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Abstract
X10 is a new programming language for improving the software
productivity in the multicore era by making parallel/distributed pro-
gramming easier. X10 programs are compiled into C++ or Java
source code, but X10 supports various features not supported di-
rectly in Java. To implement them efficiently in Java, new compila-
tion techniques are needed.

This paper discusses problems in translating X10-specific func-
tions to Java and provides our solutions. By using appropriate
implementations, sequential execution performance has been im-
proved by about 5 times making it comparable to native Java. The
parallel execution performance has also been improved and the gap
from Java Fork/Join performance is about 3 times when run at a
single place. Initial evaluation of distributed execution shows good
scalability. Most of the results in this paper have already been in-
corporated in X10 release 2.1.2.

Many of the compilation techniques described in this paper can
be useful for implementing other programming languages targeted
for Java or other managed environments.

Categories and Subject DescriptorsD.3.4 [Programming Lan-
guages]: Processors—code generation, compilers, optimization

General Terms Languages, Design, Performance, Experimenta-
tion

Keywords X10, Java, code generation, optimization, evaluation

1. Introduction
For long years, computers have been accelerated through the in-
crease of clock or pipeline speeds. However, such improvements
inside a single core reached their limits, and modern processors
contain multiple computing cores. By interconnecting such multi-
core processors through a high-speed network, large-scale parallel-
distributed environments are becoming popular. In such environ-
ments, the number of total processing cores can be 1,000’s to
100,000’s, and it is not easy to develop software that can fully uti-
lize them. For that purpose, programming environments also need
to evolve for the “multicore era”. X10 is a new programming lan-
guage for improving software productivity in the multicore era by
making parallel/distributed programming easier [3]. X10 is now be-
ing developed as an open source project led by IBM Research [21].

Currently, X10 programs are compiled into C++ or Java envi-
ronments. However, X10 supports various features not supported
directly in Java, such as new data types and distributed execution.
To implement them efficiently in Java, new compilation techniques
are needed. For example, in Java, a generic type was introduced af-
ter the initial design of the language, and the type parameters are
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erased by the Java compiler after the type check (type erasure) [1].
However, in X10, generic typing is a core part of its type system.
Classes that have different type parameters are treated as different
classes (type reification). In addition, X10 can treat not only objects
but also structs and functions as first-class data. In contrast to Java,
arrays are not one of the language constructs in X10, but are pro-
vided as a generalized class. In addition, X10 provides parallel and
distributed processing as language-level functions. For example, a
parallel “activity”, which is a kind of lightweight thread, can be
created by theasync statement. This activity can then move by us-
ing anat statement to another “place”, which roughly corresponds
to another node in a distributed environment.

This paper discusses difficulties in translating such X10-specific
functions to Java and provides our solutions. These were neces-
sary to satisfy the X10 language specification, but naive implemen-
tations may degrade the execution performance. This paper also
describes efficient implementations of these X10 features in Java.
By using appropriate implementations, sequential execution per-
formance has been improved by about 5 times and it is now com-
parable to Java. The parallel execution performance has also been
improved and the gap from Java Fork/Join performance is about 3
times when run at a single place. Initial evaluation of distributed
execution shows good scalability. Most of the results in this paper
have already been incorporated in X10 release 2.1.2.

2. X10 Overview
X10 is a statically typed object-oriented language like Java, but has
advanced features that are not supported directly in Java, such as
new data types like structs and functions with powerful generics
and native support for parallel/distributed computing. Therefore, it
is not straightforward to compile X10 programs to Java.

In this section, we briefly describe the X10 specification by
focusing on its differences from Java that are key for understanding
this paper. For a more detailed specification, please refer to the
language specification [18].

2.1 Sequential Core

Figure 1 is a sample program to show the basic functions of
X10. X10 is a statically typed object-oriented language, and its
sequential code resembles Java. Differences are that variables and
fields are declared usingval orvar, and methods are declared with
def. Unlike Java, operators can also be declared usingoperator.
A type is specified after an entity using a colon, but can be omitted
if it is inferable.

As in Java, an X10 program is executed from themain method
(line 10) of the specified class. X10 supports generics in which
the type parameters are specified using “[ ]” (line 1). In X10,
type parameters are not erased during the compilation, therefore
program can introspect the information during execution (line 16).
However, X10 does not support dynamic class loading in favor of
optimization opportunity by whole program analysis.

In addition to classes and interfaces, X10 supportsstructsand
functionsas first-class data types. A struct represents a small set of
immutable data, and is passed by value. It is defined bystruct
keyword (line 6), and cannot be extended. Its size can be deter-
mined at the time of compilation. A struct does not have a ref-



1 class Sample[T] implements (String)=>String {
2 var data:T;
3 def this(d:T) { data = d; } // constructor
4 public operator this(str:String) = str + data;
5
6 static struct MyPair[T,U](fst:T,snd:U) {
7 public def toString() = "(" + fst + "," + snd +")";
8 }
9

10 public static def main(args:Array[String](1)) {
11 /* Class example */
12 val o = new Sample[Double](1.2);
13 Console.OUT.println(o.data); // -> 1.2
14 Console.OUT.println(o("Data is ")); // -> Data is 1.2
15 var a:Any = o;
16 Console.OUT.println(a.typeName()); // -> Sample[x10.lang.Double]
17 /* Struct example */
18 val p = MyPair[Int,Double](1,2.3);
19 Console.OUT.println(p); // -> (1,2.3)
20 val x = 4;
21 /* Function example */
22 val q = MyPair[(Int)=>Int, Int]((i:Int)=>i*x, 5);
23 Console.OUT.println(q.fst(q.snd)); // -> 20
24 /* Array example */
25 val pt = [2,4] as Point; // Point{rank==2}
26 val R1 = (1..2)*(3..5); // Region{rank==2}
27 val arr = new Array[Int](R1); // Array[Int]{rank==2}
28 arr(2,4) = 8;
29 Console.OUT.println(arr(pt)); // -> 8
30 /* Parallel processing */
31 var m:Int = 0; val i = 1; // mutable/immutable data
32 finish async { m = i * 2; }
33 Console.OUT.println(m); // -> 2
34 /* Distributed processing */
35 at (here.next()) o.data = 3.4; // copy of o is modified
36 Console.OUT.println(o.data); // -> 1.2
37 /* GlobalRef example */
38 val g = GlobalRef(o);
39 at (here.next()) { at (g.home) g().data = 5.6; }
40 Console.OUT.println(o.data); // -> 5.6
41 }
42 }

Figure 1. A Sample X10 Program

erence, and= and == denote substitution and comparison of the
contained values, respectively. In X10, primitive types such as
x10.lang.Int andx10.lang.Double are also defined as structs.
A function is similar to closure or lambda-expression in other lan-
guages, and can be invoked with specified arguments to return a
value. X10 supports functions as first-class data, therefore they can
be stored into variables or passed as arguments (line 22). Functions
can be invoked in a similar manner as methods by specifying argu-
ments in parentheses (line 23). Function types and data are declared
using “=>” (line 22). As interfaces, functions can be implemented
by classes or structs (line 1). When such a class or struct is used as
a function, an “operator ()” (line 4) that matches the argument
types of the function is executed (line 14).

X10 does not have built-in arrays like Java, but provides a class
namedx10.array.Array[T], which represents an array of type
T values. TheArray is very flexible and can also express multi-
dimensional or sparse arrays. TheArray is indexed by a class
x10.array.Point, which represents a point on then-dimensional
integer lattice (line 25). A set ofPoints can be represented by a
classx10.array.Region (line 26), which can be used to spec-
ify valid indices (i.e. domain) of anArray (line 27). Access to
an Array data is done by specifying the indices in parentheses
after its name (line 29). ForArrays whose dimensions are less
than 5,Int values can be also used as indices (line 28). Internally,
“operator ()=” and “operator ()” are executed at array ac-
cesses. By defining these operators, users can also provide their
own arrays (such as associative arrays).

Figure 2 illustrates the hierarchical relationship of classes,
structs, functions, and interfaces in X10. Solid arrows indicate
inheritance (declared byextends), and dashed lines indicate im-
plementations (declared byimplements). For classes, X10 has
a similar structure to Java, which is a tree rooted by the class
x10.lang.Object. In X10, the interfacex10.lang.Any exists
above theObject. As shown in the figure, all structs and functions
are direct children ofAny, and there is no hierarchical relationship

interface x10.lang.Any

(Int, Int)=>Int
struct x10.lang.Intstruct MyStruct
(Double)=>Double

class x10.lang.Object class x10.array.Array[T]class x10.util.HashMap[K,V]class MyClass class MySubClassclass～
interface x10.util.Map[K,V] interface～interface MyInterface A        B B extends AX        Y Y implements XA        B B extends AX        Y Y implements Xinterface MySubInterface

Figure 2. Type Hierarchy in X10
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Figure 3. APGAS Programming Model

among them. However, classes and structs can implement multiple
interfaces and functions. Since all X10 types implicitly implement
Any, all X10 data can be stored into a variable of typeAny (line 15).
In X10 source code, the package namesx10.lang andx10.array
can be omitted.

2.2 Parallel/Distributed Processing

Figure 3 illustrates the programming model of X10. For parallel/dis-
tributed programming, it is very important that the parallelism and
memory configuration be exposed to the programmers. X10 uses
APGAS (Asynchronous Partitioned Global Address Space) [15] as
its programming model, where a global address space is partitioned
into multipleplaces. Place is an abstraction of a process that runs
on a node. In each place, multipleactivitiesandobjectscan exist.

An activity is a lightweight execution thread, running asyn-
chronously in a place. It resembles threads in Java, but the gran-
ularity is much smaller, therefore an efficient implementation is re-
quired. An activity can be dynamically created in the same place by
using anasync statement (line 32). The activity can even access
local variables declared outside of theasync block. Thefinish
statement is used to wait for the termination of activities created
inside the block. An activity can move to another place with anat
statement (line 35).

The object is a mutable data structure and belongs to a specific
place. To access an object, activities should be at the same place.
If an object is accessed from another place, a copy of the object is
implicitly created (lines 35–36). To suppress the implicit copy, an
object can be put into anx10.lang.GlobalRef, which provides
a global reference (line 38). TheGlobalRef contains place infor-
mation where the object exists, therefore the activity can access the
object by moving to the place (line 39).

In X10, mutable data belongs to a specific place and can be
accessed only by the activities in the same place. In contrast, im-
mutable data can be accessed (read) from any place. Examples are
classes, structs, and functions. Since the class is an immutable data
structure in X10, all static fields must be declared asval. Static ini-
tializers are executed inx10.lang.Place.FIRST_PLACE, where
the program is started, and static fields are copied to other places
after their initializations. Details of static initialization is described
in Section 7.2.
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Figure 5. Type Hierarchy in Translated Java Code

2.3 Compilation and Execution

Currently, the X10 compiler is implemented as a translator into
other programming languages. X10 programs can be compiled to
Java [7], C++ [20], or CUDA [4] environments. The X10 environ-
ment running on Java is calledManaged X10, while X10 in C++
is calledNative X10. X10 code compiled to CUDA can be called
from Native X10.

Figure 4 shows the flow of the compilation. The X10 compiler
can roughly be divided into two parts — frontend and backends.
The frontend parses X10 source code, checks types, creates AST
(Abstract Syntax Trees), and performs common optimizations such
as inlining. The backends generate code from the AST created by
the frontend. For the Java backend, which is the main focus of this
paper, it generates Java source code, which is then compiled into
bytecode by a Java compiler. The generated bytecode is executed
on normal JVMs with X10 runtime libraries. In Managed X10, each
place corresponds to a JVM, therefore multiple JVMs are launched
(typically on different nodes) to use multiple places.

Three kinds of runtime libraries are used to run X10 programs
on JVMs — a common library written in X10 (XRX: X10 Runtime
in X10), a backend specific library written in Java (XRJ: X10
Runtime in Java), and a common communication library written
in C++ (X10RT: X10 Comm. Runtime). The X10RT [22] is used
through JNI [12]. The X10 compiler itself is written in Java using
the Polyglot compiler framework [14]. All of the compilers’ and
libraries’ source code can be obtained via the X10 home page [21].

3. Representation of Types
In Managed X10, types are represented in two ways. One way is
by translating X10 types to new Java classes. Another way is by

mapping X10 types to the specified Java types. Figure 5 illustrates
the type hierarchy in translated Java code, which corresponds to the
original type hierarchy in X10 in Figure 2.

3.1 Translating X10 Types to Java Classes

Figure 6 shows how the Java backend translates X10 types to Java
classes. A translated Java class has the same name as the original
X10 type. Almost all of the X10 types except for some special types
described in Section 3.2 can be translated with this rule.

3.1.1 Classes and Interfaces

X10 classes and interfaces are translated to Java classes and in-
terfaces, respectively. X10 static fields are translated to Java static
fields (line 39), but their initializations are performed separately,
as explained in Section 7.2. Both instance fields and properties in
X10 are translated to Java instance fields (lines 17–18). Properties
implicitly have property methods, which are prepared as public fi-
nal instance methods in Java (line 19). X10 static/instance methods
are translated to Java static/instance methods (lines 20–21, 40). An
X10 constructor is translated to a pair of a Java constructor and an
instance field initializer (lines 27–34). This mechanism is called a
two-phase constructor.

Method inlining support. The frontend implements method in-
lining at the AST level. Since Java backend produces Java source
as a result of the compilation, the source code must be valid Java
source code. For method inlining, Java access control is problem-
atic.

For example, when inlining a method that accesses a field, the
field must be accessible from the caller’s body. However if the field
is private and the caller belongs to a different class, the field is
not accessible. Non-public classes, interfaces, methods, and fields
have similar problems. Not inlining such methods is not feasible,
because it would effectively prevent the inlining of all of the library
methods.

To solve this problem, the Java backend translates all of the X10
classes, interfaces, static/instance fields, and static methods to Java
public entities. However private instance methods cannot be trans-
lated directly to public instance methods. This is because private
instance methods, which cannot be overridden, can be overridden
by their subclasses if they are translated to public ones. Therefore
the Java backend generates a bridge method (line 23), which is a
public static method for calling the private instance method, and
replaces the calls to the private instance method with calls to the
bridge method in the inlined method body.

When inlining a method that calls a super class’s method (line 5)
into a caller whose class is different from callee’s, a bridge method
(line 26), which is a public instance method for calling the super
class’s method, is generated and the call to the super class’s method
is replaced with the call to the bridge method in the inlined method
body.

A Java constructor creates an object and initializes its instance
fields at the same time. For better performance, the instance field
initialization should be inlinable, the same as instance methods.
Therefore the Java backend decomposes an X10 constructor into
a Java default constructor followed by an instance field initializer
(lines 27–34)1. With this translation, the X10 constructor becomes
inlinable. However, as a trade-off, its instance fields won’t be final
because Java does not allow initialization of final fields outside of
its constructor (line 18).

Another issue in inlining is the treatment of a return value which
is ignored in the caller. To avoid the generation of invalid Java
code, the Java backend inserts a dummy method call to swallow
the unused return value.

1 The compilation strategy of constructor is planned to be changed in X10
2.2 to allow arbitrary statements before another constructor call.



3.1.2 Structs

X10 structs are translated to Java final classes of the same name,
which implementx10.core.StructI interface. This is because
Java does not support the struct data type of C/C++. Therefore in
Managed X10, no memory will be saved even if the program is
written with structs. To address this problem, we plan to translate
an X10 struct into a set of variables (we call this technique struct
erasure).

In Managed X10, each unsigned type (likex10.lang.UInt) is
implemented as an X10 struct that has a field of a corresponding
signed type, because Java does not support unsigned types. How-
ever, this wastes memory and lowers runtime performance. To ad-
dress these problems, we plan to map unsigned types directly to
corresponding signed types.

3.1.3 Functions

X10 functions are translated to Java classes that implement Java
interfacex10.core.fun.{Fun,VoidFun}_0_n, wheren is the
number of parameters andVoidFun does not return any value.
They can be evaluated by calling their$apply() method with
parameters.

Translating functions to static nested classes.A simple way of
translating a function literal to Java is to create an instance of an
anonymous subclass ofObject that implements{Fun,VoidFun}
_0_n, and implement the$apply() method in the subclass. How-
ever, since this anonymous subclass is an inner class, it captures the
this of the outer class. If the function is passed to another place,
then thethis is unnecessarily serialized by the runtime.

To avoid this inefficiency, the Java backend translates each func-
tion literal to a static nested class that implements{Fun,VoidFun}
_0_n. Variables captured by the function are explicitly passed to the
constructor and kept as its fields. This prevents the capture and the
unnecessary serialization of thethis reference.

Translating functions to static methods.The frontend has many
passes, such as method inlining and syntax-sugar handling, for
transforming AST. These passes frequently generate AST nodes,
each of which represents a function creation followed by an imme-
diate invocation, likenew MyClass$$Closure$0().$apply().

For example, if there is a user code of the form
var arr:Array[Int] = ...; arr(i)+=1;

then the frontend transforms the syntax sugar (+=) to AST nodes
representing the X10 code as

((a:Array,x:Int,v:Int)=>a(x)=a(x)+v)(arr,i,1).
The Java backend translates these AST nodes to a static method
and its invocation, not to a function-object creation followed by
immediate invocation. This can avoid unnecessary object creation
and promote inlining by the JIT compiler.

3.2 Mapping X10 Types to the Specified Java Types

Another way to represent types in Managed X10 is by mapping
X10 types to Java types. If an X10 type is declared as

@NativeRep("java","MyClassImpl",...)
class MyClass { ... }

then the X10 typeMyClass is mapped to the specified Java class
MyClassImpl.

This mapping mechanism is used for two reasons. One is to
implement the X10 library in Java. X10 does not have a built-in
mechanism to call OS functions. It is designed as an X10 standard
library and its native implementation is left to the backends. In
Managed X10, some X10 types that abstract OS resources (e.g.
x10.io.File.NativeFile) are mapped to corresponding Java
native implementations.

The other reason is to improve performance by using Java prim-
itives and well-known types. A JVM can handle primitive types
(such asint) more efficiently than objects. A JVM also imple-
ments special optimizations for well-known types (such asString)
based on built-in knowledge. Performance is improved when Man-

X10 Code
1 class C(p:Int) {
2 val q:Int; var r:Int;
3 def u() { }
4 private def v() { }
5 def w() { return super.hashCode(); }
6 def this(p:Int) {
7 property(p);
8 q = 1;
9 }

10 static val s = Place.MAX_PLACES;
11 static def t() { }
12 }

Translated Java Code
13 import x10.lang.Place;
14 import x10.lang.Runtime;
15 import x10.runtime.impl.java.InitDispatcher;
16 public class C extends x10.core.Ref {
17 public int p; // property
18 public int q, r; // instance fields
19 final public int p() { return this.p; } // property method
20 public void u() { } // instance methods
21 private void v() { }
22 // bridge method for private instance method
23 public static void v$P(final C C) { C.v(); }
24 public int w() { return super.hashCode(); }
25 // bridge method for super.hashCode()
26 final public int C$hashCode$S() { return super.hashCode(); }
27 public C(final int p) { // constructor
28 super();
29 this.p = p;
30 this.__fieldInitializers173();
31 this.q = 1;
32 }
33 // instance field initializer
34 final private void __fieldInitializers173() { this.r = 0; }
35 // bridge method for field initializer
36 final public static void __fieldInitializers173$P(final C C) {
37 C.__fieldInitializers173();
38 }
39 public static int s = 0; // static field
40 public static void t() { } // static method
41 // static initialization
42 public static int fieldId$s; // static field id
43 // static field initializer
44 public static int getInitialized$s() {
45 if (Runtime.hereInt() == 0) {
46 C.s = Place.getInitialized$MAX_PLACES();
47 InitDispatcher.broadcastStaticField(C.s, C.fieldId$s);
48 }
49 return C.s;
50 }
51 // static field deserializer
52 public static void getDeserialized$s(byte[] buf) {
53 C.s = (Integer) InitDispatcher.deserializeField(buf);
54 }
55 static { // Java static initializer
56 C.fieldId$s = InitDispatcher.addInitializer("C", "s");
57 }
58 }

Figure 6. X10 Class and Translated Java Class

aged X10 maps X10 types to Java primitives or well-known types.
Also by mapping X10 types to Java types that are used as parame-
ters or return values by Java APIs, we can call them without trans-
lating the parameters and return values. Table 1 summarizes the
X10 types that are mapped to primitive or well-known Java types.

Numbers, Character and Boolean. In X10, Numbers (x10.
lang.Int etc.), Character (x10.lang.Char), and Boolean (x10.
lang.Boolean) are defined as structs. For better performance,
these types are mapped to Java primitives (int etc., char, and
boolean). When casting these types toAny or a parameter typeT,
the Java compiler generates boxing code for their wrapper classes
(java.lang.Integer etc.,java.lang.Character, andjava.
lang.Boolean).

String. The string class in X10 isx10.lang.String. For perfor-
mance reasons, this is mapped tojava.lang.String. When cast-
ing x10.lang.String to Any, Object, or a parameter typeT, the
X10 compiler generates boxing code for its native implementation
x10.core.String that extendsx10.core.Ref and implements
Fun_0_1<Integer,Character>. This boxing is also performed
when a string is cast to the function(Int)=>Char, which is imple-
mented byx10.lang.String, to get a character at the specified
position.



X10 Java
x10.lang.Boolean boolean (java.lang.Boolean when boxed)
x10.lang.Char char (java.lang.Character when boxed)
x10.lang.Byte byte (java.lang.Byte when boxed)
x10.lang.Short short (java.lang.Short when boxed)
x10.lang.Int int (java.lang.Integer when boxed)
x10.lang.Long long (java.lang.Long when boxed)
x10.lang.Float float (java.lang.Float when boxed)
x10.lang.Double double (java.lang.Double when boxed)
x10.lang.String java.lang.String (x10.core.String when boxed)
x10.lang.Comparable[T] java.lang.Comparable<T>
x10.lang.Throwable x10.core.Throwable
x10.lang.Object x10.core.RefI
(any structs) x10.core.StructI
x10.lang.Any java.lang.Object

Table 1. X10 Types Mapped to Java Primitives or Well-known
Java Types

Comparable. X10 interfacex10.lang.Comparable[T] is mapped
to Java interfacejava.lang.Comparable<T>. With this mapping,
X10 types that implementx10.lang.Comparable[T] can be
mapped to Java classes that implementjava.lang.Comparable<T>.
This technique is used for string, character, boolean, and all of the
numeric types except for unsigned types.

Throwable. Unlike Java, X10 does not have checked excep-
tions nor anythrows clause. To implement the X10’s excep-
tion model efficiently, we decided to make every X10 excep-
tions Java runtime exception. Managed X10 maps the top-level
exception type,x10.lang.Throwable, tox10.core.Throwable
which extendsjava.lang.RuntimeException. To handle Java
checked exceptions thrown by Java native libraries, the Java back-
end generates an enclosing try-catch block for each call that may
cause Java checked exceptions, and wraps each caught excep-
tion with x10.runtime.impl.java.WrappedThrowable that
extendsx10.core.Throwable.

Any and Object. x10.lang.Object is mapped tox10.core.
RefI that is a marker interface must be implemented by all of the
X10 classes in translated Java code. This means we need a wrapper
class (e.g.x10.core.String), which implementsRefI, for each
raw Java class (java.lang.String) when it is mapped to X10
class (x10.lang.String).

x10.lang.Any is mapped tojava.lang.Object. This is be-
cause X10 variables of typeAny must be able to hold the value of
arbitrary X10 types, and some of the X10 types are mapped to ex-
isting Java types. Interface methods ofAny (e.g.typeName()) are
specially handled by Java backend and translated to runtime calls.

4. Implementation of Generics
For each X10 class with generics, Managed X10 generates a

Java class with Java’s generics (Figure 7). However, there is a
semantic gap between X10’s generics and Java’s generics. In this
section, we describe how Managed X10 bridges the gap without
severe performance degradation.

4.1 Implementing X10 Generics on Java

X10 generics are implemented with type reification that keeps the
type parameters, unlike Java generics, which are implemented with
type erasure that removes the type parameters after the type check.
Because type parameters are required to processas, instanceof,
<:, :>, andtypeName(), Java objects generated from X10’s pa-
rameterized types have their own type parameters.

In addition, X10 allows a type to implement multiple interfaces
based on the same base type. However, Java doesn’t allow these
types because Java can’t distinguish the methods in two interfaces
based on the same base type after its type erasure. To implement
these types in Java, Managed X10 generates dispatch methods to
distinguish between these methods.

X10 Code
1 interface I[T] {
2 def m(T):T;
3 }
4 class B[T] {
5 def m(a:T):T {return a;}
6 }
7 class C[T1,T2] extends B[Int] implements I[String], I[Int] {
8 def this(T1){}
9 def this(T2){}

10 def m(a:T1){return a;}
11 def m(a:T2){return a;}
12 public def m(a:String){return a;}
13 public def m(a:Int){return a;}
14 }

Translated Java Code
15 import x10.rtt.RuntimeType;
16 import x10.rtt.Type;
17 import x10.rtt.Types;
18 interface I<T> {
19 public static final RuntimeType<I> $RTT = ...
20 Object m(final T id$0, Type t1);
21 }
22 public class B<T> extends x10.core.Ref {
23 public static final RuntimeType<B> $RTT = ...
24 private Type T;
25 public T m_0_$$B_T$G(final T a) {return a;}
26 }
27 public class C<T1, T2> extends B<Integer> implements I {
28 public static final RuntimeType<C> $RTT = ...
29 private Type T1, T2;
30 // dispatcher for abstract public I.m(id$0:T):T
31 public Object m(final Object a1, final Type t1) {
32 if (t1.equals(Types.STRING)) {
33 return m((String) a1);
34 } else if (t1.equals(Types.INT)) {
35 return m((int)(Integer) a1);
36 }
37 return null;
38 }
39 // bridge for B.m(a:T):T
40 public Integer m_0_$$B_T$G(Integer a1) {return m((int) a1);}
41 // constructors need signature mangling
42 public C(final Type T1, final Type T2,
43 final T1 id$1, Class $dummy0) {...}
44 public C(final Type T1, final Type T2,
45 final T2 id$2, Class[] $dummy0) {...}
46 // generic methods need signature mangling
47 public T1 m_0_$$C_T1$G(final T1 a) {return a;}
48 public T2 m_0_$$C_T2$G(final T2 a) {return a;}
49 // instantiated generic methods
50 public String m(final String a) {return a;}
51 public int m(final int a) {return a;}
52 }

Figure 7. X10 Generics

4.1.1 Representation of Runtime Type Information

For each Java class created from an X10 class, there is a static field
named$RTT, whose type isx10.rtt.RuntimeType (lines 19, 23,
and 28). This field holds all of the static information for the corre-
sponding X10 class. For example, the information that classC im-
plements bothI[String] andI[Int] is held in its$RTT (line 28).

Since X10 generics are implemented with type reification, each
Java object created from a generic X10 class has additional fields
whose type isx10.rtt.Type, which is used to hold actual values
of the type parameters (T1 andT2 in line 29).

When an X10 generic class is instantiated, objects ofx10.rtt.
ParameterizedType orRuntimeType are stored into the instance
fields. If aParameterizedType object is stored, the correspond-
ing parameter type is a parameterized type. Otherwise, the param-
eter type is a type that doesn’t have any parameter type.

For example, forC[Point,Array[Point]], Point.$RTT,
whose type isRuntimeType, is stored into the first parameter type
(T1). Also, a newParameterizedType object is stored into the
second (T2). This ParameterizedType object hasArray.$RTT
object as its base type andPoint.$RTT as its type parameter.

4.1.2 Signature Mangling

When a class has a method (or a constructor) using type parameters
for its arguments (e.g.m(T1) at line 10 orthis(T1) at line 8 in
Figure 7), X10 allows another method (or constructor) of the same
signature with different type parameters for the arguments (such



asm(T2) at line 11 orthis(T2) at line 9), but Java doesn’t. In
Managed X10, these methods and constructors are mangled and
the corresponding call sites are also changed to call the mangled
methods and constructors.

For methods using type parameters for their arguments, the
names of the parameter types are added to the method names.
Also, the call sites are changed to call the changed methods. In
Figure 7, Managed X10 generatesm_0_$$C_T1$G(T1) (line 47)
andm_0_$$C_T2$G(T2) (line 48) form(T1) (line 10) andm(T2)
(line 11).

For constructors using type parameters for their arguments,
their signatures are changed by adding dummy arguments like
java.lang.Class andjava.lang.Class[]. Also, the call sites
are changed to call the changed constructors. In Figure 7,C(Type,
Type,T1,Class) (lines 42–43) andC(Type,Type,T2,Class[])
(lines 44–45) are generated forthis(T1) (line 8) andthis(T2)
(line 9) 2.

4.1.3 Self Dispatch

X10 allows a type to implement multiple interfaces based on the
same base type with different type parameters, but Java doesn’t.
The technique of method mangling doesn’t bridge this semantic
gap because the mangled signatures can’t be determined at compi-
lation time for the interface of this base type. Therefore, in Man-
aged X10, if an interface has a method using type parameters for
its arguments, this method is translated to a dispatch method and
generates its implementations in the classes implementing the in-
terface. This dispatch method is generated by addingType argu-
ments to the original. EachType argument is mapped to an argu-
ment of a parameter type in the original method and each call site
for the method specifies theType objects corresponding to its ar-
guments. For example,I[T].m(T) (line 2) in X10 is translated to
I<T>.m(T, Type) (line 20) in Java. This method is implemented
in C<T1,T2>, which implementsI for I[String] and I[Int],
to dispatchm(String) and m(int) (lines 31–38). At the call
site of the dispatch method,x10.rtt.Types.STRING is specified
for theI[String].m(String) call andx10.rtt.Types.INT is
specified for theI[Int].m(Int) call as the second argument.
The Types.STRING and Types.INT are the runtime types for
x10.lang.String andx10.lang.Int, respectively.

4.2 Performance Optimization by Generating Bridge
Methods

X10 allows specifying primitive types as the parameter types, but
Java doesn’t. Therefore, primitive types for the parameter types
in X10 are translated to the corresponding wrapper classes in
Java such asB<Integer> (line 27) for B[Int] (line 7). How-
ever, boxing for parameter types causes override misses. For ex-
ample,B[T].m(T) (line 5) is overridden byC[T1,T2].m(Int)
(line 13) in X10 becauseC[T1,T2] extendsB[Int]. In contrast,
B<T>.m(T) is never overridden byC<T1,T2>.m(int) in Java,
becauseB<T>.m(T) becomesB.m(Object) through type erasure.

In Managed X10, bridge methods are generated to override
methods using type parameters for their arguments. Initially, these
methods are mangled by changing the method names. Next, bridge
methods are generated in the classes overriding the mangled meth-
ods. ForB[T], B[T].m(T) is mangled toB<T>.m_0_$$B_T$G(T)
(line 25). ThisB<T>.m_0_$$B_T$G(T) is overridden byC<T1,T2>.
m_0_$$B_T$G(T) (line 40) that dispatches toC<T1,T2>.m(int)
(line 51).

A method using a type parameter for its return value is al-
ways mangled to allow subclasses to override the method and
implement dispatch. For example,get():T in X10 is mangled
to T get$G() in Java. If a methodget():T of a class is over-
ridden byget():Int of its subclass in X10, a dispatch method
Object get$G() is generated in the subclass in Java.

2Class can be replaced with any Java class that does not conflict with all
of the valid X10 types in the translated Java code.

rawregionArray<String>layout… valuetypeIndexedMemoryChunk<String> …String[]
Array<Integer> IndexedMemoryChunk<Integer> 123456…int[] (≠ Integer[])
raw$valueint[] privatize

… “abc”“def”
rawregionlayout… valuetype…

Figure 8. Object Model of Array

To reduce the overheads of dispatches, theses mangled meth-
ods are called only when the types of their arguments aren’t deter-
mined at compilation time. Otherwise, the target methods for the
dispatches are called directly by the caller. Also, if the argument
types of these methods are primitive types, then their caller calls
them without boxing.

5. Array Optimizations
In X10, arrays are represented with a generic classx10.array.
Array[T]3. SinceArray[T] is designed as a general array type
that can represent multi-dimensional or sparse arrays, its imple-
mentation is decomposed into two parts, a one-dimensional con-
tiguous backing array which is indexed with a single integer off-
set, and the offset calculation mechanism. The backing array is
represented withx10.util.IndexedMemoryChunk[T], which is
mapped to Java generic classx10.core.IndexedMemoryChunk<T>.
IndexedMemoryChunk<T> holds the array data as a Java array
(Figure 8). Accessing the contents in the Java array is done by call-
ing the$set() and$apply()methods ofIndexedMemoryChunk<T>.

5.1 Footprint Reduction

Java does not allow instantiating a parameter typeT with primi-
tive types such asint, and therefore if we useT[] for the type
of the Java array inIndexedMemoryChunk<T>, it is instantiated
as Integer[]. Since this means X10 arrays use more memory
than Java arrays for primitive types, we don’t use this approach
but map them to Java primitive arrays. To make this possible,
we useObject for the type of the field that holds the Java ar-
ray in IndexedMemoryChunk<T>. Creations of and accesses to
the Java arrays are implemented with utility functions defined
in x10.rtt.Type interface.Type.makeArray() creates a Java
array that corresponds to its base type, andsetArray() and
getArray() access the array elements by casting the field of
Object type to the appropriate Java array type.

5.2 Access Inlining

Unfortunately, a naive implementation of this mechanism performs
poorly. This is because a method invocation, a field access, and a
dynamic cast are required for each array access. To make matters
worse, boxing and unboxing occurs for the elements of the primi-
tive arrays.

In order to prevent these boxings and unboxings, when the
actual type of the array is known, the Java backend inlines$set()
and$apply() of IndexedMemoryChunk<T>, and generates code
that accesses that Java array directly (line 23 of Figure 9).

3 X10 also hasx10.lang.Rail[T] that represents a zero-origin contigu-
ous one-dimensional array. Because this can easily be compiled to a Java
array, it is heavily used with performance critical applications in early im-
plementations of X10. Now the X10 compiler translatesArray[T]{rail}
to equivalent code asRail[T], so that it is no longer needed.



X10 Code
1 val a:Array[Int] = ...;
2 val p:Point(a.rank) = ...; // p has the same rank as a
3 ... = a(p);

Translated Java Code
4 final x10.array.Array<Integer> a = ...;
5 final x10.array.Point p = ...;
6 final x10.array.Array<Integer> this443 = a;
7 final x10.array.Point pt444 = p;
8 int ret438445 = 0;
9 __ret439446:

10 do {
11 // array bound check
12 final x10.array.Region t493 = this443.region;
13 final boolean t494 = t493.contains(pt444);
14 if (!t494) {
15 x10.array.Array.raiseBoundsError$P(pt444);
16 }
17 // offset calculation
18 final x10.array.RectLayout t497 = this443.layout;
19 final int t499 = t497.offset(pt444);
20 // array data access
21 final x10.core.IndexedMemoryChunk<Integer> t498
22 = this443.raw;
23 final int t500 = ((int[]) t498.value)[t499];
24 ret438445 = t500;
25 break __ret439446;
26 } while (false);
27 ... = ret438445;

Figure 9. Array Access Inlining
X10 Code

1 val arr:Array[Int]{rail} = ...;
2 val raw = arr.raw();
3 var sum:Int = 0;
4 for (var i:Int = 0; i < arr.size; i++) {
5 sum += raw(i);
6 }

Translated Java Code
7 final x10.array.Array<Integer> a = ...;
8 final x10.array.Array<Integer> this601 = a;
9 final x10.core.IndexedMemoryChunk<Integer> raw = this601.raw;

10 int sum = 0;
11 // privatize Java array
12 final int[] raw$value620 = (int[]) raw.value;
13 for (int i = 0; i < arr.size; i = i + 1) {
14 sum = sum + raw$value620[i];
15 }

Figure 10. Privatization of a Java Array

5.3 Privatization of Java Array

When an array is accessed in a loop a field access and a dynamic
cast are executed at each loop iteration, which are redundant since
they produce the same results. To eliminate this redundancy, the
Java backend privatizes the field of theObject type that holds the
Java array as the actual Java array type, and hoists it out of the loop
(line 12 of Figure 10).

We have already implemented this optimization forRail and
IndexedMemoryChunk, and are currently working on it forArray.

6. Parallel/Distributed Execution
Language-level support of parallel and distributed execution is one
of the features that differentiate X10 from other languages. In
this section, we describe how Managed X10 implements these
important features.

6.1 Asynchronous Execution

In X10, an asynchronous activity is created by a statementasync S,
whereS is the statement to be spawned. For eachasync state-
ment, a function of type()=>void that executesS is created
and specified as the argument for the runtime helper method
x10.lang.Runtime.runAsync(). TherunAsync() method cre-
ates ax10.lang.Activity object holding the specified function
as its field. The createdActivity is specified for the X10’s work-
stealing mechanism that is similar to Java Fork/Join [11].

In Managed X10, each generated function is declared as the
static nested class in the spawning class. This class implements
theVoidFun_0_0 interface and its$apply() method contains the
statements translated fromS. For the example of the X10 program
(lines 1–3 of Figure 11), the static nested class$Closure$0 is de-
clared (lines 10–17) corresponding to theasync statement (line 3).

X10 Code
1 var m = 0;
2 val i = 1;
3 async { m = i; }

Translated Java Code
4 int m = 0;
5 final int i = 1;
6 final int[] $m173 = new int[1]; $m173[0] = m;
7 x10.lang.Runtime.runAsync(new $Closure$0($m173, i));
8 m = $m173[0];
9 ...

10 public static class $Closure$0 extends x10.core.Ref
11 implements x10.core.fun.VoidFun_0_0 {
12 public int[] $m173; public int i;
13 ...
14 public void $apply() { $m173[0] = i; }
15 public $Closure$0(final int[] $m173, final int i) {
16 this.$m173 = $m173; this.i = i;
17 }}

Figure 11. Asynchronous Execution
X10 Code

1 var m = 0;
2 val i = 1;
3 val h = here;
4 at (here.next()) {
5 at (h) m = 2;
6 }

Translated Java Code
7 import x10.core.LocalVar;
8 import x10.lang.Place;
9 import x10.lang.Runtime;

10 int m = 0;
11 final int i = 1;
12 final Place h = Runtime.home();
13 final LocalVar<Integer> m$b
14 = new LocalVar<Integer>(Types.INT, m, null);
15 Runtime.runAt(Runtime.home().next(),
16 new $Closure$2(i, h, m$b, null));
17 m = m$b.$apply$G();
18 ...
19 public static class $Closure$1 extends x10.core.Ref
20 implements x10.core.fun.VoidFun_0_0 {
21 public LocalVar<Integer> m$b;
22 ...
23 public $Closure$1(final LocalVar<Integer> m$b, Class $d) {
24 this.m$b = m$b;
25 }
26 public void $apply() {
27 int m = m$b.get$G(); m$b.set$G(m = 2);
28 }}
29 public static class $Closure$2 extends x10.core.Ref
30 implements x10.core.fun.VoidFun_0_0 {
31 public int i; public Place h; public LocalVar<Integer> m$b;
32 ...
33 public $Closure$2(final int i, final Place h,
34 final LocalVar<Integer> m$b, Class $dummy0) {
35 this.i = i; this.h = h; this.m$b = m$b;
36 }
37 public void $apply() {
38 x10.io.Console.getInitialized$OUT().println(i);
39 Runtime.runAt(h, new $Closure$1(m$b, null));
40 }}

Figure 12. Place Change

This $Closure$0 is instantiated whenever the activity is spawned
by calling therunAsync() method (line 7). In therunAsync()
method, anActivity object for the$Closure$0 object is gener-
ated and enqueued in the queue of the X10’s workstealing mecha-
nism.

6.2 Place Change

X10 supports the execution of a statement in a different place with
theat statement, such asat (p) S, whereS is the statement to be
executed andp is the place where the statementS will be executed.
The caller of anat statement will be blocked until theat state-
ment returns. For eachat statement, a function of type()=>void
that executes statementS is created and specified as the argument
for the runtime helper methodx10.lang.Runtime.runAt(). The
runAt() method serializes the specified function, sends the serial-
ized data to placep, and calls the$apply() method for the func-
tion in the placep. Thep may be a local or remote place, and even
in for a local place (i.e.p == here), the specified function will be
serialized. For the example of the X10 program (lines 1–6 of Fig-
ure 12), the static nested class$Closure$2 is declared (lines 29–
40) corresponding to theat statement (line 4). The$Closure$2



is instantiated whenever theat statement (line 4) is executed by
callingrunAt() method (lines 15–16).

Managed X10 serializes functions by using the Java default
serializer [9]. For better performance and better interoperability
with other backends, we plan to generate a custom serializer for
each X10 type.

6.3 Local Variable Access in async/at Body

An async or at statement is allowed to referenceval andvar
local variables declared in the lexically enclosing blocks. Also,
the statement is allowed to updatevar local variables declared
in the lexically enclosing blocks and the updated value becomes
available when the program reaches the end of thefinish block
that encloses theasync statement or the end of theat statement.
In the generated Java code, however, these variables cannot be
referenced because this statement is translated to the$apply()
method of a function of type()=>void.

In Managed X10, to reference these local variables in a function
for anasync or at statement, they are specified as the function’s
constructor arguments. Also, to update these local variables in an
async or at statement, they are copied to the heap by boxing and
specified as the function’s constructor arguments. These specified
values are referenced and updated in the$apply() of the function.
In addition, the boxed values are copied back to the local variables
at the end of thefinish block for theasync statement or at the
end of theat statement.

The boxing of the local variables forasync andat are different.
Forasync, each local variable is boxed as a Java array that has only
one element (line 6 of Figure 11). When instantiating the function
of anasync (line 7), the Java array is created and the local variable
is set to the 0-th element of the array (line 6). Also, when updating
the variable to a new value in theasync statement, the new value
is set to the 0-th element of the array (line 14). Finally the boxed
value is copied back to the local variable (line 8).

For theat statement, each local variable is boxed to anx10.core.
LocalVar<T> object (lines 13–14 of Figure 12). ThisLocalVar
object has an ID. Each place has mappings from each ID to the
object that is referenced by theLocalVar object of the ID. At in-
stantiating the function of anat (lines 15–16), an ID is assigned
to the local variable and the referenced object is mapped to the ID.
Also, at updating the variable to a new value in theat statement, the
new value is mapped to the ID by calling theLocalVar.set$G()
method (line 27). Finally the boxed value is copied back to the local
variable (line 17).

6.4 Global Reference

An x10.lang.GlobalRef[T] struct is a reference to an object in
an arbitrary place. The equality between twoGlobalRef structs is
guaranteed in any places when they reference the same object.

In Managed X10, aGlobalRef[T] struct is mapped to an
x10.core.GlobalRef<T> object that has theplace field of the
x10.lang. Place type and theid field of thelong type.place
represents the place where the object that is referenced by the
GlobalRef struct is created andid is the ID for the object. When
two place and twoid of two GlobalRef are same, they reference
the same object in the same place.

The ID for an object is assigned when the object is referenceable
by GlobalRef in some other place. Actually, the ID is assigned in
the serializer ofGlobalRef only when no other ID is assigned to
the referenced object.

Each place manages mappings from an object to its ID (id2Ob-
ject) and from an ID to the object (object2Id) for all of the
objects generated in that place. When a program tries to get the
object that is referenced by aGlobalRef struct, the program
calls theGlobalRef.$apply() method that returns the object
from the id2Object mapping with theid of the GlobalRef.
Also, when a program creates aGlobalRef struct that references
an object and serializes theGlobalRef, the program assigns a
new ID to the referenced object only whenobject2Id doesn’t
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Figure 13. Distributed Execution Framework

contain the ID of the object. These mappings are contained in
two static java.util.concurrent.ConcurrentHashMap ob-
jects and the operations for these mappings never block any others
(non-blocking registration).

If an object in a place is referenced byGlobalRef structs in
other places, the object cannot be collected by the GC because
the staticConcurrentHashMap objects contain references to the
object. However, there are some data types that are guaranteed not
to be referenced from other places at some locations in a problem.
For example, anx10.lang.FinishState object, which is created
for eachfinish in XRX, is referenced by someGlobalRef structs
in other places to notify the end of the activities in thefinish.
Because it is not necessary to notify anything after thefinish, the
FinishState object will never be referenced by anyGlobalRef
structs after the end of the correspondingfinish. This type of
object can be collected by the GC locally in each place if the
program specifies the location where the object can be collected.

X10 provides thex10.lang.Runtime.Mortal interface to
specify when an implementing object can be collected. If an ob-
ject implements this interface, the GC is allowed to collect the
object when it isn’t referenced by any objects in the place. In Man-
aged X10, if an object implementsMortal, the object is regis-
tered inid2Object and object2Id throughjava.lang.ref.
WeakReference to implement these semantics.

7. Multi-JVM Support
This section describes the distributed execution feature that was
introduced in Managed X10 2.1.2.

7.1 Distributed Execution Framework

Managed X10 is also designed as a scalable platform on a cluster
of nodes. The design philosophy is that one place corresponds to
one JVM process.

Figure 13 shows the distributed execution framework of Man-
aged X10. The X10 runtime has a language-independent commu-
nication layer that can be used in both the C++ and Java backends.
The layer provides a unified API for communication between mul-
tiple places by abstracting out a wide variety of concrete commu-
nication libraries such as MPI [13], PGAS [15], raw sockets, and
others. By providing such a high-level communication layer, it can
easily be replaced with an appropriate communication library op-
timized for the underlying execution platform. If a scientific appli-
cation needs a large number of message exchanges between places
on a large cluster of nodes, an optimized MPI library can be used.
Then all of the high-level communication layer is mapped to the ap-
propriate functions provided by MPI. In contrast, the raw socket li-
brary has been developed from scratch and is used by default unless
users explicitly specify a communication library in the X10 com-
piler options. This is more convenient for users since they need not
install or configure any communication libraries if their application



does not require an optimized communication layer. The current
version of the Java backend runtime has been developed to employ
a socket-based library, but it could be extended to other commu-
nication libraries, which has already been done for C++ backend
runtime.

The invocation mechanism for spawning off an X10 runtime at a
remote place depends on which library is used. For MPI, the com-
mand toolmpirun handles it via SSH. The socket-based library
uses thex10 command that also uses SSH for remote invocation.
Invoking a function at a remote place is executed in 4 steps: (1)
a function object is serialized into a byte sequence, (2) it is trans-
ferred to the remote place with the specified communication layer,
(3) the byte sequence is deserialized into the function object, and
(4) then the$apply() method of the function object is invoked.

7.2 Static Initialization

X10 guarantees each static field has the same value in all of the
places in a program run.

Java initializes static fields with a static initializer that is exe-
cuted at class loading time. A JVM usually loads classes just before
the program uses them. X10 programs usually run asynchronously
in multiple places, and therefore if we use the Java static initializer
to initialize the X10 static fields, they may have different values at
different places. It is not realistic to load classes in the same or-
der or to control the timing of class loading in different places to
avoid this kind of problem. Therefore Managed X10 implements
the initialization of static fields by initializing the static fields in
Place.FIRST_PLACE (i.e. the place where the program started
running), and broadcasts them to all of the other places using these
steps:

1. Load all of the Java classes that were translated from the X10
types and that are reachable from the application’s main class
by using Java reflection.
The Java static initializer (lines 55–57 of Figure 6) of the classes
registers a static field initializer (lines 44–50) and a deserializer
(lines 52–54) for each static field (line 39).

2. Translate all of the registered static field initializers to X10
functions and execute each of them asynchronously.
If the current place isFIRST_PLACE, then the static field initial-
izer
(a) initializes the static field
(b) serializes the field, creating a function that will execute the

static field deserializer with the serialized data, and executes
it in all of the places except forFIRST_PLACE.

The static field deserializer deserializes the data and stores the
value in the static field.

This implementation has some problems related to class preload-
ing. For example, the memory usage may be larger than needed
because of unnecessary class loading. Also, in some JVM imple-
mentations, loading many classes in a short period of time may
cause the JIT compiler to use a lower optimization level for quicker
application initialization, and thus result in lower performance of
the generated code or a longer time to achieve stable performance.
To solve these problems, we are investigating the possibility of lazy
class loading in X10.

8. Performance Evaluation
Table 2 is a summary of the major performance features which
implemented in Managed X10 since 2010. In this section, we
present our performance improvements with sequential and parallel
(async) benchmarks. We also present initial scalability result with
a distributed benchmark. All measurements were done on a mul-
ticore node that has two sockets for 2.93-GHz Intel Xeon X5670
chips with a total of 12 physical cores with SMT turned off and 16
GB of RAM running 64-bit Red Hat Enterprise Linux Server re-
lease 5.5 (kernel 2.6.18-194.el5) and IBM J9 VM (build 2.4, JRE

Release Date Performance Features

2.0.3 April 17, 2010 (base release)
2.0.4 June 14, 2010 Array(IndexedMemoryChunk) access inlining

Bridge method for Java primitive types
2.0.5 July 23, 2010 Privatize backing Java array in loops
2.0.6 September 3, 2010 Function to static method
2.1.0 October 19, 2010 (New object model)
2.1.1 January 10, 2011 (Static initialization)
2.1.2 February 25, 2011 Multi-JVM

Method inlining
GlobalRef (non-blocking and lazy registration)
Function to static nested class
Use default optlevel while preloading

Table 2. Major Performance Features in Managed X10

1.6.0 IBM J9 2.4 Linux amd64-64 jvmxa6460sr9-2011020374623
(JIT enabled, AOT enabled)).

8.1 Sequential Performance

We have been improving sequential execution in X10. We first
looked at the performance ofRail, because it was used to represent
array data before X10 release 2.1.0.Rail is now deprecated in
favor ofArray, thus we are focusing on the performance ofArray.

Figure 14(a) shows the performance ofKMeansSequential,
which is a benchmark for calculating K-means clustering that di-
vides 1,000,000 four-dimensional points into 4 clusters. We com-
pared the shortest elapsed times of 10 executions with Managed
X10 and Java. All evaluations were done at a single place.

The performance of theRail version of the benchmark was
comparable to Java. The performance of theArray version was
improved in X10 release 2.1.2, but there is still a gap between
Managed X10 and Java. We are studying the overhead in our
generated Java code.

8.2 Parallel Performance

We have also been improving the asynchronous execution in
X10, as well as the sequential execution. For eachfinish, a
FinishState object and aGlobalRef struct for theFinishState
are generated. To optimize asynchronous execution in X10, the run-
time should reduce the overhead for theGlobalRef mechanism
that registers referenced objects by assigning an ID to each object.
We introduced two optimizations to reduce overhead: eliminating
synchronized blocks for the registration (non-block registration)
and avoiding registration for non-escaping objects (lazy registra-
tion).

Figure 14(b) shows the performance results with these optimiza-
tions. We used three benchmarks,Fib, Integrate andQuickSort
in the samples/work-stealing directory, each of which spawns a
large number of statements withasync. In each run of these bench-
marks, the elapsed time for the run with the specified parameter
is measured 10 times. We compared the average of last 5 scores
with the results of the equivalent benchmarks written with Java
Fork/Join. All evaluations were done at a single place.

As shown in Figure 14(b), the asynchronous performance has
been improved with our optimizations. However, there is still a gap
between Java Fork/Join and X10. We are adding more optimiza-
tions to Managed X10 for asynchronous execution.

8.3 Scalability with Multi-JVM

We evaluated the scalability of distributed execution in Multi-JVM-
enabled X10. For the target application, we usedKMeansSPMD
in the samples directory, which calculates distributed K-means
clustering that divides 20,000,000 two-dimensional points into 500
clusters. We measured the median elapsed time of 10 executions
for each number of places. All evaluations were done at multiple
places on a single node.

Figure 14(c) shows the performance with varying numbers of
places, where the vertical axe of the graph indicates the speed-up
from 1 place. The results shown in the graph demonstrate good
scalability, since the speed-up ratio against 1 place is increasing
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with more places up to 12, and reaches a maximum of 7.7 with
12 places. For more better scalability, we are investigating the
overhead in our Multi-JVM implementation.

9. Related Work
As we are entering more deeply into the multicore era, there has
been increasing demand for new models and languages that sim-
plify application development for clusters of multicore machines.
While some proposals address specific domains, such as MapRe-
duce [5] for data processing and SPL [8] for stream computing,
general-purpose languages have also been proposed, including
X10 [21], Chapel [2], Fortress [16], and Go [6].

Implementing programming languages by using a Java virtual
machine (JVM) is a common approach. These languages are called
JVM languages, including, existing languages, such as JRuby [10]
and the IBM implementation of PHP [17], and new languages, such
as X10 [21] and Scala [19]. In almost every attempt to create a JVM
language, although some constructs are mapped to the JVM in a
straightforward manner, others need to deal with subtle differences
(such as generics in X10) and complete omissions (such as closures
in X10).

The reference implementation of X10 provides a Java backend,
described in this paper, and a C++ backend, intended to appeal to
both Java and C++ programmers. There are fewer language systems
that attract both of the Java and C++ camps.

10. Conclusion
In this paper, we discussed various compilation techniques for im-
plementing advanced X10 features that cannot be mapped directly
to Java without severe performance loss. In X10 release 2.1.2,
by using appropriate implementations, sequential performance has
been improved by about 5 times and is now comparable to Java. We
are now focusing on improving the performance of the general Ar-
ray class. Parallel performance has also been improved with an op-
timized activity creation mechanism and the gap to Java Fork/Join
performance is about 3 times when run at a single place. Initial
evaluation of distributed execution shows good scalability.

Some compilation techniques, such as bridge methods for call-
ing private instance method or super class’s method, are specific to
Java backend that generates Java source code. They are not needed
for the backend that generates Java bytecode directly, however it is
difficult to develop and maintain such backend for an evolving lan-
guage, such as X10, since it takes longer time to update the byte-
code backend to catch up with the rapidly changing specification.

We believe that the compilation techniques described in this
paper can also be used for implementing other programming lan-
guages targeted for Java or other managed environments.
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H. Nasgaard, R. Soulé, and K.-L. Wu. SPL Stream Processing Lan-
guage Specification. IBM Research Report, RC24897, 2009.

[9] Java Object Serialization Specification.http://download.
oracle.com/javase/6/docs/platform/serialization/
spec/serialTOC.html

[10] JRuby.http://www.jruby.org/

[11] D. Lea. A Java Fork/Join Framework, InACM Java Grande 2000
Conference, pp. 36–43, 2000.

[12] S. Liang. The Java Native Interface: Programmer’s Guide and Specifi-
cation. Addison-Wesley Publishing Company. 1999.

[13] MPI: A Message-Passing Interface Standard, Version 2.2.http://
www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf

[14] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An Extensi-
ble Compiler Framework for Java. InProceedings of the 12th Interna-
tional Conference on Compiler Construction (CC ’03), LNCS 2622,
pp. 138–152, 2003.

[15] PGAS – Partitioned Global Address Space Languages.http://www.
pgas.org/

[16] Project Fortress Community.http://projectfortress.sun.
com/

[17] Project Zero: PHP on Java.http://www.projectzero.org/php/

[18] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and D. Grove.
X10 Language Specification.http://dist.codehaus.org/x10/
documentation/languagespec/x10-latest.pdf

[19] The Scala Programming Language.http://www.scala-lang.
org/

[20] B. Stroustrup. The C++ Programming Language, Third Edition.
Addison-Wesley Publishing Company. 1997.

[21] X10 Home.http://x10-lang.org/

[22] X10RT API Specification. http://dist.codehaus.org/x10/
x10rt/


