
preprint

GPU Programming in a High Level Language
Compiling X10 to CUDA

Dave Cunningham Rajesh Bordawekar Vijay Saraswat
IBM TJ Watson

{dcunnin,bordaw,vsaraswa}@watson.ibm.com

Abstract
GPU architectures have emerged as a viable way of considerably
improving performance for appropriate applications. Program frag-
ments (kernels) appropriate for GPU execution can be implemented
in CUDA or OpenCL and glued into an application via an API.

While there is plenty of evidence of performance improvements
using this approach, there are many issues with productivity. Pro-
grammers must understand an additional programming model and
API to program the accelerator; concurrency and synchronization
in this programming model is typically expressed differently from
the programming model for the host. On top of this, the languages
used to write kernels are very low level and thus prone to the kinds
of errors that one does not encounter in higher level languages. Pro-
grammers must explicitly deal with moving data back-and-forth
between the host and the accelerator. These problems are com-
pounded when the user code must be run across a cluster of ac-
celerated nodes. Now the host programming model must further
be extended with constructs to deal with scale-out and remote ac-
celerators. We believe there is a critical need for a single source
programming model that can be used to write clean, efficient code
for heterogeneous, multi-core and scale-out architectures.

The APGAS programming model has been developed for such
architectures over the past six years. APGAS is based on four
fundamental (and architecture-independent) notions: locality, asyn-
chrony, conditional atomicity and order. X10 is an instantiation of
the APGAS programming model on top of a base sequential lan-
guage with Java-style productivity. Earlier work has shownthat
X10 can be used to write clean and efficient code for homoge-
neous multi-cores, SMPs, Cell-accelerated nodes, and clusters of
such nodes. In this paper we show how X10 programmers can write
code that can be compiled and run on GPUs. GPU programming
idioms such as threads, blocks, barriers, constant memory,local
registers, shared memory variables, etc. can be directly expressed
in X10, and do not require new language extensions. We present
the design of an extension of the X10-to-C++ compiler which rec-
ognizes such idioms and produces CUDA kernel code. We show
several benchmarks written in this style. The performance of these
kernels is within 80% of hand-written CUDA kernels.

[Copyright notice will appear here once ’preprint’ option is removed.]

We believe these results establish X10 as a single-source pro-
gramming language in which clean, efficient programs can be writ-
ten for GPU-accelerated clusters.

Categories and Subject Descriptors D [3]: 3

General Terms Languages, Performance, Human Factors

Keywords CUDA, GPU, X10, Heterogeneous, Distributed, Mul-
ticore, Parallel, High-level, Java.

1. Introduction
Clusters of GPU-accelerated nodes are becoming increasingly im-
portant for high performance and scale-out computing. For instance
the Tianhe-1, organized as a cluster of NVidia GPU-accelerated
x86 nodes leads the Top500 list of super computers, as of Novem-
ber 2010. GPUs can often provide over 30x acceleration over CPUs
for dense numeric kernels.

Currently such machines are programmed using an ad hoc col-
lection of different frameworks. C or Fortran is used as a base se-
quential language, with MPI for scale-out. GPU kernels are writ-
tne in CUDA or OpenCL. Programming in such an environment is
complicated and presents a barrier to entry for those who do not
have a background in HPC and systems programming.

We believe that there is an urgent need for a language with
Java-style productivity that can be used to program clusters of
GPU-accelerated nodes. We believe such a model should satisfy
the following requirements (in order of priority):

• A single source program should be capable of specifying exe-
cution over a host, an attached GPU, and across a cluster.

• The model should have a uniform set of constructs that are used
to deal with concurrency within a node and across nodes.

• Performance should be consistent with conventional models.

• The model should be high-level, hiding details of data transfer
between nodes as far as possible.

1.1 The APGAS Model

The APGAS model [11] has been developed in the last few years to
address programming clusters of (possibly Cell-accelerated) multi-
core nodes. It is organized around four basic and orthogonalcon-
cepts:locality, asynchrony, conditional atomicity andorder.

Places Computation is organized around one or more places. A
place contains (mutable) state as well as activities that operate
on that state. Places are not required to be homogeneous: in a
single computation, one place may be mapped to an x86 core,
or an x86 node (with multiple cores corresponding to it), or an
SMP, or a GPU.

Places are reified. They can be stored in variables, passed into
functions, etc, as an instance of the structx10.lang.Place.

preprint 1 2011/5/24

Let us call a unit of serial execution anactivity. Activities are
located in a single place for their lifetime. Given a placep the
statementat(p) S can be used to request execution of the
statementS at placep. The execution is synchronous: control
for the current activity transfers from the current place (say,q)
to placep, executesS, and then returns to placep to execute the
next statement afterS.

More details on place discovery, naming and properties are
given below.

Asynchrony An activity may use the statementasync S to launch
a new activity to execute the statementS. S may reference
variables in the surrounding lexical environment.

Conditional Atomicity An activity may use the statementwhen
(c) S, where c is a Boolean-valued expression called the
condition andS is a statement. The execution of this statement
in a states terminates in a single step and yields the states

′

if and only if the conditionc is true in s, and execution of
S in s yields s’. Note that no other activity is permitted to
execute when the state is transitioned froms tos’, i.e. thewhen
statement isatomic.

In the following we will allow ourselves to useatomic S to
meanwhen (true) S.

Order There must be a mechanism for imposing a partial order on
the state changes caused by individual activities. The statement
finish S executesS and then waits for all activities spawned
during the execution ofS to terminate (recursively). Thus it
ensures that all activities spawned after thefinish see the
effect of the state changes by the activities spawned beforeor
during the execution offinish.

The APGAS model exploits lexical scoping. Variables declared in
an outer scope can be accessed within the bodyS of anasync S
or finish S or at (P) S statement. In the case ofat (P) S,
the variables accessed inS that are declared in an outer scope are
subject to anat-transfer. That is, the values of these variables are
serialized, transported toP and deserialized into shadow variables
with the same name. Thus the codeS always accesses a local copy
of “outer” variables. If the variables are pointers to heap objects,
the copy is deep, i.e., a fraction of the object graph is transferred
and recreated on the target place.

Theasync, finish andat statements can be nested arbitrarily.
This is a fundamental part of the flexibility of the APGAS program-
ming model. For instance,async at (P) S is the typical pattern
used to express anactive message [16] to P. The message asks for
the codeS to be executed atP asynchronously (with outer vari-
ables referenced inS implemented through at-transfer). Recursive
parallelism (a la Cilk) is expressed with the idiomfinish { ...
async S ...} , i.e. with an outerfinish enclosing a number of
asyncs. Static partitioning of work acrossP workers can be done by
using the idiomfinish for ([i] in 1..P) async S, where
S is sequential code expressing the execution of theith chunk of
work.

Finally, X10 defines a notion ofclocks usingwhen. A clock is
a barrier-like construct. An activity may be registered on multiple
clocks c1, . . . cN . It may spawn other activities and specify that
they be registered on one or more ofc1, . . . cN . An activity uses
the constructnext to signal that it has finished the work associated
with the current phase of the clock and to wait for the clock to
advance. The clock advances only when all activities registered on
the clock have executednext.

1.2 The GPU Programming Model

GPUs are made available to host applications via the CUDA[10]
and OpenCL[7] frameworks. Here, we abstract from CUDA and

Shared Mem

Registers

Shared Mem

Registers

Shared Mem

Registers

..........

..........

BlockThread

Global memory

Figure 1. The components of the CUDA programming model

OpenCL and consider a generalized GPU programming model.
However since the terminology between the two implementations
is different, and our implementation is based on CUDA, we choose
to use the CUDA terminology in this paper.

The GPU programming model provides programming language
constructs that expose the peculiarities of the GPU architecture so
that programmers can write efficient programs. There is a distinc-
tion made between memory that exists on the GPU and on the host.
Only GPU code can access GPU memory and likewise for the host.
However the host can allocate and free GPU memory, and invoke
asynchronous copies between its own memory and the GPU mem-
ory.

The only code that can run on the GPU is a kernel. A kernel
is a block of code in a restricted language that is executed by
hundreds ofthreads simultaneously. Competitive performance is
only possible when the GPU is running very large numbers of
threads.

The memory on the GPU consists of theglobal memory, which
is the memory that is managed by the host. However this memory
is slow for each thread to access, so there are also other kinds of
memory that are available while the kernel is running. Each thread
has its own set of registers, which are exposed as scoped variables
in the programming model. For communication between threads,
there isshared memory1. The shared memory is arranged such that
the threads are partitioned intoblocks and each block has its own
shared memory, as shown in fig. 1. The host program dynamically
decides how many blocks, how many threads per block, and how
much shared memory per block should be used, when invoking
a given kernel. To synchronize accesses to shared memory, there
is one construct provided, an SPMD barrier represented by the
function syncthreads(), which causes a thread to wait until all
threads in the block has reached the barrier.

Finally, there are some special ways of accessing global mem-
ory. Constant memory is a small amount of memory that can be
used by all threads, and is almost as efficient as local registers. It
is read-only and cached. Texture memory is another form of read-
only, cached memory, except that the cache is very much larger
and the latencies are higher. Texture memory also provides some
unusual indexing operations, where indexes are given in floating
point and array elements are filtered (interpolated). The configura-
tion of constant and texture memory are exposed through additional
API functions that must be called on the host before the kernel is
invoked.

1 Since shared memory is a commonly used term in concurrent program-
ming, to avoid confusion we do not use it except when referring to CUDA
shared memory.

preprint 2 2011/5/24

1.2.1 Preview of GPU programming in APGAS

We briefly preview how GPU concepts are represented in APGAS,
details are provided in section. 2. A GPU is reified as a place,
say P. The global memory of the GPU is the heap atP. Shared
memory mapped to local variables declared within the bodyS of
an at(P) S. GPU threads are represented usingasync, blocks
using for loops, with completion detected usingfinish. Barriers
are implemented using clocks. Registers and local memory are
represented through local variables in the async.

1.3 Our Claims

• The APGAS programming model in general, and X10 in par-
ticular, can be used to program GPUs productively.

• GPU programming elements have a direct expression using
X10 constructs

• We have extended the X10 to C++ compiler to understand the
X10 presentation of CUDA idioms and generate CUDA code
from it.

• The resulting code executes within 80% of the performance of
native CUDA kernels for given benchmarks.

Rest of this paper. We describe how to express the GPU program-
ming model within the APGAS programming model in section 2.
In section 3, we explain how we modified the X10 compiler and
runtime to target CUDA, and we give our experimental resultswith
these modifications in section 4. We discuss related work in section
5 and conclude with section 6.

2. Expressing GPU Programming in APGAS
We now show how we use APGAS constructs to express GPU pro-
gramming idioms. This allows X10 programmers to write programs
that use the GPU. In the compiler and runtime, we recognise when
programs are using the APGAS constructs in this fashion, andar-
range for the code to be executed on the GPU instead of the CPU.

2.1 Places and Global Memory

Given the hierarchal nature of the memory on a GPU, it is not
obvious how to define a place. We could have broken the GPU up
into 1 place per block. However we decided to treat the whole GPU
as a single place. The reasoning behind this decision was that the
heap at a place should be filled with objects that live for a long
time. The only memory in the GPU whose allocation outlives the
execution of the kernel is the global memory (and the memories that
are simply cached views on global memory). Local memory does
not outlive the thread in which it is defined, and shared memory
does not outlive the block that accesses it. Since global memory is
amorphous, with no internal divisions or affinities, it madesense
to group it together as a single place, with its heap represented by
objects in global memory. Therefore to run code on the GPU we
use theat construct.

Consequently, the set of places in an executing program forms a
two level tree. At the top of the tree are the host places, equally
able to communicate with any other host place, thus forming a
totally interconnected nest. Under each host place there can be an
arbitrary number of accelerators. Communication between ahost
place and its accelerators will clearly be faster than communication
between a host place and some other host’s accelerator, so we
chose to expose this relationship. In an APGAS language, onecan
provide an API for iterating over hosts, accelerators of a host, and
for finding out whether a given place is a host, a CUDA GPU, or
perhaps some other kind of accelerator. For programmers, these
functions are analogous to the functions in the CUDA/OpenCLAPI

for (accel in here.children().values()) {
if (accel.isCUDA()) {

at (accel) {
...

} } }

Figure 2. Using theat construct to invoke code on a GPU.

for discovering the GPUs on the local system. The X10 code in
fig. 2 executes a kernel on each CUDA GPU on the local host.

2.2 Allocating Memory on the GPU

Memory allocation in Java-like languages is expressed withthenew
construct. In a Java-like APGAS language like X10, remote alloca-
tion is simply expressed by doing anew inside anat. However the
GPU programming model does not allow memory allocation in-
side a kernel2. Instead, GPU programmers call an API on the host
in order to allocate memory. We had to choose between recognis-
ing certain combinations ofat andnew, or exposing a library call
that took a place and allocated an object there. We chose the latter
because it is easier to build a more robust implementation. If the
place is a GPU place, the call is implemented with CUDA opera-
tions. Otherwise, it is implemented withat andnew. The following
example demonstrates ways in which we can make an array on the
GPU placep, from the host place, whereT is the type of the ele-
ments of the array (can also be inferred from the arguments).

CUDAUtilities.makeRemoteArray[T](p, sz, single_value);
CUDAUtilities.makeRemoteArray[T](p, sz, (i:Int)=>expr);
CUDAUtilities.makeRemoteArray[T](p, clone_this_array);

In future we will investigate using the kernelmalloc function in
order to supprtnew in kernels and thus make allocating memory on
the GPU more natural. This will also allow creating objects other
than arrays.

2.3 Copying Memory to/from the GPU

When programming kernels, data that needs to be transferredeach
kernel invocation can simply be captured from the enclosingscope,
instead of copied explicitly. One common operation we wouldlike
to optimize is the updating of an existing array on the GPU. Infact
this is generally useful for APGAS languages, and in X10 we have
provided an API that mirrors Java’sSystem.arrayCopy, except
it allows one of the arrays to be a remote reference, and is asyn-
chronous, notifying the governingfinish statement upon termi-
nation like anasync statement would. In the following example,r
andl are remote and local arrays, respectively. The other parame-
ters are integers. The function is overloaded to allow copies in the
opposite direction by swapping ther andl parameters.

finish Array.asyncCopy(r, r_off, l, l_off, len);

This API can be implemented with the basic APGAS operations,
by capturing the source data, switching to the remote place and
using a loop to fill in the remote array. However to do so would
mean creating objects and incurring serialization overhead. To this
end we provide a native implementation of these copy functions
that is more efficient. In the case of copying to a GPU, we can
implement these same copy functions on top of the CUDA API’s
memory copy operations. Thus, copying data between a local host
array and a GPU array can be achieved through exactly the same
code as a programmer would write for a normal distributed program
that did not use GPUs.

2 In fact at the time of writing this has just become possible inCUDA but it
was too late to influence our design

preprint 3 2011/5/24

0

...

num_blocks−10

CPU

CPU

GPU

num_threads−1

at (p) {
finish for ([b] in 0..num_blocks-1) async {

val shm = new Array[Int](num_elements, init);
finish for ([t] in 0..num_threads-1) async {

...
} } }

Figure 3. Specifying blocks, threads and shared memory in X10.

CPU

GPU

CPU

..........

num_blocks−10 1

num_threads−10

__global__ void kernel (int *gpu_init)
{

__shared__ int shm[NUM_ELEMENTS];
// initialize shm from gpu_init
...

}
...
// allocate gpu_init on gpu
// initalize gpu_init via memcopy
kernel<<<num_blocks,num_threads>>>(gpu_init)

Figure 4. Specifying blocks, threads and shared memory in
CUDA.

2.4 Threads, Blocks, and Shared Memory

In the GPU programming model, threads are arranged into blocks,
where threads within a block may communicate via shared mem-
ory. In APGAS the equivalent of a thread is an activity, whichwe
create with theasync construct. To create many activities, one uses
a loop to execute multipleasync constructs. In fig. 3, we run with
num blocks blocks each withnum threads threads. The syntax
allows for a multidimensional iteration, which is specifiedby us-
ing, e.g.,[bx,by,bz] instead of[b], however we only present 1-
dimensional iterations in this discussion. For comparison, we give
the equivalent CUDA code in fig. 4.

In the X10 code, to represent that kernel termination is de-
pendent on the termination of the blocks, we use thefinish

val tmp1 = num_blocks-1;
val tmp2 = num_elements;
val tmp3 = num_threads-1;
at (p) {

finish for ([b] in 0..tmp1) async {
val shm = new Array[Int](tmp2, init);
finish for ([t] in 0..tmp3) async {

...
} } }

Figure 5. The compiler executes some subexpressions of the ker-
nel on the host.

construct around the outer loop. Likewise, we use another fin-
ish to represent that the block terminates when all of the threads
terminate. The number of activities is actuallynum blocks ∗
num threads + num blocks, although this maps down to only
num blocks ∗ num threads CUDA threads. This is because the
other activities are only used to represent the parallelismbetween
blocks, and are removed by the compiler. In fig. 3 they are repre-
sented by dashed lines.

Shared memory objects are objects on the heap, but are not per-
mitted to live beyond the lifetime of a block. This can be expressed
by allocating objects between the two loops. We have to enforce
the restriction that the objects may not leak from the block,be-
cause this would allow dangling pointers after the shared memory
becomes inaccessible. This restriction can be implementede.g., by
disallowing access to the array pointer itself, only allowing index-
ing operations. The code in fig. 3 shows how a shared memory array
can be allocated in X10.

We must restrict the subexpressions within this pattern, inorder
to conform to the GPU programming model. The only part of
the pattern that is actually run on the GPU is the body of the
innermost async, and the initialization of the shared memory. The
number of blocks and threads and the amount of memory must be
known before the kernel is invoked. We require the expressions
num blocks, num threads, and num elements to be hoistable
from within the at statement and executable on the host, as shown
in fig. 5.

For hoisting to be safe, these expressions must be highly re-
stricted. They must beplace-independent in order to have the same
meaning on any place. This means no use of the constructhere,
which evaluates differently at each place, and no field accesses,
which can only be performed at the place where the objects live.
They also need to evaluate to the same value each loop iteration.
One simple rule that suffices for our purposes, but could be greatly
generalized, is to restrict the expressions to only allow local vari-
ables defined outside the at expression, and a handful of operations
such as integer arithmetic, that are known to be safe when hoisted
in this manner. This is enough for the benchmarks we discuss later.
Even if it were not, one can take hoistable code that is conserva-
tively rejected, and hoist it manually, resulting in a program that
passes checking and has the same behavior and performance.

2.5 Barrier

Shared memory can be used in a read-only fashion, as a cache.
However it is much more useful as a staging ground into which
to stream from global memory, and in this context it needs to be
mutable. Mutable shared memory requires synchronization,and
GPUs provide this with a call syncthreads() that behaves like
a barrier within the block. The analogous construct in APGASis
the clock. Clocks are more general, since they allow participants to
join and leave the clock at will. However we can restrict the code
to prevent this, and then the semantics align with that of theGPU

preprint 4 2011/5/24

at (p) {
finish for ([b] in 0..num_blocks-1) async {

clocked finish for ([t] in 0..num_threads-1)
clocked async {

...
next;
...

} } }

Figure 6. Using clocks on the GPU to represent the barrier con-
struct

at (p) {
local cmem = arr.sequence();
finish for ([b] in 0..num_blocks-1) async {

finish for ([t] in 0..num_threads-1) async {
...

} } }

Figure 7. A simple way to express many uses of constant memory.

programming model. In order to use clocks in a kernel, the X10
code is shown in fig. 6.

Each block has its own clock, indicated by theclocked key-
word on thefinish (we do not mark the outerfinish asclocked
since there is no global barrier in the GPU programming model).
Theasyncs that form the blocks are also marked clocked, and this
allows the use ofnext within them. The scope of the clock is lim-
ited to thefinish, so only the threads within the block executing
thenext will be synchronized.

2.6 Kernel Parameters, Registers and Local Memory

GPU kernel parameters are represented in APGAS as the capturing
of local variables within theat construct. In the case of pointers,
APGAS goes further and creates an object graph on the GPU.
However, for variables of primitive type (and in X10, structtype)
that involve no indirection, the semantics of kernel parameters and
the capture of scoped variables coincide.

Registers and local memory are what would normally be called
a stack. They are local to each thread, and can be considered part
of the sequential subset of GPU programming. APGAS extends the
sequential subset of whatever language in which it is used, so in
X10 we represent registers and memory in the same way as CUDA
and OpenCL, through local variables on the stack.

2.7 Constant Memory

At present we expose one specific use of constant memory, as a
cache that is updated before each kernel. We expose this in a similar
way to shared memory except for two differences. Firstly, itis read-
only, and in X10 a read-only array is expressed with aSequence
object that is an immutable view on a mutable array. Secondly, all
blocks share the same constant memory, so we place the definition
within the kernel but outside the outer loop as shown in fig. 7.

Sincecmem will be refreshed on any subsequent kernels, refer-
ences to it may not outlive the current kernel, which is a restriction
we also apply to shared memory objects. We can easily enforcethis
by, again, only allowing indexing operations on the array.

The GPU programming model allows constant memory to be
initialized once and then used in many kernels. However, we cannot
represent this just by allocating memory on the GPU withnew,
since objects in constant memory are statically defined in the GPU
programming model. In future we could look at using arrays in
static fields to represent this more general idiom, thus avoiding the
performance cost of reinitialising constant memory on every kernel
invocation.

2.8 Texture Memory

Texture memory can be expressed as a datastructure. One needs a
way to create a texture from the host on a given GPU, giving the
dimensions, the content, and the kind of filtering that is desired.
A pointer to the texture object would then be captured by the
kernel, and a method called on it to do the texture fetches at the
given coordinates. In order to support the same code runningon
the host, the semantics of the texture fetches, including the filtering
operations, would have to be implemented on the CPU. This would
obviously not be as fast as the dedicated hardware on the GPU.

2.9 Restrictions On Kernel Code

Earlier, we described the restrictions on the loops and shared mem-
ory definitions that are due to the necessity of hoisting sub expres-
sions out onto the host instead of executing them on the GPU place
as specified. There are also other restrictions that are morefunda-
mental to the GPU that govern theactual kernel, the body of the
innermostasync block.

Until very recently in CUDA, kernels were not permitted to
allocate memory. We thus do not allownew inside the actual kernel.
There was also no indirect branching supported by CUDA GPUs
until the latest revision of the architecture, so all function calls
had to be final or static. These limitations are still presentin older
versions of the hardware/software and are still present in OpenCL.
Thus our restrictions of the language are still relevant even though
the trend is for greater expressiveness on the GPU.

The actual kernel must be sequential non-distributed code,i.e.,
no occurences ofasync, at or finish. Recursion is not supported
on GPUs, so we also must not allow it. Recursion is easy to detect
in the context of static binding or whole program knowledge.

There are also limits on the number of threads, number of
blocks, and limits on the amount of shared memory that can be cre-
ated. If these limits are broken, we can simply throw an exception
at runtime.

3. Implementation
To run GPU programs written in the APGAS model, we added a
CUDA code generation backend to the X10 compiler, and extended
the X10 runtime environment to be able to invoke the generated
kernels. We chose CUDA instead of OpenCL because at the time
OpenCL was not widely supported. However everything we have
achieved could also now be achieved with OpenCL.

For simplicity we have restricted ourselves to 1-dimensional it-
erations over blocks and threads. This makes some kernels more
complicated as they have to compute the x and y coordinate explic-
itly from the single variable. We also require the clocked form of
the inner loop, seen in fig. 6, even ifnext is not used. This means
we can trivially compilenext into syncthreads().

We currently only support int and float types in the kernel, and
the only objects that can be created on the GPU’s heap, shared
memory, or constant memory, are arrays. These are severe restric-
tions but kernels do not typically use complicated object graphs
or do much pointer chasing. Instead they stream arrays and work
with primitives in registers and shared memory. We also havenot
implemented support for texture memory.

The X10 compiler does not know whether a placep is a GPU
place or a host place, since this depends on how the program is
launched. A kernel that begins withat (p) may run on a CPU if
p happens to be a host place. Thus, we must compile kernels to
CUDA and CPU code, dispatching at runtime.

Given the strict rules governing a kernel, there is the possibility
of an at with a non-conforming body being targeted at a GPU
place. We cannot enforce the restrictions on allat blocks, since
this would affect host code, and we do not know which will run

preprint 5 2011/5/24

on the GPU. Thus, we must raise an error at runtime if the code is
not suitable. Because this can cause errors to remain undetected,
we decided to require an@CUDA annotation onat blocks that
are intended to be CUDA-capable. This way, if the programmer
accidentally breaks one of the rules they will get a static error.
Any block that is executed on the GPU without a@CUDA annotation
yields a runtime error.

3.1 Compiler

Our modified X10 compiler takes a@CUDA-annotatedat in class C,
pattern-matches the constant memory, loops, array definitions, etc.,
and compiles the body of the innermost async into a C.cu file (a
kernel written in NVIDIA’s CUDA language which is a extended
subset of C++). Each kernel is named using an ascending number,
and is marked withextern "C" to avoid C++ name mangling.
Since there is already a C++ backend for X10, we were able to reuse
a lot of code generation for the basic sequential constructs, like
conditionals, loops, variable declarations, etc. It was trivial to map
Math.sqrt and other such functions to their CUDA equivalents.
The compiler then invokes nvcc to compile the cu file to a cubin
file (object code for the GPU).

On the host, an X10 array is represented by an instance of the
Array[T] class. This encapsulates a pointer to a backing store, so
there is one more level of indirection than is necessary. In addition
to this, theArray class implements a very high level notion of non-
zero-based multidimensional array. Worried about the performance
implications of this, we restricted the usage ofArray[T] to simply
allow 1-dimensional indexing and retrieving the size of thearray.
We then represented it with a struct containing only the pointer to
the backing storage and the size of the array. We use this for shared
memory and constant memory arrays as well as global memory
arrays. If the length is not used by the program, it is optimized
away by nvcc, i.e., it does not consume a register.

We also generated code for the host to provide data needed to
invoke the kernel. This code is placed into apre callback (described
in detail in section. 3.2.1). In this callback, the variables captured
by the kernel are arranged into a struct calledenv and passed to the
kernel with a single parameter. This ensures the alignment is correct
in the kernel argument memory, whereas individual parameters
would need to be packed carefully.

Using a struct also allows for an alternative whenenv is bigger
than the number of bytes available for kernel parameters. Inthis
case, a global memory buffer is allocated on the GPU by the
host in thepre callback. The allocated buffer is large enough to
hold env, and the arguments are copied to it before the kernel
is invoked. The kernel has a single parameter, a pointer toenv,
and the arguments within are copied into shared memory variables
by the 0th thread in each block before the user code executes.
This latter approach is currently the default, since the number of
captured variables is unlimited. If the number of argumentsis small
enough, the former behavior can be specified with the additional
annotation@CUDADirectParams next to the@CUDA annotation. We
leave automatically making this choice as future work.

We implement all shared memory using CUDA’s dynamic
shared memory support, where the amount of shared memory re-
quired is given at kernel invocation time instead of statically. The
size of each shared memory array is calculated on the host by gen-
erating C++ code from the first argument in theArray constructor
in each shared memory definition. The total size is given to CUDA
when invoking the kernel. In the kernel itself, the shared memory
is initialized by the 0th thread in each block, and a barrier is used
to hold back the other threads until initialization is complete. Con-
stant memory is initialized by the host before the kernel is invoked,
which we generate code for in thepre callback.

x10rt

1
0

N
A
T
I
V
E

x10aux

X10 Application

XRX

MPI Sockets Blue Gene.........

X

Figure 8. The original software modules in the X10 runtime

Finally, we found that constant propagation was invaluablefor
improving the performance of our test kernels. In a Java-like lan-
guage, i.e., without a mechanism like C’s #define, one relieson
final variables to hold constants. With constant propagation, con-
stants defined in static fields and in final variables in scope will be
inlined into the kernel. This is beneficial firstly because itreduces
the amount of data needing to be sent to the kernel at invocation
time, and secondly because these values no-longer need to beheld
in registers, decreasing the overall register pressure.

3.2 Runtime

The X10 runtime is organised in several layers, as shown in fig. 8.
At the highest level the APGAS constructs are desugared (using a
closure) into calls into a private API,XRX, which is implemented in
X10 and handles finish states, termination propagation, intra-place
load balancing, and more. XRX then passes control to a C++ API,
x10aux which asynchronously invokes a closure at the target place
with a finish state as an argument. The implementation of x10aux
serializes the closure and finish state into a buffer and thenuses a
C API x10rt to move the data to the far side. The reason for this
design is that x10rt and XRX can be reused with the X10 Java code
generation backend whereas x10aux is specific to the C++ backend.

The x10rt library is responsible for finding out the number and
configuration of places, sending messages to a given place, and
keeping a register of callbacks from the X10 program for newly
received messages. We needed to make major changes tox10rt
to support invocation on GPUs, and minor changes to x10aux. We
wanted to have a tree of places, with zero or more acceleratorplaces
under each host. We accomplished this by renaming the existing
API x10rt net, and hiding it beneath a new API,x10rt logical.
We wanted to reuse the existing networking code, which is imple-
mented for a variety of backends. Also underneathx10rt logical
is a new API calledx10rt cuda. Thex10rt logical layer there-
fore provides its own notion of places, a coherent view on thetwo
independent layers underneath it, see fig. 9.

3.2.1 Initialization

While CUDA is being initialised at each host place, the hostsare
also communicating and initializing their network. After both are
complete,x10rt logical takes information from both and com-
municates with other hosts to build a complete tree of uniquely
named places in the system, consistent across all hosts in the sys-
tem. We defined functions for inspecting the tree in thex10rt logical
API, which is now the public face ofx10rt. This complements the
functions for sending messages to places and registering callbacks
for receiving messages at the local place, whose signaturesand
names are taken from the old APIx10rt net. We then extended
the layers abovex10aux andXRX to expose the structure of the tree
to the X10 programmer via thex10.lang.Place class.

We had to extend the callback registration API to accommodate
CUDA execution, because there is work to do on the host before
a kernel can be invoked, and this work depends on the kind of

preprint 6 2011/5/24

x10rt_net

1
0

N
A
T
I
V
E

x10aux

X10 Application

XRX

OpenCL CUDA MPI Sockets Blue Gene.....

x10rt

x10rt_logical

x10rt_cudax10rt_ocl

X

Figure 9. Our revised software modules in the X10 runtime. The
dashed line represents potential future expansion.

code in the kernel (such as setting the kernel parameters, refreshing
constant memory, and uploading objects to global memory). There
is also code that must run on the host after the kernel is completed to
implementfinish. Therefore instead of a host registering a single
callback to handle a message, it additionally supplies the names of
the cubin file and the kernel, so thatx10rt cuda can load the code,
and also a pair of callbacks, calledpre andpost, that will run on the
host before and after the kernel runs on the GPU.

During the program’s initialisation time, the X10 runtime opens
each cubin file, and loads the appropriate kernels. Thepre and
post callbacks allow the user of the X10RT API to do arbitrary
work before and after their kernel has executed. Inx10aux the
post callback for every kernel just updates the finish state via a call
to XRX. Thepre callback is generated for each kernel as described
previously.

3.2.2 Routing

It is possible in APGAS to launch anat block at any place in the
tree, including GPUs that are not local to the host in question. The
design ofx10rt logical is intended to allow transparent routing
of these messages to the GPU’s host. We have not yet implemented
routing but believe it is not hard.

3.2.3 Implementing at

In the APGAS model, the fundamental constructs for invokingan
asynchronous message areasync andat. However in the imple-
mentation, for performance reasons, an asynchronous message is
the fundamental operation, andat is implemented by using an-
other message to notify termination. The constructsasync at(p)
are optimized to not create an activity at the source. We did not
implement kernel invocation for anat by itself but instead trapped
the more fundamentalasync at. To wait for a kernel to complete
one must dofinish async at instead of justat.

To all layers exceptx10rt, theasync at implementation re-
mains almost the same. The object graph captured by the kernel
is serialized as usual, and given tox10rt. The x10rt logical
layer then dispatches the buffer tox10rt cuda, which calls the
pre callback. Thepre callback must provide the number of blocks
/ threads, the amount of shared memory, the contents of the kernel
argument buffer, and the content of the constant memory.

When the callback returns,x10rt can invoke the kernel. We
used the CUDA driver API since we are packing our own kernel
parameters and we are only generating CUDA code to implement
the kernels. We use a single CUDA stream for kernel invocations,
to separate them from DMAs which occur in parallel. While the
stream is busy, the kernel is queued inx10rt. Either way, con-
trol immediately returns to the application. Thex10rt library was
designed such that all calls are asynchronous and the application

must callx10rt probe regularly, e.g., when waiting at the end
of a finish block, to cause progress withinx10rt. Within this
call, the network buffer was checked for new messages and call-
backs dispatched. We extended the call to also monitor the CUDA
streams, and when a kernel terminates, to call the post callback.

3.2.4 Automatically choosing the number of blocks/threads

When writing one of our benchmark applications, we discov-
ered that to get maximum performance, the number of blocks and
threads had to be precisely chosen based on characteristicsof the
kernel and the particular GPU it runs on. This causes a problem
when trying to write portable code that runs fast on a varietyof
GPUs. To solve this, we developed a heuristic to choose them au-
tomatically. The rules are as follows:

• Preferred: More blocks and fewer threads. This means fewer
threads will be stalled by a barrier.

• Preferred: Maximise occupancy, i.e., maximise the total number
of threads that are running concurrently. This helps mitigate
memory latency.

• Required: The number of threads is a multiple of 32, this is
the number of threads that the architecture will execute per
instruction fetch.

• Required: The number of threads is a multiple of 64, this causes
shared memory access to be more efficient.

• Required: The number of threads per block≤ 512.

• Required: Each MP (NVIDIA terminology for what is conven-
tionally called a core) in the GPU is equally loaded.

• Required: Each MP executes no more than the maximum num-
ber of threads that it can concurrently execute.

• Required: Few enough blocks per MP that the shared memory
available at each MP is not exceeded by the needs of the blocks
executed on each MP. Note that the amount of shared memory
required is dynamically chosen by the application at kernel
invocation time.

• Required: Few enough blocks and threads that the number of
registers available at each MP is not exceeded by the number of
registers required by the threads executed on that MP.

To find the optimal number of blocks/threads given these rules, just
prior to kernel invocation we iterate down a list of (blocks,threads)
pairs and pick the first conforming pair. The ordering of the list
causes preferred pairs to be selected first. The list gives the number
of blocks per MP, we then multiply this by the number of MPs in
the given GPU. Below is the list of (blocks,threads) pairs weused:

{ (8, 128), (4, 256), (2, 512), (5, 192), (3, 320), (7, 128),

(2, 448), (6, 128), (4, 192), (3, 256), (2, 384), (5, 128),
(2, 320), (3, 192), (8, 64), (4, 128), (2, 256), (1, 512),

(7, 64), (1, 448), (6, 64), (3, 128), (2, 192), (1, 384),
(5, 64), (1, 320), (4, 64), (2, 128), (1, 256), (3, 64),
(1, 192), (2, 64), (1, 128), (1, 64) }

To use this feature, the kernel must be written to work properly
no matter how many blocks/threads there are. This works wellfor
kernels that are strip mining a long array. However, some kernels
divide the work into blocks and threads based on the dimensions of
datastructure they are working on, so these kernels would need to
be rewritten to make use of this feature. Some kernels may allow a
smaller range of possibilities, or prefer a different kind of heuristic,
so we may in future allow the list to be specified by the user.

The code that chooses blocks and threads is accessed via the
x10rt API and is called from thepre callback. We expose it to
X10 programmers as shown in fig. 10. This is an exception to the
rule that the loop bounds expressions must not use variablesscoped

preprint 7 2011/5/24

at (p) @CUDA {
val a_b = CUDAUtilities.autoBlocks();
val a_t = CUDAUtilities.autoThreads();
finish for ([b] in 0..a_b-1) async {

clocked finish for ([t] in 0..a_t-1) {
clocked async {

...
} } } }

Figure 10. Automatically choosing blocks/threads for a kernel

from within the at construct. The compiler recognizes the calls
and generates special code in the pre callback to call thex10rt
function. It then generates code for the loop bound expressions in
an environment wherea t anda b are in scope and initialized to
the values returned by thex10rt function.

Whenp happens to be a host place, theCUDAUtilities func-
tions return 8 blocks and 1 thread. This is helpful because activities
on the host are more heavyweight than on the GPU.

The simple heuristic to automatically choose blocks and threads
is independent of the rest of the work presented here, and could be
exposed as a utility library and used in any CUDA application.

3.2.5 Implementing Remote Array Allocation and Copies

We had to add API calls tox10rt for the allocation and dealloca-
tion of memory. These simply map down to the underlying CUDA
API calls that do the same. In XRX we currently only support allo-
cating arrays on the GPU. As discussed in section. 2.2, we expose
this to the programmer this through the following API calls:
CUDAUtilities.makeRemoteArray[T](p, sz, single_value);
CUDAUtilities.makeRemoteArray[T](p, sz, (i:Int)=>expr);
CUDAUtilities.makeRemoteArray[T](p, clone_this_array);

In X10, remote pointers are encapsulated in theGlobalRef class.
The pointer can only be extracted at the correct place, which
is statically checked. The return value ofmakeRemoteArray is
RemoteArray[T] which is an existing class in X10 that encapsu-
lates a remote pointer to anArray[T] in aGlobalRef[Array[T]]
field. The Array object usually encapsulates a pointer to some
backing storage. To do direct copies from array to remote array,
it is better to have a pointer to the remote backing storage. Oth-
erwise, extra communication would be required to discover the
backing storage before the copy could start. Thus,RemoteArray
also has a pointer to the backing storage of the remote array.

As discussed in section. 3.1, on the GPU we use a different
representation of arrays. We just have the backing storage and
the size, with noArray object indirection. Since this difference
is masked by special code generation in the kernel itself, the only
place it manifests is on the host, in theRemoteArray[T] class.
Since we have a pointer to backing storage but noArray itself, it
makes sense to leave theGlobalRef[Array[T]] field null and
fill in only the pointer to the remote backing storage. This would be
unsafe when the programmer extracts the array, except it canonly
happen on the GPU, where we are generating special code anyway.

The makeRemoteArray family of functions therefore use
x10rt to allocate backing storage of the right size on the GPU, and
then construct aRemoteArray object encapsulating this pointer
but with theArray set tonull.

To implement copies between host and GPU, there were no
changes needed at theXRX orx10aux level. Thex10rt API already
had functions for doing direct copies between given local and re-
mote addresses, since on many networks this can be implemented
more efficiently as a special operation than in terms of general pur-
pose messages. In thex10rt logical layer we simply redirect
these copy invocations tox10rt cuda where CUDA API calls are
used to implement the actual copies. As mentioned previously, we

finish async at (p) @CUDA {

val blocks = CUDAUtilities.autoBlocks();
val threads = CUDAUtilities.autoThreads()

val cmem_1 = cmem_arr_1.sequence();
...
val cmem_n = cmem_arr_n.sequence();

finish for ([b] in 0..e_b) async {
val shm1 = new Array(shm_init_arr_1);

val shm2 = new Array(shm_length_2, shm_init_closure_2);
val shm3 = new Array(shm_length_3, shm_init_expr_3);

...
val shm_n = new Array(shm_length_n, shm_init_closure_n);
clocked finish for ([t] in 0..e_t) clocked async {

...
next;

...
} } }

Figure 11. A general kernel in X10

use one CUDA stream for executing kernels, and one for perform-
ing memory copies, which allows us to exploit the fact that the GPU
can perform a DMA whilst executing a kernel.

One irritation of the CUDA API is that DMAs can only be effi-
ciently performed between pinned host memory and GPU memory,
and pinned host memory is only available through a special allo-
cation routine. This causes a problem because we want to copy
from X10 datastructures, which are allocated by X10 throughits
garbage collector (BDWGC). Clearly we cannot allocate the whole
X10 heap with the CUDA allocation function. We also cannot pin
pre-allocated memory for the duration of the copy. Thus, we are
forced to spool the DMA through a pre-allocated slice of host
memory, the size of which is controlled with an environment vari-
ableX10RT CUDA DMA SLICE. This costs some performance, as we
will discuss later. There has been some discussion on the NVIDIA
forums[3, 4, 9] about this issue, but NVIDIA has yet to propose a
more general API.

3.2.6 Garbage Collection

X10 is a garbage collected language but we have not yet considered
how garbage collection should be implemented on the GPU. As a
temporary measure we have exposed explicit deallocation routines
that map down to the underlyingfree call. It would be an interest-
ing research project to implement a conventional mark and sweep
collection between kernel invocations.

4. Evaluation
We evaluate the performance and expressiveness of our approach
by writing and benchmarking a number of applications in X10.
First, a distributed version of Lloyd’s algorithm [8], which solves
the k-means clustering problem, using a wide range of X10 fea-
tures. Our implementation is accelerated with GPUs at each host.
We also give some smaller benchmarks that we ported from CUDA.

4.1 K-Means Application

K-Means is the problem of finding K points in n-dimensional space
that represent clusters of points from a total of N points in the
space. We used 4 dimensional space and took K to be either 100 or
400, and N to be either 2M or 4M. The algorithm picks K random
points to be the initial clusters. It then proceeds in a bruteforce
manner. Every point is compared to every cluster to find the nearest
(Euclidian distance) cluster to each point. The cluster positions
are then refined by averaging the points nearest to each cluster.
These two steps iterate until termination or until the clusters are
considered accurate enough.

We distribute this algorithm by splitting the points. The clusters
are much fewer so are duplicated. Each place computes a set of

preprint 8 2011/5/24

for (h in Place.places()) {

...
for (gpu in accels) async at (h) {

val gpu_points = CUDAUtilities.makeRemoteArray(gpu, ...);
val gpu_nearest = CUDAUtilities.makeRemoteArray(gpu, ...);
...

for (var iter:Int=0 ; iter<50 ; iter++) {
...

// KERNEL STARTS
finish async at (gpu) @CUDA @CUDADirectParams {

val blocks = CUDAUtilities.autoBlocks(),
threads = CUDAUtilities.autoThreads();

finish for ([block] in 0..blocks-1) async {

val clustercache =
new Array[Float](clusters_copy);

clocked finish for ([thread] in 0..threads-1)
clocked async {

val tid = block * threads + thread;

val tids = blocks * threads;
for (var p:Int=tid ; p<num_local_points;

p+=tids) {
var closest:Int = -1;

var closest_dist:Float = Float.MAX_VALUE;
@Unroll(20)
for ([k] in 0..num_clusters-1) {

// Pythagoras (in 4 dimensions)
var dist : Float = 0;

for ([d] in 0..3) {
val i = p+d*num_local_points;
val tmp = gpu_points(i)

- clustercache(k*4+d);
dist += tmp * tmp;

}
// record closest cluster seen so far

if (dist < closest_dist) {
closest_dist = dist;
closest = k;

}
}

gpu_nearest(p) = closest;
} } } } // KERNEL ENDS

finish Array.asyncCopy(gpu_nearest, 0,
host_nearest, 0,

num_local_points);
...

} // iter
CUDAUtilities.deleteRemoteArray(gpu_points);
CUDAUtilities.deleteRemoteArray(gpu_nearest);

} // gpus
} // hosts

Figure 12. Selected parts of the K-means application.

new clusters from its points, and these are then combined with a
reduction operation before the next iteration begins. Thusat the
beginning of each iteration, the clusters are synchronized.

We discovered that the GPU is far better suited for the part
of the algorithm where we find the nearest cluster to each point.
Computing new clusters involves a lot of irregular access patterns
which makes it faster on the CPU than on the GPU. So, on the GPU
we compute an array of integers representing the closest cluster to
each point. This we then copy back to the host where we form the
new clusters. We show this code in fig. 12, however all code that
does not concern the GPU has been elided.

We used shared memory, via an array calledclustercache,
to hold the clusters, to avoid doing too many memory loads. We
could have used constant memory but there is more shared mem-
ory available than the size of the constant cache, so it was faster
to use shared memory. We discovered that we could get better per-
formance by unrolling thek loop by 20 times. After inspection by
decuda [14], this seems to make better use of offset registers.

For performance comparison, we also wrote a native version
of the algorithm that was not distributed and only used a single

Points, Clusters native 1x1 1x2 2x1 2x2
2M, 100 1.47 1.53 1.33 0.81 0.79
2M, 400 2.92 2.72 2.04 1.47 1.1
4M, 100 2.83 3.01 2.6 1.54 1.46
4M, 400 5.59 5.36 3.92 2.76 2.09

Figure 13. Time in seconds for the k-means application to run 50
iterations. The 2x1 notation means 2 hosts, 1 GPU in each host.

Tesla C1060 Quadro 3700M
native X10 native X10

BlackScholes 0.000988 0.00105 0.00193 0.00206
3DFD 0.024 0.022 0.070 0.074
sgemm 0.41 .39 0.75 0.86

Figure 14. Times in seconds for 3 benchmarks on 2 GPU architec-
tures, native CUDA code vs X10 code.

GPU. The native kernel is written the same way, including manual
unrolling. We ran our X10 and native code on a 2 host system
connected by Infiniband, each host having 2 GPUs and 4 3Ghz
Xeon 5160 cores. The 4 GPUs are contained within a Tesla S1070
server. The results are presented in fig. 13. The times are for50
iterations, including DMA time, CPU processing, and Infiniband
communication.

4.2 Smaller Benchmarks

We also ported some known kernels into X10 to see how their per-
formance compared. These kernels were carefully hand-optimized
by their authors, so meeting their original performance waschal-
lenging. Our versions do not use the distributed programming fea-
tures of X10, they just run their kernels on a single GPU and time
how long they take. The results of these experiments are in fig. 14.
The Tesla C1060 is one GPU from the Tesla S1070 we used pre-
viously. The Quadro 3700M is a laptop chip and is also from the
previous architecture (G80, as opposed to G200). The host isnot
relevant in these tests as only the GPU is timed.

4.2.1 Black Scholes

We ported the Black Scholes code from the NVIDIA CUDA SDK.
This kernel operates on 3 input arrays and 2 output arrays of the
same size. For each index of these arrays, it reads in the 3 ele-
ments, and does 2 computations, writing the results to the 2 output
arrays. It does not use shared memory or barriers, because each
thread is handling a unique index. The kernel is very short, so the
overheads we introduce on each kernel invocation are significant.
Using@CUDADirectParams decreases the amount of kernel invo-
cation overhead, because there is no additional allocationand mem-
ory copy involved. This increased the performance of the code by
5%, yielding the times in fig. 14.

4.2.2 3D Finite Differences

3DFD is another kernel from the NVIDIA CUDA SDK. This kernel
maps an input 3d array to an output 3d array, by computing each
element in the output from a weighted sum of the original element,
and the 4 elements either side of the original element on eachof the
3 axes, a total of1 + 8 + 8 + 8 = 25 elements. There is a single
weight for each distance from the element being processed, atotal
of 5 weights. We ran the kernel on a 480x480x400 array.

The kernel is designed to take advantage of the pattern of
weights. It allocates a thread for each (x,y) coordinate in the space,
arranged into blocks of16 × 16. Each thread iterated down the
z axis. Local registers are used for the needed elements on the z
axis (which are unique to each thread), whereas the necessary input

preprint 9 2011/5/24

elements of the (x,y) plane are loaded in advance by each block
into shared memory, there is a barrier, and then each thread reads
its 17 (x,y) plane values. This reduces the number of memory reads
required as the shared memory acts as a temporary cache.

This kernel was sensitive to register pressure. The nvcc register
allocator can be quite unpredictable in how it chooses to allocate
registers for a given input program. In the case of the Quadro
3700M, the registers were not allocated optimally, causingsome
computations to be recomputed each iteration instead of being
hoisted out of the loop.

4.2.3 Dense Matrix Multiply

This kernel is due to Volkov[15]. It is part of the BLAS[2] library,
where it is called sgemm. We implemented the case where the input
matrixes are not transposed (the other cases are similar). We ran the
kernel on square matrixes of size 4096.

Part of the kernel calls for a statically-sized stack allocated ar-
ray of floats. Its existence on the stack and the fact that (after loop
unrolling) it is only indexed with constant offsets cause itto be im-
plemented with GPU registers, which are very fast. In CUDA this
is trivially written asfloat arr[8];. In X10 we used an experi-
mental new X10 library class calledx10.util.Vec[Float]. This
behaves like a struct, it is passed by value and cannot be aliased.
When the length of the array is statically known (e.g. when ithas
the constraint{size==8} in the X10 type system), the generated
code is such that it will also be implemented with registers.

Each thread block in the kernel lasts for a short time, the running
time of the kernel is due to the very large number of blocks. This
means per-block overhead due to, e.g., shared memory initialisation
code, is more of a factor than usual.

5. Related Work
There have been many attempts to provide GPU programming
capabilities via a library. CUDA itself provides this via the Driver
API [10], where kernels are written in CUDA and the host code is
written in C, with API calls to load GPU code and invoke kernels.
This API has also been wrapped in Java bindings in order to make
the capability available to Java programmers [1, 5]. Also, OpenCL
[7] fits into this model. These approaches do not truly integrate the
host and the GPU parts of the application code. Communication is
explicit and difficult, and different languages are used forthe host
and GPU code. However, without the necessary constructs in the
host language, it is not possible to express GPU idioms.

For a more integrated approach, the most obvious example is
the CUDA Runtime API, an example of which is given in fig. 4.
In this model, host and GPU code can live in the same compilation
unit. There is some degree of implicit communication, in theform
of parameters to the kernel, however this only applies to primitives
and structs that are passed by value. Any objects that need tobe
communicated must be allocated and copied explicitly. While it
is possible to utilize all the GPUs on a host, to write distributed
programs it is necessary to use an additional framework, such as
MPI, with a different programming model. The language proneto
memory errors, with its primitive C++-based type system.

Higher level languages have been proposed, but only in a re-
stricted domain. For example Chapel has been extended to optimize
array operations by performing them on the GPU [12]. Intel Array
Building Blocks [6] is similar. PGI compilers also support execut-
ing specific parallel loops on the GPU [13]. These approachesdo
not provide the full suite of GPU functionality, e.g., they abstract
from shared memory and blocks. The programmer is thus reliant
on the compiler making the right choices, and this is non-trivial.
As far as we know, ours is the only attempt to provide the full GPU
programming experience in a high level language.

6. Conclusion
We argue that APGAS is the right model for concurrent distributed
heterogeneous programming. By implementing a CUDA backend
for the X10 compiler, we have proven that the 4 basic conceptsthat
comprise the APGAS model are general enough not only for dis-
tributed multicore programming, but also GPU programming.We
defined some extra API functions for the convenience of program-
mer and implementer, but these are expressible within APGAS.

Using our new backend, we have developed and benchmarked
several programs and shown performance close to that of handwrit-
ten native code. Due to time and manpower constraints, our imple-
mentation is limited to a fraction of the design in section. 2. How-
ever it is still capable of supporting real applications, which demon-
strates the practical value of our design. We would like to further
develop our backend by allowing more X10 constructs within ker-
nels, e.g. types other than arrays, function calls, multi-dimensional
blocks, etc., as well as finding ways of more closely matchingna-
tive performance with X10 code. We would also like to implement
an OpenCL backend.

Acknowledgments
This material is based in part on work supported by the Defense
Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.

References
[1] Java bindings for CUDA.http://www.jcuda.org/.

[2] J. Dongarra. Basic linear algebra subprograms technical forum stan-
dard. International Journal of High Performance Applications and
Supercomputing, 16(1), 2002.

[3] D. Goeddeke. Nvidia forum topic, 2009.
http://forums.nvidia.com/index.php?showtopic=94443.

[4] gonnet. Nvidia forum topic, 2008.
http://forums.nvidia.com/index.php?showtopic=65267.

[5] A. Heusel. Java bindings for CUDA.
http://jacuzzi.sourceforge.net/javadoc/.

[6] Intel Inc. Intel array building blocks, 2010.

[7] Khronos Group. OpenCL- the open standard for parallel programming
of heterogeneous systems, 2010.

[8] S. Lloyd. Least squares quantization in PCM.Information Theory,
IEEE Transactions on, 28(2):129–137, January 2003.

[9] MediaFrame. Nvidia forum topic, 2008.
http://forums.nvidia.com/index.php?showtopic=65556.

[10] NVIDIA Inc. Nvidia cuda programming guide, version 3.0, 2010.

[11] V. Saraswat, G. Almasi, G. Bikshandi, C. Cascaval, D. Cunningham,
D. Grove, S. Kodali, I. Peshansky, and O. Tardieu. The asynchronous
partitioned global address space model. InProceedings of The First
Workshop on Advances in Message Passing, PLDI’10.

[12] A. Sidelnik. Array language extensions and compilation for acceler-
ators. Found in slides entitled Studies in Array Languages and their
Compilers.

[13] The Portland Group. PGI Accelerator Compilers, 2010.

[14] W. J. van der Laan. Decuda website, 2009.
https://github.com/laanwj/decuda/wiki.

[15] V. Volkov and J. W. Demmel. Benchmarking gpus to tune dense
linear algebra. InProceedings of the 2008 ACM/IEEE conference
on Supercomputing, SC ’08, pages 31:1–31:11, Piscataway, NJ, USA,
2008. IEEE Press. ISBN 978-1-4244-2835-9.

[16] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser.
Active messages: a mechanism for integrated communicationand
computation. SIGARCH Comput. Archit. News, 20:256–266, April
1992. ISSN 0163-5964.

preprint 10 2011/5/24

