
three variations. In a “shared memory” model such as OpenMP
[14], an address space is shared by all of the nodes (cores), and
explicit data division or communication is unnecessary. This sim-
plifies the programming, but fine-grain tuning to maximize the use
of the hardware may be difficult. In contrast, a “message pass-
ing” model such as MPI [11], where all of the communications are
explicitly described, always requires the programmer to be fully
aware of the underlying hardware configuration.

The PGAS used by X10 can be regarded as being between these
two approaches, with a global address space that is partitioned into
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1 class HelloWorld {
2 public static def main(args:Rail[String]) {
3 finish for (pl in Place.places()) {
4 at (pl) async { // parallel distributed exec in each place
5 Console.OUT.println("Hello from " + here);
6 }
7 } // end of finish, wait for the execution in all places
8 }
9 }

10 $ x10c++ HelloWorld.x10 -o HelloWorld # compile
11 $ X10_NPLACES=4 runx10 HelloWorld # execute
12 Hello from Place(3)
13 Hello from Place(0)
14 Hello from Place(2)
15 Hello from Place(1)

Figure 2. Parallel distributed Hello World in X10.

multiple “places”. The place is an abstraction of memory locality
and typically corresponds to a computing node. Each unit of data
belongs to a specific place and can be accessed only in that place,
but it can be referenced (pointed to) from any place. By providing
such an abstracted view of the underlying parallel/distributed envi-
ronment instead of concealing it, X10 tries to offer high productiv-
ity for high performance computing. The PGAS model is also used
in other languages such as UPC (Unified Parallel C) [21], CAF
(Co-Array Fortran) [23], and XMP (XcalableMP) [26]. Since X10
supports the arbitrary creation of asynchronous activities, its exe-
cution model is sometimes called APGAS (Asynchronous PGAS).

2.1 APGAS Execution Model

The lower part of Figure 1 shows X10’s APGAS execution model.
A global address space is partitioned into multipleplaces, which
can hold multipleactivitiesandobjects.

An activity is a kind of lightweight thread sequentially executed
in a place. It is created by anasync statement and can move to an-
other place using anat statement, through which parallel and dis-
tributed processing is made possible. Afinish statement is used to
wait for the termination of activities (including grandchildren) cre-
ated inside that block. At this time, exceptions are propagated by
being encapsulated in aMultipleExceptions object. By using
this “Rooted Exception Model”, X10 programs can handle excep-
tions thrown by asynchronous activities.

An object is a mutable data structure that belongs to a specific
place and can only be accessed by the activities running in that
place. However, objects can be globally (remotely) referenced by
usingGlobalRef [7, 17]. The global reference contains informa-
tion about where the object exists, so activities can move to that
place to access the object. For example, a statement “data = at
(gref) gref();” indicates to move to the place of the global ref-
erencegref and read its value. X10 also provides a distributed ar-
ray structure namedDistArray whose elements are scattered over
multiple places. Each element can be manipulated by activities in
the same place.

Figure 2 shows a Hello World program written in X10 and an
execution example using four places. A new asynchronous activity
is created in each of the places by theat andasync statements
in Line 4, and a message “Hello from Place(n)” is printed in
a parallel and distributed manner. The termination of the activities
are waited for by thefinish statement ending at Line 7, and the
program terminates its execution.

2.2 Resilient X10

Distributed processing with X10 can be done by running each place
as a process on a different computing node. When a node is broken,
all of the activities and data in that place are lost, and the entire X10
processing is aborted in standard X10. However, since the address
space partitioning is visible from applications, localizing the impact
of place death is relatively easy in the PGAS model. Consider
the case when Place 1 in the lower part of Figure 1 dies. Three

1 class ResilientExample {
2 public static def main(Rail[String]) {
3 finish for (pl in Place.places()) async {
4 try {
5 at (pl) do_something(); // parallel distributed execution
6 } catch (e:DeadPlaceException) {
7 Console.OUT.println(e.place + " died"); // report failure
8 }
9 } // end of finish, wait for the execution in all places

10 }
11 }

Figure 3. A simple fault-tolerant program which just reports node
failures.

activities, two objects, and some parts of two distributed arrays in
that place are lost, but the remaining portions in other places are not
affected. Global references to the dead place became inaccessible,
but can remain in live places. By exploiting this, we have been
extending X10 to continue the execution using the remaining nodes
(places), in our new language “Resilient X10” [3].

In Resilient X10, the newly defined exceptionDeadPlaceEx-
ception (shortened toDPE in the following explanation) is thrown
for a place death. Concretely, if an activity is being moved (or trying
to move) to a dead place, the correspondingat statement throws the
DPE. When an activity is asynchronously executing in a dead place
using theasync statement, thefinish statement governing the
activity will throw aMultipleExceptions object which contains
the DPE (and possibly other exceptions in the block). The ID of
the dead place can be checked through theplace field of theDPE.
Some utility methods are also provided, such asPlace.isDead to
check if a specified place is dead or not, andPlace.numDead to
check the number of dead places1.

These functions make it possible to write fault-tolerant X10
applications that can continue to run on the remaining nodes even
when some places are lost due to node failures. Figure 3 shows
a simple example. This program performsdo something in all
of the places, and simply prints “Place(n) died” for the DPE
notification (Lines 6–7).

To process afinish statement appropriately even when some
activities have been lost due to node failure, the execution status
of the activities (the number of activities running on each place)
governed by thefinishmust be recorded securely and not lost by
the failure. Resilient X10 stores such kinds of critical information
in a reliable storage area namedResilient Storage. We have im-
plemented several variations of the Resilient Storage, and the most
stable version in our current implementation is the one which uses
Place 0 (the place wheremain is executed) for this purpose2.

The Resilient X10 function is included as a technology preview
in X10 2.4.1 (released in December 2013) and later versions, and
can be enabled by specifying an environment “X10 RESILIENT -
MODE=1”. Resilient X10 can run with either of two X10 implemen-
tations: Native X10, compiled to C++ and executed natively, and
Managed X10 [7, 20], compiled to JavaTM and executed on multi-
ple Java VMs. The communication layer is limited to sockets, and
MPI [11] and PAMI [8] are not yet supported. Refer to [3] for more
implementation details, and [2] for the semantics of the place-death
handling.

1 In the current implementation, the place IDs are not reassigned when a
place has died. ThePlace.MAX PLACES field always holds the number of
places at the start-up time, and thePlace.places method returns a list
of places including any dead places. These constraints are mainly for the
backward compatibility, but may be changed in the future when dynamic
place addition is supported.
2 This version has a limitation that the X10 execution is aborted if Place 0
dies. The fault-tolerant applications shown in this paper also use the as-
sumption that Place 0 never dies. Note that even with this limitation, the
MTBF of the system is greatly extended, becoming to the MTBF of a sin-
gle node (Place 0).
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1 import x10.util.*;
2 class ResilientMontePi {
3 static val ITERS = 1000000000/Place.MAX_PLACES; // one billion
4 public static def main (args:Rail[String]) {
5 val result = GlobalRef(new Cell(Pair[Long,Long](0,0)));
6 // global result which holds (#inside the circle, #trials)
7 finish for (p in Place.places()) async {
8 try {
9 at (p) {

10 val rnd = new x10.util.Random(System.nanoTime());
11 var c:Long = 0;
12 for (iter in 1..ITERS) { // ITERS trials per place
13 val x = rnd.nextDouble(), y = rnd.nextDouble();
14 if (x*x + y*y <= 1.0) c++; // if inside the circle
15 }
16 val count = c;
17 at (result) atomic { // update the global result
18 val r = result();
19 r() = Pair(r().first+count, r().second+ITERS);
20 }
21 }
22 } catch (e:DeadPlaceException) {
23 // just ignore the results of dead places
24 }
25 } // end of finish, wait for the execution in all places
26 val pair = result()();
27 val pi = 4.0 * pair.first / pair.second;
28 Console.OUT.println("pi="+pi + " (try="+pair.second+")");
29 }
30 }

Figure 4. Computation ofπ with the Monte Carlo method.

3. Fault-Tolerant X10 Applications
Currently, Resilient X10 provides only a few programming inter-
faces:DeadPlaceException to notify the application of place
death and support methods such asPlace.isDead andPlace.-
numDead, but these are sufficient to add fault tolerance to existing
distributed X10 applications.

However for this to work, it is necessary to understand how
the application is doing the distributed processing and how the
execution can be continued after a node failure. Depending on these
situations, the approach to adding the fault tolerance will differ.
This section explains two methods to handle node failures:

(a) Ignore the failures and use the results from the remaining nodes,

(b) Reassign the failed node’s work to the remaining nodes.

A third method will be added in Section 4.

3.1 MontePi

Figure 4 is an example of adding fault tolerance to an application
which approximatesπ by using a Monte Carlo method. The core
part of the computation is thefor loop at Lines 12–15, which
repeatedly checks if randomly generated coordinates (x, y) are
inside a circle of radius 1.0. AfterITERS number of trials, the result
is added to a globalresult data pair stored at Place 0 (Lines 17–
20). This series of processes is performed in parallel at each place,
and when all of them finish, the value ofπ is finally calculated from
theresult (Lines 26–27).

If a node fails during the computation, the place executing on
that node dies and theat statement at Line 9 throws aDeadPlace-
Exception. This exception is caught by thecatch statement at
Line 22 and just ignored. In the now dead place, theat statement
at Line 17 is never executed, so the globalresult is not updated3.
Therefore, only the results from living nodes will be used for the
final calculation. The result may become less accurate because the
number of trials of the Monte Carlo method is reduced, but it is not

3 If the place dies after executing theat statement at Line 17, the result will
be used for the final calculation. The body of thisat is executed at Place 0,
so the result is updated correctly even if the originating place died.

1 class ResilientKMeans {
2 static val POINTS = 10000000; // number of points
3 :
4 public static def main(args:Rail[String]) {
5 /* prepare a set of points, and deliver it to other places */
6 for (iter in 1..ITERATIONS) { // iterate until convergence
7 /* deliver current cluster values to other places */
8 // process some part of the points at each place
9 val numAvail = Place.MAX_PLACES - Place.numDead();

10 val div = POINTS / numAvail; // share for each place
11 val rem = POINTS % numAvail; // extra share for Place 0
12 var start:Long = 0; // next point to be processed
13 try {
14 finish for (pl in Place.places()) {
15 if (pl.isDead()) continue; // skip dead place(s)
16 var end:Long = start+div; if (pl==place0) end+=rem;
17 at (pl) async { // compute at live places in parallel
18 /* process points [start,end), and return the data
19 necessary for updating cluster vals to Place 0 */
20 }
21 start = end;
22 } // end of finish, wait for the execution in all places
23 } catch (es:MultipleExceptions) {
24 for (e in es.exceptions()) { // just ignore place death
25 if (!(e instanceof DeadPlaceException)) throw e; }
26 }
27 /* compute new cluster values, and exit if converged */
28 } // end of for (iter)
29 /* print the result */
30 } // end of main
31 }

Figure 5. Fault-tolerant KMeans (skeleton).

completely broken by the node failure. This program also prints the
total number of trials as reference information.

In this example, the code that was added for fault tolerance is
only thetry statement at Line 8 and thecatch statement spanning
Lines 22–24.

3.2 KMeans

KMeans is a basic algorithm for clustering analysis, categorizing
n points ind-dimensional space intoK clusters4. The basic com-
putation is an iteration of: (1) Categorizing then points based on
the coordinates of theK clusters, and (2) Making the centroid of
the points to the new coordinates of each cluster. The iteration ends
when the differences in the coordinates between iterations become
smaller than a threshold. In a distributed environment, Step (1) can
be done in parallel by assigningn points to each computing node
and returning the results necessary for Step (2). Since the coordi-
nates of then points do not change, they can be copied in advance.

For such programs, fault tolerance can be supported byreas-
signingthe work only to available nodes. Figure 5 shows the skele-
ton of a fault-tolerant KMeans application based on this approach.
In this figure, “/* · · · */” explains the processing of the omitted
part. The complete code is listed in Figure 9 of the appendix. The
work reassignment is performed by the code in Lines 9–17. The
number of available places is determined in Line 9, and the number
of points to be processed at each place is calculated in Lines 10–11.
Lines 14–17 process the computation at the live places in parallel
by skipping the dead places (Line 15).

When a place dies during the execution, aDeadPlaceEx-
ception (enclosed by aMultipleExceptions) is thrown for the
finish statement in Line 14, and caught by thecatch statement
in Line 23. The notification is simply ignored in this program, and
retry of the lost computation or disposal of other results are not per-
formed. This is because even the partial results can still make the
convergence faster for the KMeans computation (we call this ap-
proachdecimation[3]). However, to make the final results precise,
the convergence check is performed only when all of the points are
processed.

4 In the example in this paper,n = 10,000, 000,d = 4, andK = 4.
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1 package x10.regionarray;
2 public class ResilientDistArray[T] ... {
3 public static def make[T](dist:Dist, init:(Point)=>T)
4 : ResilientDistArray[T];
5 public static def make[T](dist:Dist){T haszero}
6 : ResilientDistArray[T];
7 public final operator this(pt:Point) : T; // read element
8 public final operator this(pt:Point)=(v:T) : T; // set element
9 public final def map[S,U](dst:ResilientDistArray[S],

10 src:ResilientDistArray[U], filter:Region, op:(T,U)=>S)
11 : ResilientDistArray[S];
12 public final def reduce(op:(T,T)=>T, unit:T) : T;
13 :
14 // Create a snapshot
15 public def snapshot() { snapshot_try(); snapshot_commit(); }
16 public def snapshot_try() : void; // may throw DPE
17 public def snapshot_commit() : void;
18 // Reconstruct the DistArray with new Dist
19 public def restore(newDist:Dist) : void;
20 public def remake(newDist:Dist, init:(Point)=>T) : void;
21 public def remake(newDist:Dist){T haszero} : void;
22 }

Figure 6. Interface of the DistArray with snapshot mechanisms.

In this example, the code added for fault tolerance is about
10 lines, including the parts omitted from Figure 5.

4. Fault-Tolerant X10 Libraries
The MontePi and KMeans examples in the previous section were
written only using basic X10 constructs. However, for efficiently
writing large distributed applications, library support is crucial. As
one of these libraries, X10 supports distributed array (DistArray),
where the elements are scattered over multiple places, similar to
the Co-Array in CAF. This section introduces an extension named
“Resilient DistArray”, which supports snapshot mechanisms to
handle node failures, and a fault-tolerant application using the
mechanism. This leads to a third method to handle node failures:

(c) Restore the computation from a periodic snapshot.

4.1 Resilient DistArray

A large-scale distributed application typically has an SPMD struc-
ture, where each computing node executes the same processing on
a small part of the large amount of data. ADistArray is a data
structure suitable for such processing. The elements of the array
are divided into multiple places and processed by activities running
on the owning places. How to distribute the elements among the
places can be flexibly defined by using aDist structure. See the
X10 documents [17] for the details.

Upon a node failure, theDistArray elements belonging to the
dead place become inaccessible, so the SPMD processing cannot
continue. To resume the processing, the distributed array must be
rearranged among the remaining places while restoring all of the
element data. TheResilientDistArray is a fault-tolerant exten-
sion5 of the distributed array to support this function. The current
version is implemented as an independent class which contains a
DistArray field, requiring about 200 lines of code. We are con-
sidering integrating the function into the standard distributed array
in the future.

Figure 6 shows the interface of theResilientDistArray. The
[T] is a type parameter,(T)=>U is a function type, and the right
part of colon specifies the type of the argument or return value. As
in standardDistArray, it can be created by themakemethod with

5 Currently X10 has two implementations of distributed array [17]. The
one inx10.regionarray package supports complex and flexible element
distribution, and the other inx10.array package is simple, but faster.
There is a fault-tolerant extension for both of them, but the explanation in
this paper uses thex10.regionarray implementation.

1 class ResilientHeatTransfer {
2 static val N = 20; // size of grid
3 static val livePlaces = new ArrayList[Place]();
4 static val restore_needed = new Cell[Boolean](false);
5 :
6 public static def main(args:Rail[String]) {
7 for (pl in Place.places()) livePlaces.add(pl);
8 // initialize Region and Dist
9 val BigR = Region.make(0..(N+1), 0..(N+1)); // +surroundings

10 var BigD:Dist(2) = Dist.makeBlock(BigR, 0,
11 new SparsePlaceGroup(livePlaces.toRail()));
12 // create a DistArray, each element holds a heat value
13 val A = ResilientDistArray.make[Double](BigD, ...);
14 A.snapshot(); // create the initial snapshot
15 for (iter in 1..ITERATIONS) { // iterate until convergence
16 try {
17 if (restore_needed()) { // if some places died
18 BigD = Dist.makeBlock(BigR, 0, // recreate Dist, and
19 new SparsePlaceGroup(livePlaces.toRail()));
20 A.restore(BigD); // restore elements from the snapshot
21 restore_needed() = false;
22 }
23 finish ateach (z in D_Base) { // distributed processing
24 /* compute new heat values for A’s local elements */
25 }
26 /* if converged, exit the for loop */
27 if (iter % 10 == 0) A.snapshot(); // create a snapshot
28 } catch (e:Exception) { processException(e); }
29 } // end of for (iter)
30 /* print the result */
31 } // end of main
32

33 private static def processException(e:Exception) { // exception
34 if (e instanceof DeadPlaceException) {
35 val deadPlace = (e as DeadPlaceException).place;
36 livePlaces.remove(deadPlace); restore_needed() = true;
37 } else ... /* handle MultiPlaceExceptions recursively */
38 }
39 }

Figure 7. Fault-tolerant HeatTransfer (skeleton).

aDist argument to specify the distribution of the elements and an
optional function argument for initialization. Each element can be
accessed in the owning place by using the form “A(pt)”. Utility
methods likemap andreduce are also available.

The fault-tolerant extension starts from Line 14. Thesnapshot
method dumps the element values into the Resilient Storage, which
can be restored by therestoremethod. At this time, the elements
can be rearranged among the live places based on thenewDist ar-
gument. Theremake method can be used to re-initialize the array
with the new distribution without restoring any data. Using these
functions to create periodic snapshots of intermediate data, it is pos-
sible to restart the computation from the snapshot by reconstructing
the DistArrays over the remaining live places.

4.2 HeatTransfer

As an example using theResilientDistArray, we selected the
“HeatTransfer” program in this section. This is an application to
compute the heat diffusion through a two-dimensional grid repre-
sented by an array. Each element of the array holds the heat value
of a grid point, and is repeatedly updated by the average of sur-
rounding four points until convergence. This is a “stencil” com-
putation pattern, which is very common in HPC applications. By
using DistArray, HeatTransfer can be easily implemented as a
distributed program using multiple computing nodes, and several
variations are included as examples in the X10 distribution.

Figure 7 shows the skeleton of a fault-tolerant HeatTransfer
application usingResilientDistArray. The complete code is
listed in Figure 10 of the appendix. Thefor loop of Lines 15–29 is
repeated until the result converges. Inside the loop, for each element
of the DistArray, a new heat value is calculated in parallel at each
place (Lines 23–25). To support fault tolerance, a new snapshot of
DistArrayA is created at every 10th iteration (Line 27).
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When a node failure occurs during the execution, aDeadPlace-
Exception (enclosed by aMultipleExceptions) is caught by
the catch statement in Line 28, and theprocessException
method is called. This method removes the dead place from the
livePlaces list and sets therestore needed flag (Line 36).
If this flag is set at the beginning of an iteration (Line 17), then
DistArray A is reconstructed over the remaining places using the
livePlaces information, and the element values are restored from
the latest snapshot (Lines 18–20). The execution is slightly un-
wound by this, but can be resumed by detaching the failed node.

In this example, the modifications for fault tolerance other than
replacingDistArray with ResilientDistArray involve about
25 lines, including the parts omitted from Figure 7. This may
seem to be relatively large for such a small application, but we
believe larger DistArray applications can be made fault tolerant
using the same approach, and the modification ratio will be smaller
for more typical applications. Since half of the modifications are in
the exception-handling code ofprocessException, it can also be
considered to provide this method as a library.

5. Evaluation
This section shows various evaluations of fault tolerance support
using the applications from previous sections: MontePi, KMeans,
and HeatTransfer.

5.1 Modification Amount

As explained in each section, the modifications necessary to add
fault tolerance were very small: only 4 lines for MontePi, about
10 lines for KMeans, and about 25 lines for HeatTransfer. Adding
the snapshot and restore functions to DistArray was done in about
200 lines of code. Note that all of these fault-tolerant programs will
still run on standard X10 as long as node failure does not occur.

As shown above, Resilient X10 makes it possible to add fault
tolerance to existing distributed applications with very small mod-
ifications. However, the best approach to adding the fault tolerance
depends on the structure of each application. Therefore, we dis-
cussed three typical methods in this paper: (a) Ignore failures and
use the results from the remaining nodes (MontePi), (b) Reassign
the failed node’s work to the remaining nodes (KMeans), or (c)
Restore the computation from a periodic snapshot (HeatTransfer).

5.2 Execution Performance

Next, we evaluated the impact of fault tolerance support on the exe-
cution performance. For each application, its base code and a fault-
tolerant version were executed on standard X10 and Resilient X10,
and the computation times were compared. All of the measure-
ments were done using four IBMR⃝ BladeCenterR⃝ HS23 (7875-C5J)
blades, each of which consists of two 2.7-GHz IntelR⃝ XeonR⃝ E5-
2680 processors (a total of 16 cores). The machines were intercon-
nected with 40-Gbps InfiniBand and running Red Hat Enterprise
LinuxR⃝ Server 6.3. The X10 was the Native X10 2.4.2 using the
sockets communication layer, and Place 0 was used as the Resilient
Storage. Each machine ran two places, so a total 8 places were used
for the execution. Each application was compiled with “x10c++ -O
-NO CHECKS”, and the time for executing the outermostfor loop
was measured. The print statements inside the loop were disabled.
Each measurement was done 10 times and the best score was used.

Figure 8 shows the relative execution times normalized by the
time of base code on standard X10 for each application. From left
to right, each bar shows the score of the base code and its fault-
tolerant version on standard X10, and their times on Resilient X10,
respectively.

Comparing the execution times on standard X10, almost no
overheads due to adding fault tolerance were observed for MontePi
and KMeans. For HeatTransfer, the fault-tolerant version took 9%
more time, because of the cost of the periodic snapshots.

Next, the performance of each base code on standard and Re-
silient X10 was compared. In Resilient X10, the costs ofat and
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Figure 8. Relative execution times.

async are larger since the critical states for thefinish handling
must be recorded in the Resilient Storage. Therefore, the execution
becomes slightly slower, even for the base code. MontePi became
about 2% slower because twoat statements are executed for each
place. KMeans became 8% slower sinceat is performed multiple
times until the convergence. For HeatTransfer, the execution time
increased by 6 times. This is mainly becauseat is invoked too fre-
quently in the internal stencil computation.

By combining these overheads, compared to the case where
the base code is executed on standard X10, running fault-tolerant
code on Resilient X10 had 2.2% more overhead for MontePi and
9.0% more for KMeans. In contrast, HeatTransfer suffered a 6.5-
fold slowdown. This can change with the snapshot frequency, and
may be reduced by rewriting the application not to use unnecessary
at calls. Adding “halo region” support to DistArray [10] can also
reduce the overhead.

5.3 Fault Tolerance

All of the results shown in the previous section are cases where
no node failures occurred. Finally, we studied the behavior when
nodes failed.

When an X10 process which corresponds to Place 2 was ter-
minated externally by akill command, the entire processing was
aborted on standard X10 regardless of the fault tolerance of the ap-
plication. Even in Resilient X10, base code applications were ter-
minated by theDeadPlaceException (or enclosingMultipleEx-
ceptions). In contrast, when fault-tolerant versions were executed
on Resilient X10, they could survive the place death and output the
correct results. This means that the combination of fault-tolerant
applications and Resilient X10 provided good fault tolerance. An
execution example for HeatTransfer with place deaths is included
in the research report version of this paper [6].

The effects caused by place deaths were also measured by run-
ning the fault-tolerant applications on Resilient X10. In MontePi,
the deaths may reduce the accuracy of the results since the number
of trials decreases. When 4 places among the 8 places were killed,
the execution time did not increase, but the deviation of the calcu-
latedπ value increased from 0.0008% to 0.002%. In KMeans and
HeatTransfer, the place death increases both the number of itera-
tions until convergence and the execution time of each iteration.
When Place 2 was killed during the execution of the 17th iteration,
execution time increased by 11% in KMeans and 14% in Heat-
Transfer, but the executions still ended with correct results.

6. Related Work
Usually, distributed processing is supported through libraries such
as MPI [11], RMI [5], and the DB/Web access packages. In such
cases, a node failure appears as a low-level error in the communi-
cation code. Therefore, fault tolerance must be supported by each
application as error handling for the communication routines. In
contrast, Resilient X10 can handle the node failure as part of its
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computation model [2, 3] by utilizing the characteristics of PGAS.
Application modifications are still necessary to support fault toler-
ance, but we believe most cases are covered by the patterns pre-
sented in this paper. In addition, fault tolerance can be built into the
application from the beginning, because the support exists inside
the language.

How to handle node failures has been an important issue, es-
pecially in HPC applications that use massive numbers of com-
puting nodes. The most popular approach ischeckpointing[4, 18]
implemented by each application. Intermediate data is periodically
saved, and when a failure occurs, the restarted application resumes
the processing by restoring the data from the snapshot. The fault-
tolerant HeatTransfer in Section 4.2 is based on the same idea,
but most of the save and restore mechanisms are implemented in
the general-purpose DistArray library, which makes the mecha-
nisms easier to use. In addition, the application does not need to
be restarted after node failures. In Hadoop [24], fault tolerance is
achieved by writing the results of each phase to external storage
(HDFS). This can be considered as a variation of the checkpointing
approach.

Instead of restoring the data to get precise results, there is an
interesting fault-tolerance approach ofdiscardingonly the failed
results. The MontePi and KMeans in this paper can be considered
as simple examples of this approach, but more detailed modeling
to calculateprobabilistic accuracy boundshas also been proposed
[16]. We will take such models into account in developing larger
fault-tolerant applications.

Recently, it has become common to perform large scale compu-
tations on virtualized (cloud) environments. In such situations, fault
tolerance may be achieved by utilizing the snapshot [22] or migra-
tion [1, 9] functions for virtual machines [13]. However, this creates
overhead to save or move entire virtual machines, so additional re-
search is necessary to utilize them for distributed applications that
use multiple computing nodes. One of the interesting topics is how
Resilient X10 and its applications can benefit from virtualization.

7. Conclusions and Future Work
This paper described how fault-tolerant applications can be con-
structed using the “Resilient X10” extensions of the distributed pro-
gramming language X10. Three methods of adding fault tolerance
to existing applications are shown: (a)Ignore failures and use the
results from the remaining nodes, (b)Reassignthe failed node’s
work to the remaining nodes, or (c)Restorethe computation from
a periodic snapshot. For all of these approaches, the code modifica-
tions were less than 25 lines. We also showed a distributed library,
Resilient DistArray, which supports snapshot mechanisms.

Compared to the case where the original application is exe-
cuted on standard X10, running fault-tolerant applications on Re-
silient X10 has 2.2% to 9.0% overhead if place change does not
happen too frequently. We also noticed that there is a pathological
case with a 6.5-fold slowdown if place changes are performed too
frequently. The major cause of this overhead was the cost of peri-
odic snapshots and the additional costs ofat processing. However,
by paying these costs, we confirmed that fault-tolerant applications
can survive node failures. When one place among 8 places was lost,
the execution time increased by 11–14%, although the exact num-
ber depends on the timing of the place death.

In the future, we want to reduce this overhead in fault-tolerant
applications by improving both the applications and Resilient X10.
Preparing more libraries that support fault tolerance is another
topic. One candidate should be an interface to access the Resilient
Storage from applications. We also plan to make fault-tolerant
versions of larger distributed X10 applications, such as those de-
scribed in [12] and [19]. Removing the dependency on Place 0
is also an important topic. We already have a prototype for dis-
tributed Resilient Storage, which allows thefinish states and
DistArray snapshots to be stored in a distributed manner, rather
than in Place 0.
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1 import x10.regionarray.*;
2 class ResilientKMeans {
3 static val DIM = 4n; // number of dimensions
4 static val POINTS = 10000000; // number of points
5 static val CLUSTERS = 4; // number of clusters to be categorized
6 static val ITERATIONS = 1000; // number of maximum iterations
7
8 public static def main(args:Rail[String]) {
9 val place0 = here;

10 // prepare a set of points (coordinates of i-th point are [pt(i,0),pt(i,1),pt(i,2),pt(i,3)]), which do not change after prepared
11 val points_region = Region.make(0..(POINTS-1), 0..(DIM-1)), rnd = new x10.util.Random(0);
12 val points_master = new Array[Float](points_region, (p:Point)=>rnd.nextFloat());
13 val points_local =
14 PlaceLocalHandle.make[Array[Float]](PlaceGroup.WORLD, ()=>points_master); // deliver the point set to other places
15 // an array to hold the cluster values (coordinates of k-th cluster are [cl(k*4),cl(k*4+1),cl(k*4+2),cl(k*4+3)])
16 val central_clusters = new Rail[Float](CLUSTERS*DIM, (i:Long)=>points_master(i/DIM, i%DIM)); // use i-th point as initial value
17
18 // prepare data structures for the computation
19 val old_central_clusters = new Rail[Float](CLUSTERS*DIM); // an array to hold the previous cluster values
20 val central_cluster_counts = new Rail[Long](CLUSTERS); // number of points in each cluster
21 val processed_points = new Cell[Long](0); // number of processed points
22 // prepare global refs for remote access
23 val central_clusters_gr = GlobalRef(central_clusters);
24 val central_cluster_counts_gr = GlobalRef(central_cluster_counts);
25 val processed_points_gr = GlobalRef(processed_points);
26 // prepare three local arrays for processing at each place
27 val local_curr_clusters = PlaceLocalHandle.make[Rail[Float]](PlaceGroup.WORLD, ()=>new Rail[Float](CLUSTERS*DIM));
28 val local_new_clusters = PlaceLocalHandle.make[Rail[Float]](PlaceGroup.WORLD, ()=>new Rail[Float](CLUSTERS*DIM));
29 val local_cluster_counts = PlaceLocalHandle.make[Rail[Long]](PlaceGroup.WORLD, ()=>new Rail[Long](CLUSTERS));
30
31 for (iter in 1..ITERATIONS) { Console.OUT.println("Iteration " + iter); // iterate until the result converges
32 // 1. deliver current cluster values to other places
33 try {
34 finish for (pl in Place.places()) { if (pl.isDead()) continue; // skip dead place(s)
35 at (pl) async { // compute at live places in parallel
36 for (var j:Long = 0; j < CLUSTERS*DIM; ++j) {
37 local_curr_clusters()(j) = central_clusters(j); local_new_clusters()(j) = 0f; }
38 for (var j:Long = 0; j < CLUSTERS; ++j) local_cluster_counts()(j) = 0;
39 } }
40 } catch (es:MultipleExceptions) {
41 for (e in es.exceptions()) { if (!(e instanceof DeadPlaceException)) throw e; } // just ignore place death
42 }
43 // 2. save current cluster values and clear them
44 for (var j:Long = 0; j < CLUSTERS*DIM; ++j) { old_central_clusters(j) = central_clusters(j); central_clusters(j) = 0f; }
45 for (var j:Long = 0; j < CLUSTERS; ++j) central_cluster_counts(j) = 0; processed_points() = 0;
46 // 3. process some part of the points at each place
47 val numAvail = Place.MAX_PLACES - Place.numDead(); // number of live places
48 val div = POINTS / numAvail, rem = POINTS % numAvail; // share for each place, and extra share for Place 0
49 var start:Long = 0; // next point to be processed
50 try {
51 finish for (pl in Place.places()) { if (pl.isDead()) continue; // skip dead place(s)
52 var end:Long = start + div; if (pl==place0) end += rem; // points [start,end) are processed in this place
53 val s = start, e = end;
54 at (pl) async { // compute at live places in parallel
55 for (var j:Long = s; j < e; ++j) { val p = j; // process the p-th point
56 val points = points_local(); var closest:Long = -1, closest_dist:Float = Float.MAX_VALUE;
57 for (var k:Long = 0; k < CLUSTERS; ++k) { // find the closest cluster
58 var dist:Float = 0f;
59 for (var d:Long = 0; d < DIM; ++d) { // calculate the distance to the k-th cluster
60 val tmp = points(p,d) - local_curr_clusters()(k*DIM+d); dist += tmp * tmp; }
61 if (dist < closest_dist) { closest_dist = dist; closest = k; }
62 }
63 local_cluster_counts()(closest)++; // add the coordinates of the point to the closest cluster
64 for (var d:Long = 0; d < DIM; ++d) local_new_clusters()(closest*DIM+d) += points(p,d);
65 } // end of the processing of assigned points
66 val tmp_new_clusters = local_new_clusters(), tmp_cluster_counts = local_cluster_counts(), tmp_processed_points = e-s;
67 at (place0) atomic { // return the results to the master
68 for (var j:Long = 0; j < CLUSTERS*DIM; ++j) central_clusters_gr()(j) += tmp_new_clusters(j);
69 for (var j:Long = 0; j < CLUSTERS; ++j) central_cluster_counts_gr()(j) += tmp_cluster_counts(j);
70 processed_points_gr()() += tmp_processed_points;
71 } }
72 start = end;
73 } // end of finish, wait for the execution in all places
74 } catch (es:MultipleExceptions) {
75 for (e in es.exceptions()) { if (!(e instanceof DeadPlaceException)) throw e; } // just ignore place death
76 }
77 // 4. compute new cluster values, and check the convergence
78 for (var k:Long = 0; k < CLUSTERS; ++k)
79 for (var d:Long = 0; d < DIM; ++d) central_clusters(k*DIM+d) /= central_cluster_counts(k);
80 if (processed_points() == POINTS) { // perform the convergence check only when all points are processed
81 var b:Boolean = true;
82 for (var j:Long = 0; j < CLUSTERS*DIM; ++j)
83 if (Math.abs(old_central_clusters(j) - central_clusters(j)) > 0.0001) { b = false; break; }
84 if (b) break; // exit the iteration if converged
85 }
86 } // end of for (iter)
87
88 // print the result in the central_clusters array
89 for (var d:Long = 0; d < DIM; ++d) {
90 for (var k:Long = 0; k < CLUSTERS; ++k) Console.OUT.printf("%10.8f ", central_clusters(k*DIM+d));
91 Console.OUT.println("<--- dim" + d);
92 }
93 } // end of main
94 }

Figure 9. Fault-tolerant KMeans.
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1 import x10.regionarray.*;
2 class ResilientHeatTransfer {
3 static val N = 20; // size of grid
4 static val ITERATIONS = 1000; // number of maximum iterations
5 static val livePlaces = new x10.util.ArrayList[Place](); // set of live places
6 static val restore_needed = new Cell[Boolean](false); // flag to indicate restoration is necessary
7

8 public static def main(args:Rail[String]) {
9 for (pl in Place.places()) livePlaces.add(pl);

10 val BigR = Region.make(0..(N+1), 0..(N+1)); // 2-dimensional region which includes surroundings
11 val SmallR = Region.make(1..N, 1..N); // 2-dimensional NxN region, which does not include surroundings
12 val LastRow = Region.make(0..0, 1..N); // heated area at the top
13 // create data which will be recreated at place death
14 var BigD:Dist(2) = Dist.makeBlock(BigR, 0, new SparsePlaceGroup(livePlaces.toRail()));
15 var SmallD:Dist(2) = BigD|SmallR;
16 var D_Base:Dist = Dist.makeUnique(SmallD.places());
17 // create distributed arrays (each element holds a heat value and the LastRow area is always 1.0)
18 val A = ResilientDistArray.make[Double](BigD, (p:Point)=>{ LastRow.contains(p) ? 1.0 : 0.0 });
19 val Temp = ResilientDistArray.make[Double](BigD); // a DistArray to hold newly calculated values temporarily
20 val Scratch = ResilientDistArray.make[Double](BigD);
21 A.snapshot(); // create the initial snapshot
22 for (iter in 1..ITERATIONS) { Console.OUT.println("Iteration " + iter); // iterate until the result converges
23 try {
24 // 1. if necessary, restore data from the snapshot
25 if (restore_needed()) {
26 // recreate Dist over the remaining live places
27 BigD = Dist.makeBlock(BigR, 0, new SparsePlaceGroup(livePlaces.toRail()));
28 SmallD = BigD|SmallR; D_Base = Dist.makeUnique(SmallD.places());
29 A.restore(BigD); // reconstruct DistArray with the new Dist, and restore elements from the snapshot
30 Temp.remake(BigD); Scratch.remake(BigD);
31 restore_needed() = false;
32 }
33 // 2. core part of the heat transfer computation
34 val D = SmallD;
35 finish ateach (z in D_Base) { // distributed processing at each place
36 for (p:Point(2) in D|here) { // process the points of this place
37 val [x,y] = p; // stencil computation, average of surrounding four points becomes the new heat value
38 Temp(p) = ( (at (A.dist(x-1,y)) A(x-1,y)) + (at (A.dist(x+1,y)) A(x+1,y))
39 + (at (A.dist(x,y-1)) A(x,y-1)) + (at (A.dist(x,y+1)) A(x,y+1)) ) / 4;
40 } }
41 // 3. check the convergence
42 val delta = A.map(Scratch, Temp, D.region, (a:Double,b:Double)=>Math.abs(a-b))
43 .reduce((a:Double,b:Double)=>Math.max(a,b), 0.0);
44 Temp.map(A, Temp, D.region, (a:Double,b:Double)=>a); // copy the new results in Temp to A in parallel
45 if (delta <= 0.0001) break; // exit the iteration if converged
46 // 4. create a snapshot at every 10th iteration
47 if (iter % 10 == 0) A.snapshot();
48 } catch (e:Exception) { processException(e); } // process an exception
49 } // end of for (iter)
50

51 // print the result in the distributed array A
52 for ([x] in A.region.projection(0)) {
53 for ([y] in A.region.projection(1)) Console.OUT.printf("%5.3f ", at (A.dist(x,y)) A(x,y));
54 Console.OUT.println();
55 }
56 } // end of main
57

58 // process an exception. for DPE, livePlaces is updated and restore_needed flag is set
59 private static def processException(e:Exception) {
60 if (e instanceof DeadPlaceException) {
61 val deadPlace = (e as DeadPlaceException).place;
62 livePlaces.remove(deadPlace); restore_needed() = true;
63 } else if (e instanceof MultipleExceptions) {
64 val exceptions = (e as MultipleExceptions).exceptions();
65 for (ec in exceptions) processException(ec);
66 } else throw e; // just throw exceptions other than DeadPlaceException
67 }
68 }

Figure 10. Fault-tolerant HeatTransfer.

Appendix
The complete code of KMeans and HeatTransfer is shown in
Figures 9 and 10. These programs can be compiled and exe-
cuted by the latest X10 distribution, 2.4.2. Similar programs are
also included in the distribution, including MontePi and mul-
tiple Resilient DistArray implementations, under the directory
samples/resiliency/. Refer to theREADME.txt file in the di-
rectory for details.
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