preprint

GPU Programming in a High Level Language
Compiling X10 to CUDA

Dave Cunningham Rajesh Bordawekar Vijay Saraswat

IBM TJ Watson
{dcunnin,bordaw,vsaraswa } @watson.ibm.com

Abstract We believe these results establish X10 as a single-soutce pr
b gramming language in which clean, efficient programs cantiite w

GPU architectures have emerged as a viable way of consiglera
g Y g ten for GPU-accelerated clusters.

improving performance for appropriate applications. Paogfrag-
ments (kernels) appropriate for GPU execution can be imgite Categories and Subject Descriptors D [3]: 3
in CUDA or OpenCL and glued into an application via an API.
While there is plenty of evidence of performance improvetsen
using this approach, there are many issues with producti®ib- Keywords CUDA, GPU, X10, Heterogeneous, Distributed, Mul-
grammers must understand an additional programming madkl a ticore, Parallel, High-level, Java.
API to program the accelerator; concurrency and synchatioiz
in this programming model is typically expressed diffelgifitom 1. Introduction
the programming model for the host. On top of this, the laggsa
used to write kernels are very low level and thus prone to thesk
of errors that one does not encounter in higher level lanegidgro-
grammers must explicitly deal with moving data back-andko
between the host and the accelerator. These problems are com
pounded when the user code must be run across a cluster of ac
celerated nodes. Now the host programming model must furthe
be extended with constructs to deal with scale-out and remot
celerators. We believe there is a critical need for a singlece
programming model that can be used to write clean, efficiedec
for heterogeneous, multi-core and scale-out architesture
The APGAS programming model has been developed for such
architectures over the past six years. APGAS is based on four
fundamental (and architecture-independent) notionslikycasyn-
chrony, conditional atomicity and order. X10 is an instafitin of
the APGAS programming model on top of a base sequential lan-
guage with Java-style productivity. Earlier work has shaivat
X10 can be used to write clean and efficient code for homoge- e A single source program should be capable of specifying exe-
neous multi-cores, SMPs, Cell-accelerated nodes, anteciusf cution over a host, an attached GPU, and across a cluster.
such nodes. In this paper we show how X10 programmers ca@ writ
code that can be compiled and run on GPUs. GPU programming
idioms such as threads, blocks, barriers, constant mertomg]

General Terms Languages, Performance, Human Factors

Clusters of GPU-accelerated nodes are becoming incrépsing
portant for high performance and scale-out computing. fisieince
the Tianhe-1, organized as a cluster of NVidia GPU-acceddra
x86 nodes leads the Top500 list of super computers, as ofritove
ber 2010. GPUs can often provide over 30x acceleration oR&rC
for dense numeric kernels.

Currently such machines are programmed using an ad hoc col-
lection of different frameworks. C or Fortran is used as &l
quential language, with MPI for scale-out. GPU kernels ar¢-w
tne in CUDA or OpenCL. Programming in such an environment is
complicated and presents a barrier to entry for those whoado n
have a background in HPC and systems programming.

We believe that there is an urgent need for a language with
Java-style productivity that can be used to program clastér
GPU-accelerated nodes. We believe such a model shouldysatis
the following requirements (in order of priority):

e The model should have a uniform set of constructs that a@ use
to deal with concurrency within a node and across nodes.

registers, shared memory variables, etc. can be direcgiyeszed e Performance should be consistent with conventional models
in X10, and do not require new language extensions. We presen e The model should be high-level, hiding details of data ti@ns
the design of an extension of the X10-to-C++ compiler whietyr between nodes as far as possible.

ognizes such idioms and produces CUDA kernel code. We show
several benchmarks written in this style. The performarichese 11 TheAPGASMode

kernels is within 80% of hand-written CUDA kernels. The APGAS model [11] has been developed in the last few years t
address programming clusters of (possibly Cell-acceddjanulti-
core nodes. It is organized around four basic and orthogua
cepts:locality, asynchrony, conditional atomicity andorder.

Places Computation is organized around one or more places. A
place contains (mutable) state as well as activities thataip
on that state. Places are not required to be homogeneous: in a
single computation, one place may be mapped to an x86 core,
or an x86 node (with multiple cores corresponding to it), or a
SMP, or a GPU.

Places are reified. They can be stored in variables, pasged in
[Copyright notice will appear here once "preprint’ optianrémoved.] functions, etc, as an instance of the st . lang . Place.

preprint 1 2011/5/24

Let us call a unit of serial execution aativity. Activities are
located in a single place for their lifetime. Given a placthe
statementat (p) S can be used to request execution of the
statement at placep. The execution is synchronous: control
for the current activity transfers from the current placzy(g)

to placep, executes, and then returns to plageto execute the
next statement aftes.

More details on place discovery, naming and properties are
given below.

Asynchrony An activity may use the statemesdync S to launch
a new activity to execute the statements may reference
variables in the surrounding lexical environment.

Conditional Atomicity An activity may use the statemenhen
(c) 8, wherec is a Boolean-valued expression called the
condition ands is a statement. The execution of this statement
in a states terminates in a single step and yields the state
if and only if the conditionc is true ins, and execution of
S in s yields s’. Note that no other activity is permitted to
execute when the state is transitioned froto s ?, i.e. thewhen
statement istomic.

In the following we will allow ourselves to usetomic S to
meanwhen (true) S.

Order There must be a mechanism for imposing a partial order on
the state changes caused by individual activities. Thersiztt
finish S executess and then waits for all activities spawned
during the execution o to terminate (recursively). Thus it
ensures that all activities spawned after themish see the
effect of the state changes by the activities spawned before
during the execution of inish.

The APGAS model exploits lexical scoping. Variables desdan

an outer scope can be accessed within the Idffan async S

or finish S or at (P) S statement. In the case at (P) S,
the variables accessed drthat are declared in an outer scope are
subject to arat-transfer. That is, the values of these variables are
serialized, transported ®and deserialized into shadow variables
with the same name. Thus the c&lalways accesses a local copy
of “outer” variables. If the variables are pointers to he#peots,
the copy is deep, i.e., a fraction of the object graph is feansd
and recreated on the target place.

Theasync, finish andat statements can be nested arbitrarily.
This is a fundamental part of the flexibility of the APGAS pram-
ming model. For instancesync at (P) S is the typical pattern
used to express aactive message [16] to P. The message asks for
the codes to be executed a asynchronously (with outer vari-
ables referenced is implemented through at-transfer). Recursive
parallelism (a la Cilk) is expressed with the idighimish { ...
async S ...} ,i.e.with an outefinish enclosing a number of
asyncs. Static partitioning of work acrassvorkers can be done by
using the idiomfinish for ([i] in 1..P) async S, where
S is sequential code expressing the execution ofithechunk of
work.

Finally, X10 defines a notion aflocks usingwhen. A clock is
a barrier-like construct. An activity may be registered oultiple
clocks ey, ...cn. It may spawn other activities and specify that
they be registered on one or more@f ... cn. An activity uses
the construchext to signal that it has finished the work associated
with the current phase of the clock and to wait for the clock to
advance. The clock advances only when all activities registon
the clock have executetbxt.

1.2 TheGPU Programming Model

GPUs are made available to host applications via the CUDA[10
and OpenCL[7] frameworks. Here, we abstract from CUDA and

preprint 2

Thread

[Shared Me} [Shared Meﬂ1

Figure 1. The components of the CUDA programming model

Global memory

OpenCL and consider a generalized GPU programming model.
However since the terminology between the two implemeonati

is different, and our implementation is based on CUDA, weosigo

to use the CUDA terminology in this paper.

The GPU programming model provides programming language
constructs that expose the peculiarities of the GPU aicthoite so
that programmers can write efficient programs. There is tindis
tion made between memory that exists on the GPU and on the host
Only GPU code can access GPU memory and likewise for the host.
However the host can allocate and free GPU memory, and invoke
asynchronous copies between its own memory and the GPU mem-
ory.

The only code that can run on the GPU is a kernel. A kernel
is a block of code in a restricted language that is executed by
hundreds ofthreads simultaneously. Competitive performance is
only possible when the GPU is running very large numbers of
threads.

The memory on the GPU consists of tjilebal memory, which
is the memory that is managed by the host. However this memory
is slow for each thread to access, so there are also othes kind
memory that are available while the kernel is running. E&cead
has its own set of registers, which are exposed as scopeblesi
in the programming model. For communication between trgead
there isshared memory*. The shared memory is arranged such that
the threads are partitioned inbbocks and each block has its own
shared memory, as shown in fig. 1. The host program dynamicall
decides how many blocks, how many threads per block, and how
much shared memory per block should be used, when invoking
a given kernel. To synchronize accesses to shared memerg th
is one construct provided, an SPMD barrier represented by th
function __syncthreads (), which causes a thread to wait until all
threads in the block has reached the barrier.

Finally, there are some special ways of accessing global-mem
ory. Constant memory is a small amount of memory that can be
used by all threads, and is almost as efficient as local ergistt
is read-only and cached. Texture memory is another formauf-re
only, cached memory, except that the cache is very muchrlarge
and the latencies are higher. Texture memory also provide®s s
unusual indexing operations, where indexes are given inirflpa
point and array elements are filtered (interpolated). Tihdigora-
tion of constant and texture memory are exposed througtiaaal
API functions that must be called on the host before the kesne
invoked.

1Since shared memory is a commonly used term in concurreigrgme
ming, to avoid confusion we do not use it except when refgrtmCUDA
shared memory.

2011/5/24

1.2.1 Preview of GPU programmingin APGAS

We briefly preview how GPU concepts are represented in APGAS,
details are provided in section. 2. A GPU is reified as a place,
say P. The global memory of the GPU is the heappatShared
memory mapped to local variables declared within the b®adyf

an at(P) S. GPU threads are represented usiwync, blocks
using for loops, with completion detected usifithish. Barriers

are implemented using clocks. Registers and local memay ar
represented through local variables in the async.

1.3 Our Claims

e The APGAS programming model in general, and X10 in par-
ticular, can be used to program GPUs productively.

e GPU programming elements have a direct expression using

X10 constructs

¢ We have extended the X10 to C++ compiler to understand the

X10 presentation of CUDA idioms and generate CUDA code
from it.

e The resulting code executes within 80% of the performance of
native CUDA kernels for given benchmarks.

Rest of thispaper. We describe how to express the GPU program-
ming model within the APGAS programming model in section 2.
In section 3, we explain how we modified the X10 compiler and
runtime to target CUDA, and we give our experimental resuith
these modifications in section 4. We discuss related workdtien

5 and conclude with section 6.

2. Expressing GPU Programmingin APGAS

We now show how we use APGAS constructs to express GPU pro-

gramming idioms. This allows X10 programmers to write pesgs

that use the GPU. In the compiler and runtime, we recognisnwh
programs are using the APGAS constructs in this fashion,aand
range for the code to be executed on the GPU instead of the CPU.

2.1 Placesand Global Memory
Given the hierarchal nature of the memory on a GPU, it is not

obvious how to define a place. We could have broken the GPU up

into 1 place per block. However we decided to treat the wh&&)G

as a single place. The reasoning behind this decision washtha
heap at a place should be filled with objects that live for alon
time. The only memory in the GPU whose allocation outlives th
execution of the kernel is the global memory (and the meradiat

are simply cached views on global memory). Local memory does
not outlive the thread in which it is defined, and shared mgmor
does not outlive the block that accesses it. Since globalangim
amorphous, with no internal divisions or affinities, it mesnse

to group it together as a single place, with its heap reptedeny
objects in global memory. Therefore to run code on the GPU we
use theat construct.

Consequently, the set of places in an executing programsfarm
two level tree. At the top of the tree are the host places, Igua
able to communicate with any other host place, thus forming a
totally interconnected nest. Under each host place therdean
arbitrary number of accelerators. Communication betwebonst
place and its accelerators will clearly be faster than comoation

for (accel in here.children().values()) {
if (accel.isCUDAQ)) {
at (accel) {

>}

Figure 2. Using theat construct to invoke code on a GPU.

for discovering the GPUs on the local system. The X10 code in
fig. 2 executes a kernel on each CUDA GPU on the local host.

2.2 Allocating Memory on the GPU

Memory allocation in Java-like languages is expressed théhew
construct. In a Java-like APGAS language like X10, remadtecat
tion is simply expressed by doingnaw inside anat. However the
GPU programming model does not allow memory allocation in-
side a kernél Instead, GPU programmers call an API on the host
in order to allocate memory. We had to choose between resogni
ing certain combinations aft andnew, or exposing a library call
that took a place and allocated an object there. We chosattiee |
because it is easier to build a more robust implementatfothel
place is a GPU place, the call is implemented with CUDA opera-
tions. Otherwise, it is implemented witlt andnew. The following
example demonstrates ways in which we can make an array on the
GPU placep, from the host place, wherkis the type of the ele-
ments of the array (can also be inferred from the arguments).

CUDAUtilities.makeRemoteArray[T] (p, sz, single_value);
CUDAUtilities.makeRemoteArray[T] (p, sz, (i:Int)=>expr);
CUDAUtilities.makeRemoteArray[T] (p, clone_this_array);

In future we will investigate using the kernehlloc function in
order to supprhew in kernels and thus make allocating memory on
the GPU more natural. This will also allow creating objedisen
than arrays.

2.3 Copying Memory to/from the GPU

When programming kernels, data that needs to be transfeaed
kernel invocation can simply be captured from the enclosoape,
instead of copied explicitly. One common operation we wdiklel

to optimize is the updating of an existing array on the GPUaat
this is generally useful for APGAS languages, and in X10 wesha
provided an API that mirrors JavaSsstem.arrayCopy, except

it allows one of the arrays to be a remote reference, and is-asy
chronous, notifying the governinffinish statement upon termi-
nation like anasync statement would. In the following example,
andl are remote and local arrays, respectively. The other parame
ters are integers. The function is overloaded to allow cpighe
opposite direction by swapping tkeand1 parameters.

finish Array.asyncCopy(r, r_off, 1, 1_off, len);

This API can be implemented with the basic APGAS operations,
by capturing the source data, switching to the remote plack a
using a loop to fill in the remote array. However to do so would
mean creating objects and incurring serialization oveth@&a this
end we provide a native implementation of these copy funstio
that is more efficient. In the case of copying to a GPU, we can
implement these same copy functions on top of the CUDA API’s
memory copy operations. Thus, copying data between a lasdl h

between a host place and some other host's accelerator, so Weyrray and a GPU array can be achieved through exactly the same

chose to expose this relationship. In an APGAS languagecane
provide an API for iterating over hosts, accelerators of sthand

for finding out whether a given place is a host, a CUDA GPU, or
perhaps some other kind of accelerator. For programmeesgth
functions are analogous to the functions in the CUDA/OpeAGL

preprint 3

code as a programmer would write for a normal distributed m
that did not use GPUs.

2|n fact at the time of writing this has just become possibIEWDA but it
was too late to influence our design

2011/5/24

CPU

0.--~" / "7~-_ num_blocks-1

- ’ ~

_ - , ~

num_threads—%

CPU

at (p) {
finish for ([b] in O..num_blocks-1) async {
val shm = new Array[Int] (num_elements, init);
finish for ([t] in O..num_threads-1) async {
}

o}

Figure 3. Specifying blocks, threads and shared memory in X10.

CPU |

1
1)
\

GPU

) (

num_blocks—

0 hum_threads—l
CPU
__global__ void kernel (int *gpu_init)
{
__shared__ int shm[NUM_ELEMENTS];
// initialize shm from gpu_init
}

// allocate gpu_init on gpu
// initalize gpu_init via memcopy
kernel<<<num_blocks,num_threads>>>(gpu_init)

Figure 4. Specifying blocks, threads and shared memory in
CUDA.

2.4 Threads, Blocks, and Shared Memory

In the GPU programming model, threads are arranged intdéjoc
where threads within a block may communicate via shared mem-
ory. In APGAS the equivalent of a thread is an activity, which
create with thesync construct. To create many activities, one uses
a loop to execute multiplesync constructs. In fig. 3, we run with
num_blocks blocks each witmum_threads threads. The syntax
allows for a multidimensional iteration, which is specifieg us-
ing, e.g.,[bx,by,bz] instead of[b], however we only present 1-
dimensional iterations in this discussion. For comparison give
the equivalent CUDA code in fig. 4.

In the X10 code, to represent that kernel termination is de-
pendent on the termination of the blocks, we use theish

preprint

val tmpl num_blocks-1;

val tmp2 = num_elements;
val tmp3 = num_threads-1;
at (p) {

finish for ([b] in O..tmpl) async {
val shm = new Array[Int] (tmp2, init);
finish for ([t] in O..tmp3) async {
}

o}

Figure 5. The compiler executes some subexpressions of the ker-
nel on the host.

construct around the outer loop. Likewise, we use another fin
ish to represent that the block terminates when all of theatths
terminate. The number of activities is actuallym blocks *
num_threads + num_blocks, although this maps down to only
num_blocks * num_threads CUDA threads. This is because the
other activities are only used to represent the parallelistwveen
blocks, and are removed by the compiler. In fig. 3 they areerepr
sented by dashed lines.

Shared memory objects are objects on the heap, but are Rot per
mitted to live beyond the lifetime of a block. This can be egzed
by allocating objects between the two loops. We have to eafor
the restriction that the objects may not leak from the bldmd
cause this would allow dangling pointers after the sharechamg
becomes inaccessible. This restriction can be implementedby
disallowing access to the array pointer itself, only allogvindex-
ing operations. The code in fig. 3 shows how a shared memay arr
can be allocated in X10.

We must restrict the subexpressions within this patterorder
to conform to the GPU programming model. The only part of
the pattern that is actually run on the GPU is the body of the
innermost async, and the initialization of the shared menibiie
number of blocks and threads and the amount of memory must be
known before the kernel is invoked. We require the expressio
num_blocks, num_threads, and num_elements to be hoistable
from within the at statement and executable on the host, @srsh
in fig. 5.

For hoisting to be safe, these expressions must be highly re-
stricted. They must bplace-independent in order to have the same
meaning on any place. This means no use of the congiie,
which evaluates differently at each place, and no field aases
which can only be performed at the place where the objeats liv
They also need to evaluate to the same value each loop derati
One simple rule that suffices for our purposes, but could batbyr
generalized, is to restrict the expressions to only allovalwari-
ables defined outside the at expression, and a handful chtipes
such as integer arithmetic, that are known to be safe whestdubi
in this manner. This is enough for the benchmarks we disatss |
Even if it were not, one can take hoistable code that is conser
tively rejected, and hoist it manually, resulting in a pragrthat
passes checking and has the same behavior and performance.

25 Barrier

Shared memory can be used in a read-only fashion, as a cache.
However it is much more useful as a staging ground into which
to stream from global memory, and in this context it needseto b
mutable. Mutable shared memory requires synchronizatod,
GPUs provide this with a callsyncthreads () that behaves like

a barrier within the block. The analogous construct in APG&S

the clock. Clocks are more general, since they allow paritis to

join and leave the clock at will. However we can restrict tele

to prevent this, and then the semantics align with that ofGR&J

2011/5/24

at (p) {
finish for ([b] in O..num_blocks-1) async {
clocked finish for ([t] in O..num_threads-1)
clocked async {

next;
}

} o}

Figure 6. Using clocks on the GPU to represent the barrier con-
struct

at (p) {
local cmem arr.sequence() ;
finish for ([b] in O..num_blocks-1) async {
finish for ([t] in O..num_threads-1) async {

3

Figure7. A simple way to express many uses of constant memory.

programming model. In order to use clocks in a kernel, the X10
code is shown in fig. 6.

Each block has its own clock, indicated by theocked key-
word on thef inish (we do not mark the outefinish asclocked
since there is no global barrier in the GPU programming mjodel
Theasyncs that form the blocks are also marked clocked, and this
allows the use ofiext within them. The scope of the clock is lim-
ited to thefinish, so only the threads within the block executing
thenext will be synchronized.

2.6 Kerne Parameters, Registersand Local Memory

GPU kernel parameters are represented in APGAS as the icaptur
of local variables within thet construct. In the case of pointers,
APGAS goes further and creates an object graph on the GPU.
However, for variables of primitive type (and in X10, strigpe)
that involve no indirection, the semantics of kernel par@mseand
the capture of scoped variables coincide.

Registers and local memory are what would normally be called
a stack. They are local to each thread, and can be considared p
of the sequential subset of GPU programming. APGAS extdrals t
sequential subset of whatever language in which it is usedh s

2.8 Texture Memory

Texture memory can be expressed as a datastructure. One aeed
way to create a texture from the host on a given GPU, giving the
dimensions, the content, and the kind of filtering that isirees

A pointer to the texture object would then be captured by the
kernel, and a method called on it to do the texture fetchebeat t
given coordinates. In order to support the same code runming
the host, the semantics of the texture fetches, includiadiltiering
operations, would have to be implemented on the CPU. Thisdvou
obviously not be as fast as the dedicated hardware on the GPU.

2.9 RestrictionsOn Kernel Code

Earlier, we described the restrictions on the loops anceshawlem-
ory definitions that are due to the necessity of hoisting syives-
sions out onto the host instead of executing them on the Gatépl
as specified. There are also other restrictions that are fuanda-
mental to the GPU that govern tlaetual kernel, the body of the
innermostasync block.

Until very recently in CUDA, kernels were not permitted to
allocate memory. We thus do not alleww inside the actual kernel.
There was also no indirect branching supported by CUDA GPUs
until the latest revision of the architecture, so all fuanticalls
had to be final or static. These limitations are still preserider
versions of the hardware/software and are still presentp@enCL.
Thus our restrictions of the language are still relevanheheugh
the trend is for greater expressiveness on the GPU.

The actual kernel must be sequential non-distributed deele,
no occurences afsync, at or finish. Recursion is not supported
on GPUs, so we also must not allow it. Recursion is easy tatete
in the context of static binding or whole program knowledge.

There are also limits on the number of threads, number of
blocks, and limits on the amount of shared memory that camése ¢
ated. If these limits are broken, we can simply throw an eticap
at runtime.

3. Implementation

To run GPU programs written in the APGAS model, we added a
CUDA code generation backend to the X10 compiler, and extend
the X10 runtime environment to be able to invoke the gendrate
kernels. We chose CUDA instead of OpenCL because at the time
OpenCL was not widely supported. However everything we have

X10 we represent registers and memory in the same way as CUDA gchieved could also now be achieved with OpenCL.

and OpenCL, through local variables on the stack.

2.7 Constant Memory

For simplicity we have restricted ourselves to 1-dimenaid
erations over blocks and threads. This makes some kerneks mo
complicated as they have to compute the x and y coordinal&exp

At present we expose one specific use of constant memory, as atly from the single variable. We also require the clockedrioof

cache that is updated before each kernel. We expose thigmilars
way to shared memory except for two differences. Firstig,iead-
only, and in X10 a read-only array is expressed witteguence
object that is an immutable view on a mutable array. Secomadlly
blocks share the same constant memory, so we place the idefinit
within the kernel but outside the outer loop as shown in fig. 7.

Sincecmem will be refreshed on any subsequent kernels, refer-
ences to it may not outlive the current kernel, which is arietstn
we also apply to shared memory objects. We can easily enfoice
by, again, only allowing indexing operations on the array.

The GPU programming model allows constant memory to be
initialized once and then used in many kernels. However,anaat
represent this just by allocating memory on the GPU wig,
since objects in constant memory are statically definederGRU
programming model. In future we could look at using arrays in
static fields to represent this more general idiom, thusdingithe
performance cost of reinitialising constant memory ongkernel
invocation.

preprint

the inner loop, seen in fig. 6, everiiéxt is not used. This means
we can trivially compilenext into __syncthreads ().

We currently only support int and float types in the kernet an
the only objects that can be created on the GPU’s heap, shared
memory, or constant memory, are arrays. These are sevérie-res
tions but kernels do not typically use complicated objeaps
or do much pointer chasing. Instead they stream arrays ankl wo
with primitives in registers and shared memory. We also hete
implemented support for texture memory.

The X10 compiler does not know whether a placis a GPU
place or a host place, since this depends on how the program is
launched. A kernel that begins witt (p) may run on a CPU if
p happens to be a host place. Thus, we must compile kernels to
CUDA and CPU code, dispatching at runtime.

Given the strict rules governing a kernel, there is the [ilfyi
of an at with a non-conforming body being targeted at a GPU
place. We cannot enforce the restrictions onaallblocks, since
this would affect host code, and we do not know which will run

2011/5/24

on the GPU. Thus, we must raise an error at runtime if the code i
not suitable. Because this can cause errors to remain weléte
we decided to require amRCUDA annotation onat blocks that
are intended to be CUDA-capable. This way, if the programmer
accidentally breaks one of the rules they will get a statiorer
Any block that is executed on the GPU withow@IDA annotation
yields a runtime error.

3.1 Compiler

Our modified X10 compiler takes@UDA-annotateckt in class C,
pattern-matches the constant memory, loops, array defisitetc.,
and compiles the body of the innermost async into a C.cu file (a
kernel written in NVIDIA's CUDA language which is a extended
subset of C++). Each kernel is named using an ascending mumbe
and is marked withextern "C" to avoid C++ name mangling.
Since there is already a C++ backend for X10, we were ableigere

a lot of code generation for the basic sequential constrliges
conditionals, loops, variable declarations, etc. It wagairto map
Math.sqrt and other such functions to their CUDA equivalents.
The compiler then invokes nvcc to compile the cu file to a cubin
file (object code for the GPU).

On the host, an X10 array is represented by an instance of the
Array[T] class. This encapsulates a pointer to a backing store, so
there is one more level of indirection than is necessarydtiten
to this, theArray class implements a very high level notion of non-
zero-based multidimensional array. Worried about theqoerénce
implications of this, we restricted the usage\etay [T] to simply
allow 1-dimensional indexing and retrieving the size of éney.

We then represented it with a struct containing only the teoito

the backing storage and the size of the array. We use this&oed
memory and constant memory arrays as well as global memory
arrays. If the length is not used by the program, it is optediz
away by nvcg, i.e., it does not consume a register.

X X10 Application

1

0

N

T

| x10rt

v T T~

E MPI Sockets Blue Gen

Figure 8. The original software modules in the X10 runtime

Finally, we found that constant propagation was invaludbte
improving the performance of our test kernels. In a Javaén-
guage, i.e., without a mechanism like C'’s #define, one raies
final variables to hold constants. With constant propagation-
stants defined in static fields and in final variables in scojtldoe/
inlined into the kernel. This is beneficial firstly becauseetfuces
the amount of data needing to be sent to the kernel at invmtati
time, and secondly because these values no-longer neechelde
in registers, decreasing the overall register pressure.

3.2 Runtime

The X10 runtime is organised in several layers, as shown ii8fig

At the highest level the APGAS constructs are desugareddesi
closure) into calls into a private APXRX, which is implemented in
X10 and handles finish states, termination propagatiorg-jplace
load balancing, and more. XRX then passes control to a C++ API
x10aux which asynchronously invokes a closure at the target place
with a finish state as an argument. The implementation of xd0a
serializes the closure and finish state into a buffer and tises a

C API x10rt to move the data to the far side. The reason for this
design is that x10rt and XRX can be reused with the X10 Java cod

We also generated code for the host to provide data needed togeneration backend whereas x10aux is specific to the C+-ehdck

invoke the kernel. This code is placed intpra callback (described
in detail in section. 3.2.1). In this callback, the varigbtaptured
by the kernel are arranged into a struct cabad and passed to the
kernel with a single parameter. This ensures the alignmsetriect

in the kernel argument memory, whereas individual pararsete
would need to be packed carefully.

Using a struct also allows for an alternative wheiv is bigger
than the number of bytes available for kernel parametershifn
case, a global memory buffer is allocated on the GPU by the
host in thepre callback. The allocated buffer is large enough to
hold env, and the arguments are copied to it before the kernel
is invoked. The kernel has a single parameter, a pointemtq
and the arguments within are copied into shared memoryhlaga

by the Oth thread in each block before the user code executes.

This latter approach is currently the default, since the lpemof
captured variables is unlimited. If the number of arguméenssnall
enough, the former behavior can be specified with the aditio
annotatiomeCUDADirectParams next to theeCUDA annotation. We
leave automatically making this choice as future work.

We implement all shared memory using CUDAs dynamic

The x10rt library is responsible for finding out the numbed an
configuration of places, sending messages to a given placke, a
keeping a register of callbacks from the X10 program for gewl
received messages. We needed to make major changa®to
to support invocation on GPUs, and minor changes to x10aex. W
wanted to have a tree of places, with zero or more accelgrktoes
under each host. We accomplished this by renaming the mxisti
API x10rt_net, and hiding it beneath a new APX10rt_logical.
We wanted to reuse the existing networking code, which idemp
mented for a variety of backends. Also undernedttrt_logical
is a new API callek10rt_cuda. Thex10rt_logical layer there-
fore provides its own notion of places, a coherent view onte
independent layers underneath it, see fig. 9.

321

While CUDA is being initialised at each host place, the hasts
also communicating and initializing their network. Afteoth are
complete x10rt_logical takes information from both and com-
municates with other hosts to build a complete tree of udyque
named places in the system, consistent across all hosts Byt

Initialization

shared memory support, where the amount of shared memory re-tem. We defined functions for inspecting the tree inthert_logical

quired is given at kernel invocation time instead of stdltyjcd he
size of each shared memory array is calculated on the hostripy g
erating C++ code from the first argument in theray constructor
in each shared memory definition. The total size is given t8U
when invoking the kernel. In the kernel itself, the sharednory

is initialized by the Oth thread in each block, and a barsensed
to hold back the other threads until initialization is coetpl Con-
stant memory is initialized by the host before the kerneiveked,
which we generate code for in tpee callback.

preprint

API, which is now the public face ofi0rt. This complements the
functions for sending messages to places and registeritigcks
for receiving messages at the local place, whose signaamés
names are taken from the old AR10rt_net. We then extended
the layers above10aux andXRX to expose the structure of the tree
to the X10 programmer via thel0.1lang.Place class.

We had to extend the callback registration API to accomnedat
CUDA execution, because there is work to do on the host before
a kernel can be invoked, and this work depends on the kind of

2011/5/24

X10 Application

X
1
0
N
A x10rt
T
| x10rt_logical
\% T
E x10rt_ocl x10rt_cuda x10rt_net
v i T T
OpenCL CUDA MPI Sockets..... Blue Ge

Figure 9. Our revised software modules in the X10 runtime. The
dashed line represents potential future expansion.

code in the kernel (such as setting the kernel parametémssining
constant memory, and uploading objects to global memoygra

is also code that must run on the host after the kernel is cetiegbto
implementtinish. Therefore instead of a host registering a single
callback to handle a message, it additionally supplies #meeas of
the cubin file and the kernel, so thatort_cuda can load the code,
and also a pair of callbacks, callpre andpost, that will run on the
host before and after the kernel runs on the GPU.

During the program’s initialisation time, the X10 runtimpems
each cubin file, and loads the appropriate kernels. giwe and
post callbacks allow the user of the X10RT API to do arbitrary
work before and after their kernel has executedxi®aux the
post callback for every kernel just updates the finish state viala c
to XRX. Thepre callback is generated for each kernel as described
previously.

3.2.2 Routing

It is possible in APGAS to launch ast block at any place in the
tree, including GPUs that are not local to the host in quasfitie
design ofx10rt_logical is intended to allow transparent routing
of these messages to the GPU'’s host. We have not yet implethent
routing but believe it is not hard.

3.2.3

In the APGAS model, the fundamental constructs for invokang
asynchronous message atgync andat. However in the imple-
mentation, for performance reasons, an asynchronous gessa
the fundamental operation, ard is implemented by using an-
other message to notify termination. The constraetme at (p)
are optimized to not create an activity at the source. We did n
implement kernel invocation for aax by itself but instead trapped
the more fundamentalsync at. To wait for a kernel to complete
one must dfinish async at instead of juskt.

To all layers excepk10rt, theasync at implementation re-
mains almost the same. The object graph captured by thelkerne
is serialized as usual, and given #@0rt. The x10rt_logical
layer then dispatches the buffer ¥a0rt_cuda, which calls the
pre callback. Thepre callback must provide the number of blocks
/ threads, the amount of shared memory, the contents of tinelke
argument buffer, and the content of the constant memory.

When the callback returng10rt can invoke the kernel. We
used the CUDA driver API since we are packing our own kernel
parameters and we are only generating CUDA code to implement
the kernels. We use a single CUDA stream for kernel invooatio
to separate them from DMAs which occur in parallel. While the
stream is busy, the kernel is queuedxitort. Either way, con-
trol immediately returns to the application. Theort library was
designed such that all calls are asynchronous and the apptic

Implementing at

preprint

must callx10rt_probe regularly, e.g., when waiting at the end
of a finish block, to cause progress withittOrt. Within this
call, the network buffer was checked for new messages ard cal
backs dispatched. We extended the call to also monitor theACU
streams, and when a kernel terminates, to call the posiacillb

3.24 Automatically choosing the number of blocks/threads

When writing one of our benchmark applications, we discov-
ered that to get maximum performance, the number of blocis an
threads had to be precisely chosen based on charactedttios
kernel and the particular GPU it runs on. This causes a pmoble
when trying to write portable code that runs fast on a varadty
GPUs. To solve this, we developed a heuristic to choose them a
tomatically. The rules are as follows:

o Preferred: More blocks and fewer threads. This means fewer
threads will be stalled by a barrier.

Preferred: Maximise occupancy, i.e., maximise the toteliner
of threads that are running concurrently. This helps migga
memory latency.

Required: The number of threads is a multiple of 32, this is
the number of threads that the architecture will execute per
instruction fetch.

Required: The number of threads is a multiple of 64, thisesus
shared memory access to be more efficient.

Required: The number of threads per blacib12.

Required: Each MP (NVIDIA terminology for what is conven-
tionally called a core) in the GPU is equally loaded.

Required: Each MP executes no more than the maximum num-
ber of threads that it can concurrently execute.

Required: Few enough blocks per MP that the shared memory
available at each MP is not exceeded by the needs of the blocks
executed on each MP. Note that the amount of shared memory
required is dynamically chosen by the application at kernel
invocation time.

Required: Few enough blocks and threads that the number of
registers available at each MP is not exceeded by the nurfiber o
registers required by the threads executed on that MP.

To find the optimal number of blocks/threads given thesesriiest
prior to kernel invocation we iterate down a list of (blotkseads)
pairs and pick the first conforming pair. The ordering of the |
causes preferred pairs to be selected first. The list givesumber

of blocks per MP, we then multiply this by the number of MPs in
the given GPU. Below is the list of (blocks,threads) pairsused:

128),
, 448),
, 320),
64),
64),
192),

(4, 256),
(6, 128),
(3, 192),
(1, 448),
(1, 320),
(2, 64),

(2, 512),
(4, 192),
(8, 64),
(6, 64),
(4, 64),
(1, 128),

(5, 192),

(3, 256),
(4, 128),
(3, 128),
(2, 128),
(1, 64) }

(3, 320),
(2, 384),
(2, 256),
(2, 192),
(1, 256),

(7, 128),
(5, 128),
(1, 512),
(1, 384),
(3, 64),

To use this feature, the kernel must be written to work prgper
no matter how many blocks/threads there are. This works faell
kernels that are strip mining a long array. However, someeisr
divide the work into blocks and threads based on the dimarssb
datastructure they are working on, so these kernels wowgd tee
be rewritten to make use of this feature. Some kernels mawall
smaller range of possibilities, or prefer a different kiridheuristic,
so we may in future allow the list to be specified by the user.

The code that chooses blocks and threads is accessed via the
x10rt APl and is called from there callback. We expose it to
X10 programmers as shown in fig. 10. This is an exception to the
rule that the loop bounds expressions must not use variabtged

2011/5/24

at (p) @CUDA {
val a_b = CUDAUtilities.autoBlocks();
val a_t = CUDAUtilities.autoThreads();
finish for ([b] in 0..a_b-1) async {
clocked finish for ([t] in O..a_t-1) {
clocked async {

Y r o}

Figure 10. Automatically choosing blocks/threads for a kernel

from within the at construct. The compiler recognizes thisca
and generates special code in the pre callback to calktloet
function. It then generates code for the loop bound exprassn
an environment where_t anda_b are in scope and initialized to
the values returned by thel 0rt function.

Whenp happens to be a host place, t#AUtilities func-
tions return 8 blocks and 1 thread. This is helpful becauteites
on the host are more heavyweight than on the GPU.

The simple heuristic to automatically choose blocks anekttis
is independent of the rest of the work presented here, arid beu
exposed as a utility library and used in any CUDA application

3.25

We had to add API calls ta10rt for the allocation and dealloca-
tion of memory. These simply map down to the underlying CUDA
API calls that do the same. In XRX we currently only suppoid-al
cating arrays on the GPU. As discussed in section. 2.2, wesexp
this to the programmer this through the following API calls:
CUDAUtilities.makeRemoteArray[T] (p, sz, single_value);
CUDAUtilities.makeRemoteArray[T] (p, sz, (i:Int)=>expr);
CUDAUtilities.makeRemoteArray[T] (p, clone_this_array);

In X10, remote pointers are encapsulated indhebalRef class.
The pointer can only be extracted at the correct place, which
is statically checked. The return value mikeRemoteArray is
RemoteArray[T] which is an existing class in X10 that encapsu-
lates a remote pointer to &rray [T] in aGlobalRef [Array [T]]
field. The Array object usually encapsulates a pointer to some
backing storage. To do direct copies from array to remotayarr
it is better to have a pointer to the remote backing storagk- O
erwise, extra communication would be required to discoher t
backing storage before the copy could start. TlRemoteArray
also has a pointer to the backing storage of the remote array.

Implementing Remote Array Allocation and Copies

finish async at (p) QCUDA {
val blocks = CUDAUtilities.autoBlocks();
val threads = CUDAUtilities.autoThreads()
val cmem_1 = cmem_arr_1.sequence();

val cmem_n = cmem_arr_n.sequence();
finish for ([b] in 0..e_b) async {

val shml = new Array(shm_init_arr_1);
val shm2 = new Array(shm_length_2, shm_init_closure_2);
val shm3 = new Array(shm_length_3, shm_init_expr_3);

val shm_n = new Array(shm_length_n, shm_init_closure_n);
clocked finish for ([t] in 0..e_t) clocked async {

next;

Figure 11. A general kernel in X10

use one CUDA stream for executing kernels, and one for parfor
ing memory copies, which allows us to exploit the fact thet@PU
can perform a DMA whilst executing a kernel.

One irritation of the CUDA API is that DMAs can only be effi-
ciently performed between pinned host memory and GPU memory
and pinned host memory is only available through a spedia al
cation routine. This causes a problem because we want to copy
from X10 datastructures, which are allocated by X10 throitgh
garbage collector (BDWGC). Clearly we cannot allocate thele
X10 heap with the CUDA allocation function. We also cannat pi
pre-allocated memory for the duration of the copy. Thus, vee a
forced to spool the DMA through a pre-allocated slice of host
memory, the size of which is controlled with an environmeauti-v
ableX10RT_CUDA_DMA_SLICE. This costs some performance, as we
will discuss later. There has been some discussion on th®MVI
forums[3, 4, 9] about this issue, but NVIDIA has yet to propes
more general API.

3.2.6 Garbage Callection

X10is a garbage collected language but we have not yet cenesid
how garbage collection should be implemented on the GPU. As a
temporary measure we have exposed explicit deallocatiatines

that map down to the underlyintree call. It would be an interest-

ing research project to implement a conventional mark areepw
collection between kernel invocations.

As discussed in section. 3.1, on the GPU we use a different 4. Evaluation

representation of arrays. We just have the backing storage a
the size, with noArray object indirection. Since this difference
is masked by special code generation in the kernel itsedfptily
place it manifests is on the host, in tRemoteArray[T] class.
Since we have a pointer to backing storage buthsay itself, it
makes sense to leave th@obalRef [Array[T]] field null and
fill in only the pointer to the remote backing storage. Thisngde
unsafe when the programmer extracts the array, except ibreign
happen on the GPU, where we are generating special code gnywa
The makeRemoteArray family of functions therefore use
x10rt to allocate backing storage of the right size on the GPU, and
then construct &emoteArray object encapsulating this pointer
but with theArray set tonull.

We evaluate the performance and expressiveness of ouraabpro
by writing and benchmarking a number of applications in X10.
First, a distributed version of Lloyd’s algorithm [8], whicsolves
the k-means clustering problem, using a wide range of X160 fea
tures. Our implementation is accelerated with GPUs at eash h
We also give some smaller benchmarks that we ported from CUDA

4.1 K-MeansApplication

K-Means is the problem of finding K points in n-dimensionssp

that represent clusters of points from a total of N pointsha t
space. We used 4 dimensional space and took K to be either100 o
400, and N to be either 2M or 4M. The algorithm picks K random

To implement copies between host and GPU, there were no points to be the initial clusters. It then proceeds in a bfatee

changes needed at tkRX or x10aux level. Thex10rt APl already
had functions for doing direct copies between given local e
mote addresses, since on many networks this can be implechent
more efficiently as a special operation than in terms of gernen-
pose messages. In thaOrt_logical layer we simply redirect
these copy invocations talOrt_cuda where CUDA API calls are
used to implement the actual copies. As mentioned previpus

preprint 8

manner. Every point is compared to every cluster to find tlaeest
(Euclidian distance) cluster to each point. The clusteritjprs
are then refined by averaging the points nearest to eacteclust
These two steps iterate until termination or until the @ustare
considered accurate enough.

We distribute this algorithm by splitting the points. Thastiers
are much fewer so are duplicated. Each place computes a set of

2011/5/24

for (h in Place.places()) {

for (gpu in accels) async at (h) {
val gpu_points = CUDAUtilities.makeRemoteArray(gpu, ...);
val gpu_nearest = CUDAUtilities.makeRemoteArray(gpu, ...);

for (var iter:Int=0 ; iter<50 ; iter++) {

// KERNEL STARTS
finish async at (gpu) @CUDA QCUDADirectParams {
val blocks = CUDAUtilities.autoBlocks(),
threads = CUDAUtilities.autoThreads();
finish for ([block] in 0..blocks-1) async {
val clustercache =
new Array[Float] (clusters_copy);
clocked finish for ([thread] in O..threads-1)
clocked async {
val tid = block * threads + thread;
val tids = blocks * threads;
for (var p:Int=tid ; p<num_local_points;
p+=tids) {
var closest:Int = -1;
var closest_dist:Float = Float.MAX_VALUE;
@Unroll(20)
for ([k] in O..num_clusters-1) {
// Pythagoras (in 4 dimensions)
var dist : Float = 0O;
for ([d] in 0..3) {
val i = p+d*num_local_points;
val tmp = gpu_points(i)
- clustercache (k*4+d) ;
dist += tmp * tmp;
record closest cluster seen so far
(dist < closest_dist) {
closest_dist = dist;
closest = k;

gpu_nearest(p) = closest;
} } } 1} // KERNEL ENDS

finish Array.asyncCopy(gpu_nearest, 0,
host_nearest, O,
num_local_points);

} // iter
CUDAUtilities.deleteRemoteArray(gpu_points);
CUDAUtilities.deleteRemoteArray(gpu_nearest);
} // gpus
} // hosts

Figure12. Selected parts of the K-means application.

new clusters from its points, and these are then combinel avit
reduction operation before the next iteration begins. Téuthe
beginning of each iteration, the clusters are synchronized

We discovered that the GPU is far better suited for the part
of the algorithm where we find the nearest cluster to eachtpoin
Computing new clusters involves a lot of irregular accedtepas

which makes it faster on the CPU than on the GPU. So, on the GPU

we compute an array of integers representing the closesteclto

Points, Clustery native | 1x1 | 1x2 | 2x1 | 2x2
2M, 100 1.47 | 153 | 1.33| 0.81| 0.79
2M, 400 292 | 272|204 | 147 | 1.1
4M, 100 283 | 3.01| 26 | 1.54| 1.46
4M, 400 559 | 5.36| 3.92| 2.76 | 2.09

Figure 13. Time in seconds for the k-means application to run 50
iterations. The 2x1 notation means 2 hosts, 1 GPU in each host

Tesla C1060 Quadro 3700M
native X10 native X10
BlackScholes| 0.000988| 0.00105| 0.00193| 0.00206
3DFD 0.024 0.022 0.070 0.074
sgemm 0.41 .39 0.75 0.86

Figure14. Times in seconds for 3 benchmarks on 2 GPU architec-
tures, native CUDA code vs X10 code.

GPU. The native kernel is written the same way, including uaén
unrolling. We ran our X10 and native code on a 2 host system
connected by Infiniband, each host having 2 GPUs and 4 3Ghz
Xeon 5160 cores. The 4 GPUs are contained within a Tesla S1070
server. The results are presented in fig. 13. The times arg0for
iterations, including DMA time, CPU processing, and Infamilol
communication.

4.2 Smaller Benchmarks

We also ported some known kernels into X10 to see how their per
formance compared. These kernels were carefully handaoetd

by their authors, so meeting their original performance olza-
lenging. Our versions do not use the distributed progrargrfea-
tures of X10, they just run their kernels on a single GPU amm ti
how long they take. The results of these experiments are.id4ig

The Tesla C1060 is one GPU from the Tesla S1070 we used pre-
viously. The Quadro 3700M is a laptop chip and is also from the
previous architecture (G80, as opposed to G200). The haogitis
relevant in these tests as only the GPU is timed.

4.2.1 Black Scholes

We ported the Black Scholes code from the NVIDIA CUDA SDK.
This kernel operates on 3 input arrays and 2 output arrayBeof t
same size. For each index of these arrays, it reads in the-3 ele
ments, and does 2 computations, writing the results to the@uo
arrays. It does not use shared memory or barriers, becacke ea
thread is handling a unique index. The kernel is very shorthe
overheads we introduce on each kernel invocation are signifi
Using@CUDADirectParams decreases the amount of kernel invo-
cation overhead, because there is no additional allocaidmMmem-

ory copy involved. This increased the performance of theedog
5%, yielding the times in fig. 14.

4.2.2 3D FiniteDifferences

each point. This we then copy back to the host where we form the 3DFD is another kernel from the NVIDIA CUDA SDK. This kernel

new clusters. We show this code in fig. 12, however all code tha
does not concern the GPU has been elided.

We used shared memory, via an array call@dstercache,
to hold the clusters, to avoid doing too many memory loads. We

maps an input 3d array to an output 3d array, by computing each
element in the output from a weighted sum of the original et
and the 4 elements either side of the original element on efdtie

3 axes, a total of + 8 + 8 + 8 = 25 elements. There is a single

could have used constant memory but there is more shared mem-weight for each distance from the element being processedala

ory available than the size of the constant cache, so it wsierfa
to use shared memory. We discovered that we could get better p
formance by unrolling th& loop by 20 times. After inspection by
decuda [14], this seems to make better use of offset register

of 5 weights. We ran the kernel on a 480x480x400 array.

The kernel is designed to take advantage of the pattern of
weights. It allocates a thread for each (x,y) coordinatbédpace,
arranged into blocks of6 x 16. Each thread iterated down the

For performance comparison, we also wrote a native version z axis. Local registers are used for the needed elementseon th

of the algorithm that was not distributed and only used alsing

preprint 9

axis (which are unique to each thread), whereas the neyespait

2011/5/24

elements of the (x,y) plane are loaded in advance by eaclk bloc
into shared memory, there is a barrier, and then each thesatsr
its 17 (x,y) plane values. This reduces the number of meneags
required as the shared memory acts as a temporary cache.

This kernel was sensitive to register pressure. The nvdstezg
allocator can be quite unpredictable in how it chooses tcate
registers for a given input program. In the case of the Quadro
3700M, the registers were not allocated optimally, causioge
computations to be recomputed each iteration instead afgbei
hoisted out of the loop.

4.2.3 DenseMatrix Multiply

This kernel is due to Volkov[15]. It is part of the BLAS[2] lifry,
where itis called sgemm. We implemented the case wherepl¢ in
matrixes are not transposed (the other cases are similamaithe
kernel on square matrixes of size 4096.

Part of the kernel calls for a statically-sized stack altedaar-
ray of floats. Its existence on the stack and the fact thagr(&fbp
unrolling) it is only indexed with constant offsets causmibe im-
plemented with GPU registers, which are very fast. In CUDi& th
is trivially written asfloat arr[8];.In X10 we used an experi-
mental new X10 library class called0.util.Vec[Float]. This
behaves like a struct, it is passed by value and cannot beedlia
When the length of the array is statically known (e.g. whelmas
the constrain{size==8} in the X10 type system), the generated
code is such that it will also be implemented with registers.

Each thread block in the kernel lasts for a short time, thaing
time of the kernel is due to the very large number of blockssTh
means per-block overhead due to, e.g., shared memonyigatian
code, is more of a factor than usual.

5. Related Work

There have been many attempts to provide GPU programming
capabilities via a library. CUDA itself provides this vieetiriver
API [10], where kernels are written in CUDA and the host casle i
written in C, with API calls to load GPU code and invoke kemel
This API has also been wrapped in Java bindings in order temak
the capability available to Java programmers [1, 5]. Alspe@CL

[7] fits into this model. These approaches do not truly irdégthe
host and the GPU parts of the application code. Communit#gio
explicit and difficult, and different languages are usedtlfier host
and GPU code. However, without the necessary constructsein t
host language, it is not possible to express GPU idioms.

For a more integrated approach, the most obvious example is
the CUDA Runtime API, an example of which is given in fig. 4.
In this model, host and GPU code can live in the same compilati
unit. There is some degree of implicit communication, infibren
of parameters to the kernel, however this only applies tmipikies
and structs that are passed by value. Any objects that nebkd to
communicated must be allocated and copied explicitly. ¥/Htil
is possible to utilize all the GPUs on a host, to write disttéul
programs it is necessary to use an additional frameworly asc
MPI, with a different programming model. The language prtine
memory errors, with its primitive C++-based type system.

Higher level languages have been proposed, but only in a re-
stricted domain. For example Chapel has been extendeditoinpt
array operations by performing them on the GPU [12]. Inteb#r
Building Blocks [6] is similar. PGI compilers also suppoxreeut-
ing specific parallel loops on the GPU [13]. These approadoes
not provide the full suite of GPU functionality, e.g., thelysé&ract
from shared memory and blocks. The programmer is thus telian
on the compiler making the right choices, and this is noviti
As far as we know, ours is the only attempt to provide the fuflLiG
programming experience in a high level language.

preprint 10

6. Conclusion

We argue that APGAS is the right model for concurrent distell
heterogeneous programming. By implementing a CUDA backend
for the X10 compiler, we have proven that the 4 basic condépts
comprise the APGAS model are general enough not only for dis-
tributed multicore programming, but also GPU programmiig.
defined some extra API functions for the convenience of uogr
mer and implementer, but these are expressible within ARPGAS
Using our new backend, we have developed and benchmarked
several programs and shown performance close to that ofirdand
ten native code. Due to time and manpower constraints, goleim
mentation is limited to a fraction of the design in sectionH2w-
ever itis still capable of supporting real applicationsjehtdemon-
strates the practical value of our design. We would like tohier
develop our backend by allowing more X10 constructs withan k
nels, e.g. types other than arrays, function calls, mutftieshsional
blocks, etc., as well as finding ways of more closely matcinag
tive performance with X10 code. We would also like to implerne
an OpenCL backend.

Acknowledgments

This material is based in part on work supported by the Defens
Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0002.

References
[1] Java bindings for CUDAhttp://www. jcuda.org/.

[2] J. Dongarra. Basic linear algebra subprograms techfocam stan-
dard. International Journal of High Performance Applications and
Supercomputing, 16(1), 2002.

[3] D. Goeddeke. Nvidia forum topic, 2009.
http://forums.nvidia.com/index.php?showtopic=94443.

[4] gonnet. Nvidia forum topic, 2008.
http://forums.nvidia.com/index.php?showtopic=65267.

[5] A. Heusel. Java bindings for CUDA.
http://jacuzzi.sourceforge.net/javadoc/.

[6] Intel Inc. Intel array building blocks, 2010.

[7] Khronos Group. OpenCL- the open standard for parallegmmming
of heterogeneous systems, 2010.

[8] S. Lloyd. Least squares quantization in PCNhformation Theory,
|EEE Transactions on, 28(2):129-137, January 2003.

[9] MediaFrame. Nvidia forum topic, 2008.
http://forums.nvidia.com/index.php?showtopic=65556.

[10] NVIDIA Inc. Nvidia cuda programming guide, version 32010.

[11] V. Saraswat, G. Almasi, G. Bikshandi, C. Cascaval, Dn@ngham,
D. Grove, S. Kodali, I. Peshansky, and O. Tardieu. The aspncius
partitioned global address space model.Phoceedings of The First
Workshop on Advances in Message Passing, PLDI'10.

[12] A. Sidelnik. Array language extensions and compitatfor acceler-
ators. Found in slides entitled Studies in Array Languagestheir
Compilers.

[13] The Portland Group. PGI Accelerator Compilers, 2010.

[14] W. J. van der Laan. Decuda website, 2009.
https://github.com/laanwj/decuda/wiki.

[15] V. Volkov and J. W. Demmel. Benchmarking gpus to tune sgen
linear algebra. IrnProceedings of the 2008 ACM/IEEE conference
on Supercomputing, SC '08, pages 31:1-31:11, Piscataway, NJ, USA,
2008. IEEE Press. ISBN 978-1-4244-2835-9.

[16] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Sa¥er.
Active messages: a mechanism for integrated communicatiah
computation. SGARCH Comput. Archit. News, 20:256-266, April
1992. ISSN 0163-5964.

2011/5/24

