
A Performance Model for X10 Applications
What’s going on under the hood?

David Grove Olivier Tardieu David Cunningham Ben Herta Igor Peshansky Vijay Saraswat
IBM Research

groved,tardieu,dcunnin,bherta,igorp,vsaraswa@us.ibm.com

Abstract
To reliably write high performance code in any programming lan-
guage, an application programmer must have some understand-
ing of the performance characteristics of the language’s core con-
structs. We call this understanding a performance model for the
language. Some aspects of a performance model are fundamental
to the programming language and are expected to be true for any
plausible implementation of the language. Other aspects are less
fundamental and merely represent design choices made in a partic-
ular version of the language’s implementation.

In this paper we present a basic performance model for the X10
programming language. We first describe some performance char-
acteristics that we believe will be generally true of any implementa-
tion of the X10 2.2 language specification. We then discuss selected
aspects of our implementations of X10 2.2 that have significant im-
plications for the performance model.

1. Introduction
Programmers need an intuitive understanding of the performance
characteristics of the core constructs of their programming lan-
guage to be able to write applications with predictable perfor-
mance. We will call this understanding a performance model for
the language. Desirable characteristics of a performance model in-
clude simplicity, predictive ability, and stability across different im-
plementations of the language. The performance model should ab-
stract away all non-essential details of the language and its imple-
mentation, while still enabling reasoning about those details that
do have significant performance impact. Languages with straight-
forward mappings of language constructs to machine instructions
usually have fairly straightforward performance models. As the de-
gree of abstraction provided by the language’s constructs and/or
the sophistication of its implementation increase, its performance
model also tends to become more complex.

In this paper, we describe a preliminary performance model
for the X10 programming language. X10 is an object-oriented lan-
guage designed specifically to enable the productive programming
of multi-core and multi-node computers. In addition to the expected
core language features of any modern object-oriented language, it
contains additional constructs for expressing fine-grained concur-
rency and distributed computation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
X10 Workshop 2011 date, City.
Copyright c© 2011 ACM [to be supplied]. . . $10.00

Although the rate of change of the X10 language has signif-
icantly decreased from earlier stages of the project, the language
specification and its implementations are still immature when com-
pared to languages such as C++ and Java. As such, we consider
some aspects of the X10 performance model to still be evolving.
Therefore, we break our presentation into two logical sections: as-
pects that we believe are fairly fundamental to the language itself
and aspects that are more closely tied to specific choices embodied
in the X10 2.2 implementations.

We begin with a brief review of the X10 language in Section 2.
Section 3 discusses those aspects of the performance model that
arise from fundamental aspects of the language definition. Sec-
tion 4 provides an overview of the X10 2.2 implementations. The
second logical section of the performance model is presented si-
multaneously with a discussion of some of the central implementa-
tion decisions embodied in the X10 2.2 runtime system (Section 5)
and compiler (Section 6).

2. Background
This background section briefly describes the context for the X10
project and introduces the key programming language concepts that
will be discussed in later sections of the paper. A great deal more
information can be found online at http://x10-lang.org. In
particular, the language specification [8], programmer’s guide [3],
and a collection of tutorials and sample programs are available.

The genesis of the X10 project was the DARPA High Productiv-
ity Computing Systems (HPCS) program. As such, X10 is intended
to be a programming language that achieves “Performance and Pro-
ductivity at Scale.” The primary hardware platforms being targeted
by the language are clusters of multi-core processors linked to-
gether into a large scale system via a high-performance network.
Therefore, supporting both concurrency and distribution are first
class concerns of the programming language design. The language
must also support the development and use of reusable application
frameworks to increase programmer productivity; this requirement
motivates the inclusion of a sophisticated generic type system, clo-
sures, and object-oriented language features. Finally, like any new
language, to gain acceptance X10 must be able to smoothly inter-
operate with existing libraries written in other languages. This last
requirement constrains both the design and the implementation of
X10 in various ways.

A computation in X10 consists of one or more asynchronous
activities (light-weight tasks). A new activity is created by the
statement async S. To synchronize activities, X10 provides the
statement finish S. An activity that executes a finish statement
will not execute the statement after the finish until all activities
spawned within the finish’s body have terminated.

Every activity executes in a single Place (address space).
While executing in this place, it may freely access any object
that also resides in the place. It may manipulate remote references

(GlobalRefs) to objects that reside in other places, but is not able
to actually access the state of any remote object. Therefore compu-
tations must sometimes “shift” from one place to another to access
the data they need. When this happens, the compiler and runtime
system collaborate to ensure that the necessary data and control
information are communicated from one place to another. The fun-
damental X10 construct for “place-shifting” is at (p) S. An at

statement shifts execution of the current activity from the current
place to place p and executes S at the remote place. To facilitate
the return of a value from a remote computation, X10 also supports
at expressions: at (p) E.

X10 also includes an unconditional atomic block construct
atomic S and a conditional atomic block construct when (E) S.
An atomic block is executed by an activity as if in a single step dur-
ing which all other concurrent activities in the same place are sus-
pended. Execution of when (E) S suspends until a state is reached
in which the condition E is true. In this state, the statement S is
executed atomically.

3. X10 Performance Model
The core language model of X10 is that of a type-safe object-
oriented language. Thus much of the core performance model is
intended to be similar to that of Java. We believe the Java perfor-
mance model is generally well-understood. Therefore in this sec-
tion we focus on areas where the performance models for X10 and
Java diverge or where X10 has new constructs that do not trivially
map to Java constructs.

3.1 X10 Type System
The type systems of X10 and Java differ in three ways that have
important consequences for the X10 performance model. First, al-
though X10 classes are very similar to Java’s, X10 adds two ad-
ditional kinds of program values: functions and structs. Second,
X10’s generic type system does not have the same erasure seman-
tics as Java’s generic types do. Third, X10’s type system includes
constrained types, the ability to enhance type declarations with
boolean expressions that more precisely specify the acceptable val-
ues of a type.

Functions in X10 can be understood by analogy to closures
in functional languages or local classes in Java. They encapsulate
a captured lexical environment and a code block into a single
object such that the code block can be applied multiple times on
different argument values. X10 does not restrict the lifetime of
function values; in particular they may escape their defining lexical
environment. Thus, the language implementation must ensure that
the necessary portions of the lexical environment are available for
the lifetime of the function object. In terms of the performance
model, the programmer should expect that an unoptimized creation
of a function value will entail the heap allocation of a closure object
and the copying of the needed lexical environment into that object.
The programmer should also expect that trivial usage of closures
(closures that do not escape and are created and applied solely
within the same code block) will be completely eliminated by the
language implementation via inlining of the function body at the
application site.

Structs in X10 are designed to be space-efficient alternatives to
full-fledged classes. Structs may implement interfaces and define
methods and fields, but do not support inheritance. Furthermore
structs are immutable: a struct’s instance fields cannot be mod-
ified outside of its constructor. This particular design point was
chosen specifically for its implications for the performance model.
Structs can be implemented with no per-object meta-data and can
be freely inlined into their containing context (stack frame, con-
taining struct/object, or array). Programmers can consider structs

as user-definable primitive types, that carry none of the space or
indirection overheads normally associated with objects.

The X10 generic type system differs from Java’s primarily be-
cause it was designed to fully support the instantiation of generic
types on X10 structs without losing any of the performance char-
acteristics of structs. For example, x10.lang.Complex is a struct
type containing two double fields; x10.util.ArrayList[T] is a
generic class that provides a standard list abstraction implemented
by storing elements of type T in a backing array that is resized as
needed. In Java, a java.util.ArrayList[Complex], would have a
backing array of type Object[] that contained pointers to heap-
allocated Complex objects. In contrast, the backing storage for
X10’s x10.util.ArrayList[Complex] is an array of inline Com-
plex structs without any indirection or other object-induced space
overheads. This design point has a number of consequences for the
language implementations and their performance model. Much of
the details are implementation-specific so we defer them to Sec-
tion 6 and to the paper by Takeuchi et al [9]. However, one high-
level consequence of this design is generally true: to implement
the desired semantics the language implementation’s runtime type
infrastructure must be able to distinguish between different instan-
tiations of a generic class (since instantiations on different struct
types will have different memory layouts).

Constrained types are an integral part of the X10 type system
and therefore are intended to be fully supported by the runtime
type infrastructure. Although we expect many operations on con-
strained types can be checked completely at compile time (and thus
will not have a direct runtime overhead), there are cases where dy-
namic checks may be required. Furthermore, constrained types can
be used in dynamic type checking operations (as andinstanceof).
We have also found that some programmers prefer to incrementally
add constraints to their program, especially while they are still ac-
tively prototyping it. Therefore, the X10 compiler supports a com-
pilation mode where instead of rejecting programs that contain type
constraints that cannot be statically entailed it, will generate code to
check the non-entailed constraint at runtime (in effect, the compiler
will inject a cast to the required constrained type). When required,
these dynamic checks do have a performance impact. Therefore
part of performance tuning an application as it moves from devel-
opment to production is reducing the reliance on dynamic checking
of constraints in frequently executed portions of the program.

3.2 Distribution
An understanding of X10’s distributed object model is a key com-
ponent to the performance model of any multi-place X10 compu-
tation. In particular, understanding how to control what objects are
serialized as the result of an at can be critical to performance un-
derstanding.

Intuitively, executing an at statement entails copying the neces-
sary program state from the current place to the destination place.
The body of the at is then executed using this fresh copy of the
program state. What is necessary program state is precisely defined
by treating each upwardly exposed variable as a root of an object
graph. Starting with these roots, the transitive closure of all objects
reachable by properties and non-transient instance fields is serial-
ized and an isomorphic copy is created in the destination place.
Furthermore, if the at occurs in an instance method of a class or
struct and the body of the at refers to an instance field or calls an
instance method, this is also implicitly captured by the at and will
be serialized. It is important to note that an isomorphic copy of the
object graph is created even if the destination place is the same as
the current place. This design point was chosen to avoid a discon-
tinuity between running a program using a single place and with
multiple places.

Serialization of the reachable object graph can be controlled by
the programmer primarily through injection of transient modifiers
on instance fields and/or GlobalRefs. It is also possible to have a
class implement a custom serialization protocol (x10.io.CustomSerialization)
to gain even more precise control. An X10 implementation may be
able to eliminate or otherwise optimize some of this serialization,
but it must ensure that any program visible side-effects caused
by user-defined custom serialization routines happen just as they
would have in an unoptimized program. Thus, the potential of user-
defined custom serialization makes automatic optimization of seri-
alization behavior a fairly complex global analysis problem. There-
fore, the base performance model for object serialization should not
assume that the implementation will be able to apply serialization
reducing optimizations to complex object graphs with polymorphic
or generic types.

The X10 standard library provides the GlobalRef, RemoteArray
and RemoteIndexedMemoryChunk types as the primitive mechanisms
for communicating object references across places. Because of a
strong requirement for type safety, the implementation must ensure
that once an object has been encapsulated in one of these types
and sent to a remote place via an at, the object will be available
if the remote place ever attempts to spawn an activity to return
to the object’s home place and access it. For the performance
model, this implies that cross-place object references should be
managed carefully as they have the potential for creating long-lived
objects. Even in the presence of a sophisticated distributed garbage
collector1, the programmer should expect that collection of cross-
place references may take a significant amount of time and incur
communication costs and other overheads.

Closely related to the remote pointer facility provided by
GlobalRef is the PlaceLocalHandle functionality. This standard
library class provides a place local storage facility in which a key
(the PlaceLocalHandle instance) can be used to look up a value,
which may be different in different places. The library implemen-
tation provides a collective operation for key creation and for ini-
tializing the value associated with the key in each place. Creation
and initialization of a PlaceLocalHandle is an inherently expensive
operation as it involves a collective operation. On the other hand
cross-place serialization of a PlaceLocalHandle value and the lo-
cal lookup operation to access its value in the current place are
relatively cheap operations.

3.3 Async and Finish
The async and finish constructs are intended to allow the ap-
plication programmer to explicitly identify potentially concurrent
computations and to easily synchronize them to coordinate their
interactions. The underlying assumption of this aspect of the lan-
guage design is that by making it easy to specify concurrent work,
the programmer will be able to express most or all of the useful
fine-grained concurrency in their application. In many cases, they
may end up expressing more concurrency than can be profitably
exploited by the implementation. Therefore, the primary role of the
language implementation is to manage the efficient scheduling of
all the potentially concurrent work onto a smaller number of actu-
ally concurrent execution resources. The language implementation
is not expected to automatically discover more concurrency than
was expressed by the programmer. In terms of the performance
model, the programmer should be aware that an async statement
is likely to entail some modest runtime cost, but should think of it
as being a much lighter weight operation than a thread creation.

As discussed in more detail in Section 5, the most general
form of finish entails a distributed termination problem. Although
programmers can assume that the language implementation will

1 which is not available in X10 2.2

apply a number of static and dynamic optimizations, they should
expect that if a finish needs to detect the termination of activities
across multiple places, then it will entail communication costs and
latency that will increase with the number of places involved in the
finish.

3.4 Exceptions
The X10 exception model differs from Java’s in two significant
ways. First, X10 defines a “rooted” exception model in which a
finish acts as a collection point for any exceptions thrown by ac-
tivities that are executing under the control of the finish. Only
after all such activities have terminated (normally or abnormally)
does the finish propagate exceptions to its enclosing environment
by collecting them into a single MultipleException object which
it will then throw. Second, the current X10 language specification
does not specify the exception semantics expected within a single
activity. Current implementations of X10 assume a non-precise ex-
ception model that enables the implementation to more freely re-
order operations and increases the potential for compiler optimiza-
tions.

4. X10 2.2 Overview
X10 2.2 is implemented via source-to-source compilation to an-
other language, which is then compiled and executed using existing
platform-specific tools. The rationale for this implementation strat-
egy is that it allows us to achieve critical portability, performance,
and interoperability objectives. More concretely, X10 2.2 can be ei-
ther compiled to C++ or Java. The resulting C++ or Java program
is then compiled by either a platform C++ compiler to produce an
executable or compiled to class files and then executed on a JVM.
We term these two implementation paths Native X10 and Managed
X10 respectively.

Portability is important because we desire implementations of
X10 to be available on as many platforms (hardware/operating
system combinations) as possible. Wide platform coverage both
increases the odds of language adoption and supports productivity
goals by allowing programmers to easily prototype code on their
laptops or small development servers before deploying to larger
cluster-based systems for production.

X10 programs need to be capable of achieving close to peak
hardware performance on compute intensive kernels. Therefore
some form of platform-specific optimizing compilation is required.
Neither interpretation nor unoptimized compilation is sufficient.
However, by taking a source-to-source compilation approach we
can focus our optimization efforts on implementing a smaller set
of high-level, X10-specific optimizations with significant payoff
while still leveraging all of the classical and platform-specific opti-
mization found in optimizing C++ compilers and JVMs.

Finally, X10 needs to be able to co-exist with existing libraries
and application frameworks. For scientific computing, these li-
braries are typically available via C APIs; therefore Native X10
is the best choice. However, for more commercial application do-
mains existing code is often written in Java; therefore Managed
X10 is also an essential part of the X10 implementation strategy.

Using source-to-source compilation to bootstrap the optimizing
compilation of a new programming language is a very common
approach. A multitude of languages are implemented via compi-
lation to either C/C++ and subsequent post-compilation to native
code or via compilation to Java/C# (source or bytecodes) and sub-
sequent execution on a managed runtime with an optimizing JIT
compiler. An unusual aspect of the X10 implementation effort is
that it is pursuing both of these paths simultaneously. This decision
has both influenced and constrained aspects of the X10 language
design (consideration of how well/poorly a language feature can
be implemented on both backends is required) and provided for

an interesting comparison between the strengths and limitations of
each approach. It also creates some unfortunate complexity in the
X10 performance model because the performance characteristics
of C++ and Java implementations are noticeably different.

5. X10 2.2 Runtime
The X10 runtime implements the primitive X10 constructs for con-
currency and distribution (async, at, finish, atomic, and when). The
X10 compiler replaces these constructs with calls to the corre-
sponding runtime services. The X10 runtime library gets linked to
the compiled X10 code (statically or dynamically) to perform these
services.

The X10 runtime also defines and implements key APIs for
concurrency and distribution such as x10.util.Team for multi-point
communication or x10.array.Array.asyncCopy for large data trans-
fers.

The X10 runtime is primarily written in X10 on top of a
series of low-level APIs that provide a platform-independent
view of processes, threads, primitive synchronization mecha-
nisms (e.g., locks), and inter-process communication. For in-
stance, the x10.lang.Lock class is mapped to pthread mutex (resp.
java.util.concurrent.ReentrantLock) by Native X10 (resp. Managed
X10).

In this section, we review the specifics of the X10 2.2 runtime
implementation focusing on performance aspects.

5.1 Distribution
The X10 2.2 runtime maps each place in the application to one
process.2 Each process runs the exact same executable (binary or
bytecode).

Upon launch, the process for place 0 starts executing the main
activity.

finish {
finish run_static_field_initializers();
main(args);

}

Static fields. Before entering the user main method, the main
activity initializes all the static fields for all the classes in the
application.

Both X10 2.2 backend compilers map static fields initialized
with compile time constants to static fields of the target language.
Other static fields are mapped to method calls. Each method trig-
gers the evaluation of the static initializer, caches the result at
place 0 for subsequent calls to the method, and broadcasts the result
to the other places. Therefore, all but the simplest static initializers
incur the cost of a broadcast.

X10RT. The X10 2.2 distribution comes with a series of plug-
gable libraries for inter-process communication referred to as
X10RT libraries [10, 11]. The default X10RT library—sockets—
relies on POSIX TCP/IP connections. The standalone implemen-
tation supports SMPs via shared memory communication. The mpi
implementation maps X10RT APIs to MPI [7]. Other implemen-
tations support various IBM transport protocols (LAPI, DCMF,
PAMI).

Each X10RT library has its own performance profile—latency,
throughput, etc. For instance, the X10 2.2 standalone library is
significantly faster than the sockets library used on a single host.

The performance of X10RT can be tuned via the configuration
of the underlying transport implementation. For instance, the mpi

2 The X10 2.2 runtime may launch additional processes to monitor the
application processes. These helper processes are idle most of the time.

implementation honors the usual MPI settings for task affinity, fifo
sizes, etc.

Teams. The at construct only permits point-to-point messaging.
The X10 2.2 runtime provides the x10.util.Team API for efficient
multi-point communication.

Multi-point communication primitives—a.k.a. collectives—
provided by the x10.util.Team API are hardware-accelerated when
possible, e.g., broadcast on BlueGene/P. When no hardware sup-
port is available, the Team implementation is intended to make
a reasonable effort at minimizing communication and contention
using standard techniques such as butterfly barriers and broadcast
trees.

AsyncCopy. The X10 2.2 tool chain implements at constructs via
serialization. The captured environment gets encoded before trans-
mission and is decoded afterwards. Although such an encoding is
required to correctly transfer object graphs with aliasing, it has un-
necessary overhead when transmitting immediate data, such as ar-
rays of primitives.

As a work around, the X10 2.2 x10.array.Array class pro-
vides specific methods—asyncCopy—for transferring array con-
tents across places with lower overhead. These methods guarantee
the raw data is transmitted as efficiently as permitted by the under-
lying transport with no redundant packing, unpacking, or copying.
Hardware permitting, they initiate a direct copy from the source
array to the destination array using RDMAs.3

5.2 Concurrency
The cornerstone of the X10 runtime is the scheduler. The X10
programming model requires the programmer to specify the place
of each activity. Therefore, the X10 scheduler makes per-place
decisions, leaving the burden of inter-place load balancing to the
library writer and ultimately the programmer.

The X10 2.2 scheduler assumes a symmetrical, fixed number
of concurrent execution units (CPU cores) per process for the du-
ration of the execution. This assumption is consistent with the
HPCS context—job controllers typically assign concurrently run-
ning applications to static partitions of the available computing
resources—but will be relaxed in subsequent releases of X10.

Work-Stealing scheduler. The X10 2.2 scheduler belongs to the
family of work-stealing schedulers [2, 4] with a help-first schedul-
ing policy [5]. It uses a pool of worker threads to execute activ-
ities. Each worker thread owns a double-ended queue of pending
activities. A worker pushes one activity for each async construct it
encounters. When a worker completes one activity, it pops the next
activity to run from its deque. If the deque is empty, the worker
attempts to steal a pending activity from the deque of a randomly
selected worker.

Since each worker primarily interacts with its own deque, con-
tention is minimal and only arises with load imbalance. Moreover, a
thief tries to grab an activity from the top of the deque whereas the
victim always pushes and pops from the bottom, further reducing
contention.

In X10 2.2, the thief initially chooses a victim at random then
inspects the deque of every worker in a cyclic manner until it
manages to steal a pending activity.

The X10 scheduler borrows the deque implementation of Doug
Lea’s Fork/Join framework [6].

Life cycle. A worker may be in one of four states:

running one activity,

searching for an activity to execute,

3 RDMA: remote direct memory access.

suspended because the activity it is running has executed a block-
ing construct, such as finish or when, or method, such as Sys-
tem.sleep or x10.util.Team.barrier,

stopped because there are already enough workers running or
searching.

Suspended and stopped workers are idle. In X10 2.2, workers
searching for pending activities are spinning (i.e., busy waiting).
We expect a later X10 release to permit these workers to idle
eventually.

Cooperative scheduler. The X10 2.2 scheduler never preempts a
worker running user code. The X10 2.2 runtime is designed to en-
able achieving the highest possible performance on MPI-like dis-
tributed X10 applications where the programmer use matching send
and receive instructions to achieve total control over the communi-
cation and execution schedule. If the user code never yields to the
runtime then pending activities (local or remote) are not processed.
In other words, the runtime does not make any fairness guarantee.

A worker may yield either by executing a blocking statement
or by invoking the Runtime.probe method. The latter executes all
the pending activities at the time of the call before returning to the
caller. This includes all the pending remote activities—activities
spawned here from other places—and all the activities already in
this worker deque, but does not include activities in other deques.

Parallelism. The user can specify the number of workers in the
pool in each place using the X10 NTHREADS environment variable.4

The X10 2.2 scheduler may create additional threads during the
execution. But it strives to maintain the number of non-idle workers
close to the requested value.

• If a worker suspends, the scheduler wakes a stopped worker if
available or allocates and starts a new worker if not.

• If a suspended worker resumes, the scheduler preempts and
stops a searching worker if any.

• If there are more than X10 NTHREADS workers running then the
scheduler preempts and stops the first one who empties its
deque.

As a result, the current scheduler guarantees the following prop-
erties that are intended to hold for any X10 implementation.

1. If there are X10 NTHREADS pending activities or more then there
are X10 NTHREADS or more workers processing them, that is,
running them or searching for them.

2. If there are “n < X10 NTHREADS” workers running user code
then there are “X10 NTHREADS − n” workers searching for
pending activities.

3. If there are X10 NTHREADS or more workers running then there
are no workers spinning.

Property 1 is the goal of any work-stealing scheduler: assuming
the effort of finding pending activities is negligible, parallel activi-
ties are processed in parallel using X10 NTHREADS parallel process-
ing units.

Property 2 guarantees that available cores are used to find pend-
ing activities quickly.

Property 3 mitigates the penalty of busy waiting in the current
implementation: spinning workers are never getting in the way of
the application provided the user makes sure that X10 NTHREADS is at
most equal to the number of hardware cores available to the runtime
for each place. For instance, if running 8 places on a 32-core node,
X10 NTHREADS must not be larger than 4 workers per place.

4 Some X10RT libraries may internally use additional threads for network
management. See documentation.

Joining. In order to minimize pool size adjustments, the sched-
uler implements one key optimization. If a worker blocks on a finish
construct but its deque is not empty, it does not suspend but instead
processes the pending activities from its deque. It only eventually
suspends if its deque becomes empty or if it reaches some other
blocking construct (different from finish). By design, the pending
activities that get processed by the worker in this phase must have
been spawned from the blocked finish body. In the X10 2.2 im-
plementation, the worker will not attempt to steal activities from
others if the finish construct is still waiting for spawned activities
to terminate when the deque gets empty as this would require to
carefully pick activities the finish construct is waiting for.

Thanks to this behavior, finish has much less scheduling over-
head than other synchronization mechanisms, e.g., when con-
structs, and should be preferred when possible.

While this optimization is typically very effective at improv-
ing performance without observable drawbacks, it may lead to un-
bounded stack growth for pathological programs. Therefore, it may
be disabled by setting the environment variable X10 NO STEALS.5

Overhead. For each async statement, the current worker must
make work available to other workers. In the best implementation
and best case scenario (no contention) this requires at least one
CAS instruction6 per async. As a result, async constructs should
only be used to guard computations that require (significantly)
more resources than a CAS.

The X10 2.2 runtime also allocates one small heap object per
async. Again, anything smaller than that should be executed se-
quentially rather than wrapped with an async. Moreover, memory
allocation and garbage collection can become a bottleneck if vast
amounts of activities are created concurrently. The runtime there-
fore exposes the Runtime.surplusActivityCount method that returns
the current size of the current worker deque. Application and li-
brary code may invoke this method to decide whether or not to
create more asynchronous activities, as in:

if (Runtime.surplusActivityCount() >= 3)
m();

else
async m();

5.3 Synchronization
Finish. Within a place, one only needs to count activity creation
and termination events to decide the completion of a finish con-
struct. The story is different across places as inter-process commu-
nication channels are likely to reorder messages so that termination
events may be observed ahead of the corresponding creation events.
The X10 2.2 implementation of finish keeps track of these events
on an unambiguous, per-place basis.

In the worst-case scenario, with p places, there will be p coun-
ters in each place, that is, p× p counters for each finish. Moreover,
there could be one inter-process message for each activity termina-
tion event. Messages could contain up to p data elements.

In practice however much fewer counters, fewer messages, and
smaller messages are necessary thanks to various optimizations
embedded in the X10 2.2 implementation. In particular, events
are accumulated locally and only transmitted to the finish place
when local quiescence is detected—all local activities for this finish
have completed. Counters are allocated lazily. Messages use sparse
encodings.

5 The X10 NO STEALS flag essentially turns deep stacks into large collec-
tions of mostly-idle threads with smaller stacks, avoiding stack overflow er-
rors. But ultimately, this only matters to unscalable programs of little prac-
tical relevance.
6 CAS: compare-and-swap.

X10 Compiler Front End and Common Optimizer

X10 Application Front End
AST-based optimizations

AST- Lowering

Java Back EndNative Back End

X10 AST

Java.cu

X10 AST

JVM

g++/xlC javac

BytecodeExecutable

X10 Runtime
 C++ Natives

X10 Runtime
Java Natives

X10RT

Native Backend Java Backend

C++

CUDA

X10 Class Libs

X10RT

X10 Runtime
In X10

Figure 1. X10 Compiler Architecture

Atomic and When. The X10 2.2 implementation of the atomic
construct uses a place-wide lock. The lock is acquired for the
duration of the atomic section. The when construct is implemented
using the same lock. Moreover, every suspended when statement
is notified on every exit from an atomic section, irrespective of
condition.

The per-place lock effectively serializes all atomic operation in
a place whether they might inerfere or not. This implementation
does not scale well beyond a few worker threads. Similarly, the
when implementation does not scale well beyond a few occurrences
(distinct condition variables).

The X10 standard library provides various atomic classes and
locks that enable better scaling. Both the collecting finish idiom and
the x10.util.WorkerLocalStorage API may be also used to minimize
contention.

6. X10 2.2 Compilation
The overall architecture of the X10 compiler is depicted in Figure 1.
This compiler is composed of two main parts: an AST-based front-
end and optimizer that parses X10 source code and performs AST
based program transformation; Native/Java backends that translate
the X10 AST into C++/Java source code and invokes a post com-
pilation process that either uses a C++ compiler to produce an exe-
cutable binary or a Java compiler to produce bytecode.

6.1 Native X10
When an application programmer writes X10 code that they are
intending to execute using Native X10, their base performance
model should be that of C++. Unless discussed below, the expected
performance of an X10 construct in Native X10 is the same as the
corresponding C++ construct.

6.1.1 Classes and Interfaces
X10 classes are mapped to C++ classes and the compiler directly
uses the C++ object model to implement inheritance, instance
fields, and instance methods. Interfaces are also mapped to C++
classes to support method overloading, but the X10 implements re-
lationship is not implemented using the C++ object model. Instead,

additional interface dispatch tables (akin to ITables in Java7) are
generated by the X10 compiler “outside” of the core C++ object
model. The motivation for this design decision was to stay within
the simpler, single-inheritance subset of C++ that minimizes per-
object space overheads and also preserves the useful property that
a pointer to an object always points to the first word of the object
and that no “this pointer adjustment” needs to be performed on
assignments or during the virtual call sequence.

Non-interface method dispatch corresponds directly to a C++
virtual function call. Interface method dispatch will involve addi-
tional table lookups and empirically is 3 to 5 times slower than a
virtual function call. C++ compilers typically do not aggressively
optimize virtual calls, and will certainly not be able to optimize
away the dispatch table lookup used to implement interface dis-
patch. Therefore, as a general rule, non-final and interface method
invocations will not perform as well in Native X10 as they will in
Managed X10.

Unless specially annotated, all class instances will be heap al-
located and fields/variables of class types will contain a pointer to
the heap allocated object.

6.1.2 Primitives and Structs
The dozen X10 struct types that directly correspond to the built-in
C primitive types (int, float, etc.) are implemented by directly map-
ping them to the matching primitive type. Any X10 level functions
defined on this types are implemented via static inline methods.
The performance characteristics of the primitive C++ types is ex-
actly the performance of their X10 counterparts.

All other X10 structs are mapped to C++ classes. However, all
of the methods of the C++ class are declared to be non-virtual.
Therefore, the C++ class for a struct will not include a vtable word.
Unlike object instances, struct instances are not heap allocated.
They are instead embedded directly in their containing object or
stack-allocated in the case of local variables. When passed as a pa-
rameter to a function, a struct is passed by value, not by reference.
In C++ terms, a variable or field of some struct type S is declared
to be of type S, not S*.

This implementation strategy optimizes the space usage for
structs and avoids indirections. Programmers can correctly think
of structs as taking only the space directly implied by their instance
fields (modulo alignment constraints). However, passing structs, es-
pecially large structs, as method parameters or return value is sig-
nificantly more expensive than passing/returning a class instance.
In future versions of X10 we hope to be able to pass structs by ref-
erence (at the implementation level) and thus ameliorate this over-
head.

6.1.3 Closures and Function Types
An X10 function type is implemented exactly the same as other
X10 interface types. An X10 closure literal is mapped to a C++
class whose instance fields are the captured lexical environment
of the closure. The closure body is implemented by an instance
method of the C++ class. The generated closure class implements
the appropriate function type interface. Closure instances are heap
allocated. If the optimizer is able to propagate a closure literal to
a program point where it is evaluated, the closure literal’s body is
unconditionally inlined. In many cases this means that the closure
itself is completely eliminated as well.

6.1.4 Generics
Generic types in X10 are implemented by using C++’s template
mechanism. Compilation of a generic class or struct results in the
definition of a templatized C++ class. When the generic type is

7 see the description of “searched ITables” in Alpern et al. [1]

instantiated in the X10 source, a template instantiation happens in
the generated C++ code.

The performance of an X10 generic class is very similar to that
of a similar C++ templatized class. In particular, instantiation based
generics enable X10 generic types instantiated on primitives and
structs to be space efficient in the same way that a C++ template
instantiated on a primitive type would be.

6.1.5 Memory Management
On most platforms Native X10 uses the Boehm-Demers-Weiser
conservative garbage collector as its memory manager. A runtime
interface to explicitly free an object is also available to the X10
programmer. The garbage collector is only used to automatically
reclaim memory within a single place. The BDWGC does not yield
the same level of memory management performance as that of the
memory management subsystem of a modern managed runtime.
Therefore, when targeting Native X10 the application programmer
may need to be more conscious of avoiding short-lived objects and
generally reducing the application’s allocation rate.

Because the X10 2.2 implementation does not include a dis-
tributed garbage collector, if a GlobalRef to an object is sent to
a remote place, then the object (and therefore all objects that it
transitively refers to) become uncollectable. The life-time of all
multi-place storage must currently be explicitly managed by the
programmer. This is an area of the implementation that needs fur-
ther investigation to determine what mix of automatic distributed
garbage collection and additional runtime interfaces for explicit
storage control will result in the best balance of productivity and
performance while still maintaining memory safety.

6.1.6 Other Considerations
In general, Native X10 inherits many of the strengths and weak-
nesses of the C++ performance model. C++ compilers may have
aggressive optimization levels available, but rarely utilize profile-
directed feedback. C++ compilers are generally ineffective at op-
timizing non statically-bound virtual function calls. Over use of
object-oriented features, interfaces, and runtime type information is
likely to reduce application performance more in Native X10 than
it does in Managed X10.

The C++ compilation model is generally file-based, rather than
program-based. In particular, cross-file inlining (from one .cc file
to another) is performed fairly rarely and only at unusually high
optimization levels. Since the method bodies of non-generic X10
classes are mostly generated into .cc files, this implies that they are
not easily available to be inlined except within their own compi-
lation unit (X10 file). Although for small programs, this could be
mitigated by generating the entire X10 application into a single .cc
file, this single-file approach is not viable for the scale of applica-
tions we need Native X10 to support.

6.2 Managed X10
When an application programmer writes X10 code that they are
intending to execute using Managed X10, their base performance
model should be that of Java. Unless discussed below, the expected
performance of an X10 construct in Managed X10 is the same as
the corresponding Java construct.

Because significantly more details on the Managed X10 imple-
mentation and its performance characteritics can be found in the
workshop paper by Takeuchi et al [9], we only touch on a few key
issues in this paper.

6.2.1 Classes and Interfaces
X10 classes and interfaces are mapped to Java classes and inter-
faces. As much as possible, the X10 object model is implemented
by using the corresponding feature of the Java object model. As

the JVM expends significant effort to optimize object-oriented fea-
tures of Java, the same features in X10 are also able to benefit from
state-of-the-art optimization.

6.2.2 Primitives and Structs
The eight X10 struct types that correspond to built-in Java primi-
tive types are mapped directly to those types. All other X10 structs
are mapped to Java classes, including the unsigned versions of the
built-in primitives. This deviates from the intended X10 perfor-
mance model in that most structs are no more space efficient than
classes. In Managed X10 2.2, with the exception of the eight built-
in Java primitives, instances of both structs and classes are heap
allocated and incur the same indirection overhead.

6.2.3 Closures
X10 closures are mapped to Java classes that implement the appro-
priate function interface. Capture of the lexical environment is done
explicitly by the X10 compiler just as in Native X10.

6.2.4 Generics
X10 generics cannot be implemented simply by mapping to Java
generics because X10 supports a richer set of operations on a
generic type. In particular, generic type parameters can be used in
runtime type tests (instanceof and as) and in allocation opera-
tions. Therefore, Managed X10 must augment Java generics with
additional runtime type information. Significantly more informa-
tion about the implementation options and their performance char-
acteristics is found in Takeuchi et al [9].

6.2.5 Memory Management
The memory management subsystem of the JVM tends to be highly
tuned. Therefore, X10 programs executing in Managed X10 can
expect to sustain a higher allocation rate than is possible in Na-
tive X10. However, just as in Native X10, there is no distributed
garbage collection system implemented in X10 2.2 and therefore
management of cross-place references is entirely manual.

6.2.6 Other Considerations
Just like Java, Managed X10 relies on Just-in-Time compilation and
adaptive optimization to reach peak performance. Therefore it may
take significant running time for an application to “warmup” and
reach its peak performance. X10 application programmers need to
consider this when trying to evaluate the performance of their code.

7. Conclusion
Clearly, the performance models described in this paper are not
the final and definitive X10 performance model. However, we do
believe that the language specification and its two implementations
are well-enough understood that it is possible for significant X10
programs to be written and for programmers to obtain predictable
and understandable performance behavior from those programs. As
the language implementations continue to mature, we expect to be
able to eliminate some of the less desirable features of the X10 2.2
performance models.

We hope that the open discussion of our design decisions in
implementing X10 and their implications for its performance will
be useful to the X10 programmer community and to the broader
research community that is engaged in similar language design and
implementation projects. Finally, we look forward to developing
more detailed performance models for Native X10 and Managed
X10 and more formally comparing the inherent trade-offs between
implementing a language via static compilation and via a managed
runtime with an optimizing JIT compiler.

Acknowledgments
The performance models described in this paper are the results of
discussions with a large number of people on the X10 team and
user community. We are especially grateful to all of the people
who have written benchmarks and application programs in X10.
The experience of working with them to tune their programs has
been invaluable in helping us develop the ideas described in this
paper.

We thank the anonymous reviewers for their valuable comments
on how to improve the content and structure of this paper.

This material is based upon work supported by the Defense Ad-
vanced Research Projects Agency under its Agreement No. HR0011-
07-9-0002.

References
[1] ALPERN, B., COCCHI, A., FINK, S., AND GROVE, D. Efficient im-

plementation of Java interfaces: Invokeinterface considered harmless.
ACM SIGPLAN Notices 36, 11 (Nov. 2001), 108–124. In Conference
on Object-Oriented Programming, Systems, Languages and Applica-
tions (OOPSLA).

[2] BLUMOFE, R. D., AND LEISERSON, C. E. Scheduling multithreaded
computations by work stealing. J. ACM 46 (September 1999), 720–
748.

[3] BREZIN, J., FINK, S. J., BLOOM, B., AND SWART, C. An intro-
duction to programming with X10. http://dist.codehaus.org/
x10/documentation/guide/pguide.pdf.

[4] FRIGO, M., LEISERSON, C. E., AND RANDALL, K. H. The imple-
mentation of the cilk-5 multithreaded language. In Proceedings of the
ACM SIGPLAN 1998 conference on Programming language design
and implementation (New York, NY, USA, 1998), PLDI ’98, ACM,
pp. 212–223.

[5] GUO, Y., BARIK, R., RAMAN, R., AND SARKAR, V. Work-first
and help-first scheduling policies for async-finish task parallelism.
In Proceedings of the 2009 IEEE International Symposium on Par-
allel&Distributed Processing (Washington, DC, USA, 2009), IEEE
Computer Society, pp. 1–12.

[6] LEA, D. A java fork/join framework. In Proceedings of the ACM 2000
conference on Java Grande (New York, NY, USA, 2000), JAVA ’00,
ACM, pp. 36–43.

[7] MPI FORUM. MPI: A Message-Passing Interface Standard. Version
2.2. http://www.mpi-forum.org, September 4th 2009.

[8] SARASWAT, V., BLOOM, B., PESHANSKY, I., TARDIEU, O., AND
GROVE, D. X10 language specification. http://dist.codehaus.
org/x10/documentation/languagespec/x10-latest.pdf.

[9] TAKEUCHI, M., MAKINO, Y., KAWACHIYA, K., HORII, H., SUZU-
MURA, T., SUGANUMA, T., AND ONODERA, T. Compiling x10 to
java. X10 workshop, 2011.

[10] X10RT API specification. http://dist.codehaus.org/x10/
x10rt.

[11] X10RT implementations. http://x10.codehaus.org/X10RT+
Implementations.

