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Abstract

Finding a high productivity and high efficient(HPHP) parallel programming language
is a key to achieve popular parallel programming and it has been an active field of research
for over 3 decades.

To achieve HPHP parallel programming language, we proposed to design a DSL based
on Ruby, which is a popular sequential langauge among mainstream developers for its
high productivity, and then translate the DSL to X10 language, which is a high perfor-
mance parallel language, to perform parallel execution. Our proposed DSL can express
concurrent and distributed programming with syntax that is consistent with Ruby. The
DSL code is converted to X10 program by our code translator and is executed in parallel
with some runtime libraries developed by us. The code translator and runtime libraries
that we developed implement most of Ruby’s features and bridge the large gap between
the Ruby and X10 language. Therefore, the DSL can keep the productivity of Ruby and
achieve high performance. We employ HPC and Ruby benchmarks to evaluate the pro-
ductivity and scalability of the DSL. The results show that our DSL has better or equal
productivity than the X10 language and similar scalability to the X10 language.
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Chapter 1

Introduction

Finding a high productivity and high performance (HPHP) programming language for
parallel computing has been an active research field for over 3 decades[l]. The moti-
vation for parallel programming originally comes from scientific programming and high
performance computing (HPC) and most of parallel programming languages are designed
for this purpose. However, recently, as multi-core processors become prevalent and the
awareness of crisis for sequential programming [2], mainstream software development is
under the pressure to adapt to parallel programming, which is known as popular par-
allel programming[3]. One key to achieve the popular parallel programming is parallel
programming language.

On the other hand, people are expecting more for a parallel programming language.
The requirement for high performance is just a base line. As the parallel computing
hardware becomes various, such as the cluster computers, GPGPU, SMP, people require
that a parallel programming language should be hardware independent. Moreover, as
there are many different programming algorithms, the language should be not limited to
a particular parallel algorithms. So an ideal parallel programming language should be
high productivity, high performance, hardware and parallel algorithms independent.

However, we observed that it is very difficult for a programming language to achieve all
these requirements. There are several issues for current parallel programming languages:

1. Most parallel programming languages are designed for HPC. Thus, they are very
difficult to use for mainstream programmers. These languages lack productivity.

2. Most mainstream programming languages are sequential. They are inadequate for
parallel programming because either the language does not support parallel execu-
tion, such as Ruby/Python, or lack parallel model to achieve high performance.[4]

3. Some languages adopt parallel programming models to achieve parallel program-
ming. For example, the Go language[5] employs Communicating Sequential Pro-
cesses (CSP) model and the Scala language[6] employs the Actor model. However,
these programming models have sharp learning curves because they are every dif-
ferent from the shared memory programming model which programmers are used
to. The result is less productivity.

4. Developing new languages has very high implementation cost and it is difficult and
time consuming to make programmers to migrate to a new language and master it.

Our proposed solution is to use a source-to-source converter to combine 2 languages
together to achieve high performance and high productivity. It means that programmers
write parallel programs in a high productivity language, and then translate the code to a
high performance language to execute.

Our approach is to define a domain specific language (DSL) based on a high productivity
language (in this paper the language is Ruby) to express parallel programming model. And
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implement the DSL by developing a source-to-source compiler to translate the DSL code
to a high performance language (in this paper the language is X10).

Generally speaking, scripting languages are good at productivity and system languages
are good at performance[7]. Ruby[8] is a popular scripting language and is famous for
its high productivity. X10[9] is a recently developed HPC parallel language that has
characters of high performance, hardware and algorithms independence. Therefore, by
using our approach to combine these 2 languages together, we can achieve productivity,
performance, hardware and algorithm independence for parallel programming.

This approach has several advantages. First, the DSL is based on a mainstream language
so that lots of users can avoid learning a new language to adapt to parallel programming.
Second, the DSL can inherit the high productivity from the based language. Third, the
implementation cost is low. By using source-to-source converter, the implementation is
easier than implementing a new language.

To achieve our proposed solution, we designed a DSL based on Ruby. The DSL is
designed to express primitives for parallel programming model in Ruby-style. Thus, users
can write parallel program in Ruby-style. And we developed a converter to translate the
DSL code to X10 code. We also developed X10 runtime libraries to implement some of
Ruby’s most important features, such as dynamic typing, open class, mix-in and so on.
Because there is no Ruby Virtual Machine in the execution of the DSL, so some Ruby
features such as dynamic evaluation are not supported.

Our research has following contributions: 1) By using the DSL, users can write parallel
program in Ruby-style. It benefits Ruby users. 2) It benefits HPC users by providing
an alternative parallel programming language. The DSL is based on Ruby, so the HPC
programmers can enjoy the productivity of the Ruby language. 3) The experience of
developing a DSL based on a sequential, mainstream, scripting language for parallel pro-
gramming can be referred by other developers. DSL seems to be a promising solution for
building a parallel language. We put this approach into practice and gain experience on
how to design the DSL and how to solve challenges in implementation.

This paper gives an overview of parallel programming models and X10 and Ruby pro-
gramming languages (chapter 2), the language design of our proposed DSL (chapter 3),
the implementation of the language system (chapter 4), the result of evaluation for the
DSL (chapter 5) and the discussion (chapter 6). We end with a summary of future work.



Chapter 2
Anylysis

In this chapter, we give an overview of parallel programming. And analyze the pros and
cons of the X10 and Ruby programming languages. Through the analysis, we want to
clarify following questions.

e Why is DSL a possible solution for parallel programming?
e Why is Ruby inadequate for parallel programming?

e Why is the DSL based on Ruby?

e Why is X10 not good for hosting a DSL?

Based on the analysis, we define goals and make some design decisions for our proposed
DSL.

2.1 Parallel Programming Overview

In this section, we give an overview of parallel programming. It gives a background on
parallel programming and clarify some terminologies that will be referred in later parts
of this paper.

2.1.1 Popular Parallel Programming

The parallel programming originally is mainly used for researches, or academic fields.
And the parallel programming languages were almost designed for scientists to perform
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Research
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Fig. 2.1. Comparison of Parallel Computing Users(Data from Top500.org)
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numerical computing.

However, more and more parallel applications are developed in industry fields. Figure
2.1 shows the statistics for parallel computing users at year of 1993 and 2010*!. From
these figure we can clearly see the tendency of popular parallel programming, which
means to make parallelism pervasive and parallel programming mainstream. To achieve
this goal, it requires parallel programming languages that are easy to use for most general
programmers. However, current parallel languages are far from this goal.

2.1.2 Approach to Parallel Programming

For a language to achieve parallel programming, there are generally 2 approaches: 1) a
language-based approach, which means to develop a new language from scratch, such as
CILKJ10], Chapel[11], and X10; 2) library-based approach, which means to implement
the parallel programming model as library to extend existing sequential languages, for
example MPI[12], OpenMP[13]. Because an internal DSL can be treated as a kind of
library, so internal DSL is also the second approach to achieve parallel programming.

Each approach has its merit and disadvantage. For the language-based approach, the
advantage is that new language can define precise semantics for synchronization constructs
and the shared memory model and compiler can do related optimization. The disadvan-
tage is that the development cost is high and it is difficult for users to accept a new
language. For library approach, the advantage is that the low learning curves for users.
However, the disadvantage is that it is hard to make big breakthrough. The expressiveness
and the performance is limited by the hosting language.

2.1.3 Parallel Computing Environments

From the memory architecture perspective, the parallel computing environments can be
classified as: 1) shared memory system, such as multi-core system, 2) distributed memory
system, such as cluster system, and 3) hybrid distributed-memory system, such as multi-
core cluster system, in which each node is a multi-core system.

Need to point out that the hybrid distributed-memory system is prevalent recently. And
this kind of system always requires a hybrid parallel programming model. For parallel
computing on each node, the shared memory programming model is used, such as Pthread
or OpenMP. Parallel execution over nodes is achieved by using distributed memory pro-
gramming model, such as MPI. Moreover, the merging of hybrid architecture swaps out
most of current parallel programming languages because they cannot provide a hybrid
programming model.

2.1.4 Classification of Parallel Programming Models

There are many different ways to classify parallel programming models. We classify the
models from abstract level perspective because this effects how we decide to design the
DSL. Generally, the parallel programming consists of 4 subtasks[14, 15]:

Decomposition Means to find code that can run in parallel and assign them to thread.
Mapping Means to specify where the thread should run.

Communication Means to send/receive messages among threads.

Synchronization Means to manage synchronization among threads.

*1 The data are provided by Top500.org
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Fig. 2.2. APGAS Model

We measure the abstract level of a parallel programming language by how many tasks can
be done automatically by the language. More tasks are handled automatically, higher ab-
stract level the language is. For example, the MPI is a very low level parallel programming
model because all tasks are handled directly by users.

We also know, typically, higher abstract level languages have better productivity be-
cause there are less details that need programmers to bother about. However the trade-off
is that it is more difficult to achieve good performance. So for a parallel programming
language, the balance of abstract level is critical.

2.2  Overview of X10

X10 is a new developed, statically typed, parallel, distributed, object-oriented program-
ming language designed for HPC[16, 17, 4] . The design goal of X10 is to provide safety,
scalability and flexibility for parallel computing. The target of X10 originally is HPC
world, such as scientific applications development. However, recently, it tries to cover the
general application development too.

2.2.1 Main Features of X10

As a new developed language, X10 has some advantages on parallel programming.

APGAS Model

The background of X10 development is the merging of hybrid multi-core cluster computing
environment as mentioned previously. So the X10 language employs the Asynchronous
Partitioned Global Address Space (APGAS) memory model. The figure 2.2 shows what
APGAS looks like.

From the programmers perspective, the PGAS offer a global address space similar to
shared memory. It means that it is possible for programmers to create an object that
is visible from any other processes/threads of program. Contrast to MPI on distributed
memory architecture, which is said to has a local address space. An object allocated by
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one process is not visible to others processes. Thus users have to explicitly communicate
to other processes to access the object.

However, the address space is divided into parts. The access of object crossing partition
is exposed to programmers with special syntax. In such a way, the locality of object is
visible for programmers. Because the cost of memory access to local partition and to
remote partition is totally different, the locality-awareness is very important for achieve
performance.

To put it together, the APGAS model is suitable for the hybrid cluster of shared memory
architecture because it provides the programming convenience of shared memory and the
locality awareness for controlling data layout which is critical to achieve high performance
and scalability

Modest Abstraction Level

As mentioned in previous section, a parallel programming model/language can be classi-
fied by its abstract level. X10 provides automatic communication and synchronization but
leaves the decomposition and mapping for programmers to do manually. Because the de-
composition and mapping are depended on parallel algorithms and underlying hardware,
leaving these tasks to programmers gives the opportunities of manually tunning to maxi-
mum performance. The lock manipulation and message sending/receiving can be handled
by compiler very well. Therefore, automatically do these tasks will relief programmers
from onerous tasks and good for productivity.

Hardware and Algorithms Independence

X10 language is design as an general purpose parallel programming language. It can run
on different hardwares. It can run on SMP, cluster or CUDA environment. Moreover,
X10 does not specify what parallel algorithm should be used. Users can do SPMD or data
parallel with X10.

New Programming Primitives

X10 defined some primitives and built-in objects for concurrent and distributed program-
ming. For concurrent programming, X10 offers the async, finish, atomic and when
primitives to instead threads and locks. For distribute programming, X10 offers the
Place, Dist, Region and DistArray objects[18].

2.2.2 Demerits of X10

However, as a parallel programming language designed for HPC, there are disadvantage
of X10 that make it less attractive for general purpose programmers.

First of all, X10 is less expressive compared to modern dynamic programming
langauges[19]. Because X10’s syntax is consistent with Java, so it has similar expres-
siveness to Java. For example, users have to close every statement with a semicolon.
Moreover, X10 is original designed for HPC programming which is mainly numerical
oriented computing. To handle general application development, X10 is less advantage.

Second, X10 is a statically typed language. The type system in X10 goes further than
the type system in Java. X10 has type constrain and generic type. These features are
powerful. However, these features are only make sense to framework developers. For
general programmers they are just make code is hard to read and write. For example, to
define a lambda(function) in X10 looks like:

val fun:(int)=>void = (i:int) => {// body}
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Compared to do the same thing in Ruby:
fun = lambda {li| #body}

Although statical type and dynamic type which is more productivity is still arguable and
hard to give a objective conclusion, recently research shows that the type system is not
really as helpful as it seems to be[20]. We believes that modest type system can make
code more understandable and maintainable (type declaration can be used as document),
but dynamic type is easier to get hands on.

2.3 Overview of Ruby

Ruby is a scripting language and is famous for its ease to use and high productivity. Ruby
is always used as “glue” for connecting different components written in other languages
during software development or to write prototype in early phase of development. How-
ever, recently, Ruby is also used to develop some large-scale and long running applications,
such as web applications, even enterprise development[21].

2.3.1 Main Features of Ruby

Although it is very difficult to clearly define why Ruby is high productivity, there are
some features make Ruby is very easy to use.

Dynamic Typing

The variables in Ruby has no compile type. So users don’t need to write the type for
variables. Although statically typed language can benefit from compile-time verification
and better IDE support, dynamic typing make it is easier to start coding — users do not
need to deeply consider and design the interface of a object( such as the type of method).
It is especially useful in the early stages of a project because the implementation may be
changed very often.

Duck Typing

For static object-oriented language (OOL) the interface of a object is defined through
type. And users need to confirm the type of an object then can call a method on it. For
example, in Java, following code is often seen.

if (a instanceof String) { // do something on string }

In Ruby, users do this by check whether an object has expected method by us-
ing respond_to? method and if it has the method, then invoke the method using
send (name) method.

This feature reduces the necessary of inheritance. In Java, if you want a class to behavior
like a String, you have to inherit the String class. In Ruby, you just define methods that
a string object should have.

Mixins and Singleton Methods
Ruby does not support multiple inheritance but it achieves the same effect with mix-in.
If a class includes a module, then all methods defined in that module will be mixed into
the class. Users can use the included methods as they as defined on the class.

The mix-in is possible because that Ruby allows the dynamic modification of the class
at runtime. This character is known as open-class. Singleton method is another feature
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that benefits from the open-class character of Ruby.

Singleton method means a method defined on an instance. It breaks the general think
that the behavior of an instance is determined by its class. It enables programmers to
specify behavior for a particular instance.

Blocks and lambdas

The block/lambda in Ruby is first-class object. Users can treat them as data and pass
them among objects. Moreover, Ruby support anonymous lambdas. This features make
it possible to implement block-scoped constructors that look like language features. It is
also one reason that Ruby is good for creating DSL.

Literals
Ruby has literals expression for almost every build-in types.

Strings, e.g., "string"

Numbers, including binary, octal, decimal, hex
Arrays, e.g., [1,2], %w(each word is element)
Hashes, e.g., {key=>value}

Blocks, e.g., {block body}

Regular expressions, e.g., /regexp/

These literal expressions simplify the creation of new objects.

Syntax Sugars

Ruby defined lots of syntax sugars so that users can use whatever they favor to. For
example, In X10, users can write a loop structure with either for or while. In Ruby,
except while and for, users can also express loop by using loop, until, or each/times
methods.

2.3.2 Demerits of Ruby

As a popular mainstream programming language, it is would be very impact if Ruby was
adequate for parallel programming. However, there are some issues for applying Ruby in
parallel programming.

First of all, Ruby cannot support parallel execution. Ruby do support threads. From C
Ruby 1.9, the thread model in Ruby is implemented by native thread. So the Ruby code
can run in concurrent. However, due to the use of Giant VM Lock (GVL) in implemen-
tation, the Ruby VM cannot support multiple threads to run simultaneously. Ruby VM
employs a mutual exclusion lock to avoid sharing code that is not thread-safe with other
threads. It means, when a thread in Ruby try to run, it has to first require the GVL.
Only after the thread gains the GVL, it can run. The result is that at any time there are
only one thread is running.

Second, in shared memory environment, as most mainstream programming language,
the concurrent coding in Ruby is achieved by using the thread/lock mechanism. However,
the practical development experience tells us that it is very difficult to write correct
and efficient parallel program with thread and lock. The thread/lock is too low level.
Programmers have to manage the lock and synchronous the threads by themselves. It is
easy to suffer from the dead lock problem or over synchronization that hurt performance.

Third, Ruby itself does not support distributed programming. There are some libraries,
such as dRuby|[22], that implement the distributed programming using technique similar to
remote method invocation(RMI). However, the lesson we learned from Java RMI tells that
it is hard to achieve good performance and scalability[23]. Moreover, the basic problem
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with the RMI or RPC techniques is that they does not effective on cluster of multicore
systems.

2.4  Goal

X10 is a powerful parallel programming language, while Ruby is a easy-to-use sequential
programming language. The main goal of our DSL is to bridge the gap between the Ruby
and the X10 language to combine the advantages of the 2 languages to achieve parallel
programming. To achieve the goal, we make following key design decisions.

Develop a DSL Based on Ruby

As we pointed in previous chapter, to achieve parallel, we can introduce a new language
or implement as libraries(frameworks, DSL) to extends a host language. Because we want
to combine the expressiveness of Ruby and parallel power of X10, a DSL is a promising
approach. Furthermore, because X10 is less expressive and concise than Ruby, it is not
fit to host a DSL. Therefore, we decide to build a DSL on Ruby to use the Ruby syntax.

Be Consistent with Ruby
The DSL program should looks like original Ruby program. It means that 1)for existing
syntax, the semantics in the DSL should be the same as host language, 2) new introduced
syntaxes should follow Ruby’s conventions, 3) the DSL should implement most of Ruby’s
main features.

Following the Ruby-style make the converter is more difficult to develop, but we believe

that it is convenient for the Ruby users because they need to pay less effort to adapt the
DSL.

Introduce PGAS Model

Because Ruby lacks of programming model to address programming challenges on shared-
memory cluster environment, we decide to introduce the PGAS model in our DSL. This
model is also used in X10 and other parallel languages, such as UPC[24], and CAF[25],
and has been proved to be an effective solution for hybrid memory architecture.

Introduce New Primitives for Parallel Programming
Ruby uses thread and lock to express concurrent program. These primitives are too low
level. Thread-based parallelism on shared-memory system has been proved to be a hard
way to do parallel. On the other side, X10 has some high level primitives for concurrent
programming[17]. We decide to express concurrent using high level primitives from X10
to instead the thread and lock in Ruby.

Moreover, Ruby has not program model for distribute programming but X10 has. So
we decide to introduce the distributed programming model from X10 into our DSL.

Don’t Raise Abstraction Level
Considering the performance, we decide to keep the abstraction level of parallel program-
ming in our DSL at the same level as X10 language, which means that decomposition and
mapping tasks are left to users to handle explicitly.

So far, automatic parallelization has not been proven successful except in the scientific
fields. Because our main goal is to bridge the Ruby and X10, making a smarter compiler
is out of this research.
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Chapter 3
Language Design

In this section, we describe language features of the DSL. The DSL combine some features
from Ruby and some features from X10 language. We are aiming at writing parallel
program in Ruby style. The syntax of DSL is almost consistent with Ruby and most of
Ruby features are preseved. So Ruby users won’t feel discomfort with the DSL. However,
due to implementation limition, there are some features are not supported in the DSL.

3.1 Example of DSL

Before we discuss the design details, in this section, we present 2 example programs to
illustrate some of the DSL’s features. Through these programs, we can know what the
DSL looks like, how it expresses objected-oriented features and how parallel programming
is handled in the DSL.

Concurrent Programming Example

The example program 1 calculates the Fibonacci number by using the naive recursive
algorithm. For Ruby users they may be very familiar with the code. Because except for
2 statements, other statements are the same as Ruby. However, Ruby users won’t code
Fibonacci in the way that we showed here. Generally, Ruby users prefer more functional
programming style. To show the DSL’s object-oriented feature, the program uses a more
Java-style.

In the program, we define a class named Fib to represent a Fibonacci number. The
class has a field (instance variable) r to hold the value and a method run to calculate the
value. In the example, we calculate the Fibonacci 24 and print out the result.

In the run method, there are 2 new syntax, finish and async, to achieve calculating
the Fibonacci value in parallel. The async {block} spawns a new thread to evaluate
the following block and return immediately. So the evaluation of the block is done asyn-
chronously. The finish {block} waits all async evaluations that occur in the block are
finished. In the example, the Fibonacci (N-1) and (N-2) are calculated in two different
threads. When all calculations are finished, the value Fibonacci N can be calculated.

The most important thing demonstrated by this example program is that the DSL
achieves concurrent programming while the syntax is consistent with Ruby.

Distributed Programming Example
The example program 2 shows how to use distributed array to perform 12 +22 + ...+ N2
in parallel. In the DSL, we use Ruby-like syntax to express distributed constructs that
are imported from X10 language. The basic constructs are Point, Region, Dist and
DistArray. More details on distributed constructs are explained in later sections.

In this program, a distributed array is created and each element in the array is initialized
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class Fib
attr_accessor :r
def initialize(x)
Or = x
end
def run
return @r if Or < 2

f1 = Fib.new(@r - 1)
f2 = Fib.new(@r - 2)
finish {
async { fi.run }
f2.run
}
or = f1.r + f2.r
end

end

puts Fib.new(24) .run

Example 1: Example of Concurrent Programming in DSL

dist = Dist.makeBlock(1l..1000)
dist_ary = DistArray.new(:int, dist) { [ptl| pt[0] }

sum = lambda {Ix,yl| x+y}

result = dist_ary.map{lil| i*i}.reduce(sum, O0)

Example 2: Example of Distributed Programming in DSL

to the value that equals to the element’s index. The index of a distributed array is
represented by the Point object in the DSL. Similar to creating a Ruby Array object, the
new method of DistArray can take a block to perform initialization. Different from Ruby
Array object, the DistArray can only contain same type objects. The first argument of
new method is used to specify the type of the DistArray.

Other point showed in this example is that the function definition is the same to Ruby.
By using the lambda syntax, users can create a function and then pass them around as
value. In the program, 2 functions, product and sum, are defined. The map method on
DistArray object will perform the passed function at each distributed places and generate
a new array to store values. So the calculation of product is done in parallel. The reduce
method perform the passed function on all points in a DistArray in an undetermined
order (depends on X10’s compiler) and return the result. Therefore, the sum function will
sum all elements in the array.

3.2 Object Oriented Features
In this section, we describe the object oriented features that the DSL should support.
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3.2.1 Classes, Inheritance and Open-class feature

The DSL support object oriented programming(OOP). The constructs for OOP are class.
The usage class are the same as Ruby. Following sample code shows how to define a class
with a method and then create a instance of that class.

class Foo # Define a class.
def foo # Define a instance method.
end
end
a = Foo.new # Create a instance.
a.foo # Invoke method on the instance.

Inheritance is also supported in the DSL. Same as Ruby, each class can has only one
parent class. If the child and parent class both has a method with same name, the method
defined in the child class overrides the method in parent class. Some other OOP languages
also support method overloads, such as Java, X10, but the Ruby does not. Therefore, the
DSL does not support method overload, too. Following DSL code continue the example
above and shows how to inherit a class and override a method.

class Bar < Foo
def foo # Override Foo#foo method.
end

end

Open-class is a feature that differentiate Ruby from other OOP languages. The DSL
supports this feature. Open-class means that the class defined in a program can be
changed at runtime. Users can append new methods or define new fields to a class that
has already been loaded at runtime. Compare to Java, a loaded class is not allowed to be
changed™!. Following DSL code clarifies what open class means.

a = "string"
a.foo # Error! String class does have foo method.

class String

def foo # Append method foo to String class.
|Ifooll
end
end
puts a.foo # Prints "foo".

3.2.2 Modules and Mixins

Modules and mix-in feature in Ruby is used to break through the limitation of single-root
inheritance structure but also avoid the trouble of multiple inheritance. The DSL support
these features and the usage is the same as Ruby.

Just like a class, a module can contain constants, methods and classes. But a module
cannot be instantiated and inherited. To access the methods defined in a module, users

*1 Bytecode instrumentation can bypass this limitation.
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need to include that module into a class. After that, the class can use methods defined
inside a module as they were its own members. A class can include multiple module.
Following DSL code demonstrates the usage of modules and mixins.

module A # Define a module.
def foo # Define a method inside the module.
||fooll
end
end
class B
include A # Include the module.
end
puts B.new.foo # Prints "foo".

3.2.3 Type Annotation

Because Ruby is a dynamically typed language, there is not type information can be used
at compile time. X10 is a statically typed language and it require type information to pass
the compilation. Although dynamic typing can be handled by the DSL implementation,
explicitly defining types can help to reduce the overhead of dynamic method dispatch at
runtime. Therefore, the DSL provides type_def and type_var to annotate type in source
code.

The type_def defines types for the next statement. Annotation in the following exam-
ple, means that method foo takes 2 int type argument and return a int type value.

type_def :int, :int, :int # DSL code to annotate type
def foo(a, b)

a+b
end

The type_var defines a variable that store the type values and can be used only inside
code translator. Following code define a variable whose name is a and value is a list of

types.

type_var :a, :int, :int, :void

3.2.4 Methods

We have shown how to define methods in classes or modules. This section gives more
details and describe differences between DSL and Ruby on methods.

In Ruby, there are 3 kinds of methods: class/module methods, instance methods and
singleton methods. In the DSL, we implemented the latter 2 types.

Instance Methods

The instance method is defined on a class and belongs to instances of the class. An
instance method is also called class member because it is defined in the body of a class.
The definition and usage of an instance method in DSL is same as Ruby. Following code
shows how to define a method and invoke it in the DSL.
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class A
def foo(s) # Define a method on class A.
puts s
end
end
A.new.foo("hello") # Print "hello"

Singleton Methods

The singleton method is supported in the DSL. A singleton method is a method defined
to a specific object rather than to a class. Many of the methods in the Ruby library are
singleton methods. The syntax of singleton method in the DSL is same as Ruby. Here is
an example that shows how to use singleton methods in the DSL.

class A; end

a = A.new

def a.foo # Define a singleton method to the instance a.
"fOO"

end

class << a # Other format for define singleton methods
def bar

|Ibarll

end

end

puts a.foo # Prints "foo".

puts a.bar # Prints "bar".

A.new.foo # Error! Method foo is not defined in class A.

Class Methods
The instance method is what we have seen in previous section. A class (or module)
method belongs to the class/module itself. And users can invoke a class method by using
the syntax Classname.method.

We temporally give up the implementation of class/module method because it is less
used than the other 2 kind of methods.

Passing Arguments and Returning Values

In DSL, passing arguments into methods and returning values from methods are similar
to Ruby but some features are not supported. We list these unsupported features below
to avoid confusion.

1. Default arguments. In Ruby, users can specify default values for arguments. Cur-
rently, we does not implement it.

2. Multiple arguments. In Ruby, a method is capable of receiving an uncertain num-
ber of arguments. This action can be simulated by passing an array containing
arguments to a method. However, we do not implemented it in the DSL.
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3. Parallel assignment. In Ruby, the code a,b = 1,2 will assign value 1 to variable
a, 2 to variable b. We does not support this feature in DSL due to thread safety
considering.

4. Returning multiple values. A method in Ruby can return more than one values.
Returned values are wrapped into an array. Because the parallel assignment is not
available in the DSL, the returning multiple values feature is less useful. So we does
not implement it in the DSL.

All these features are useful. We plan to support them in the future.

Visibility
In Ruby, methods has 3 level of visibilities: public, protected and private. In the DSL,
we support public and protected level.

As the name suggests, public methods are totally public and they are accessible outside
the object in whose class methods are defined. They are default visible level in Ruby.

private methods are only accessible inside the object in whose class methods are
defined.

protected methods are similar to private methods but the limition is a little loose. A
protected method can be invoked 1)inside the object in whose class methods are defined,
or 2) if the receiver object is an instance of the class who defined the protected method
and the receiver object is inside the class’s instance.

The protected level is equal to private level in the X10 language. The public level
in Ruby and X10 are same. There are no corresponding level in X10 to Ruby’s private
level. The private level in Ruby is meaningless because users can access them by using
the send method to invoke by name.

3.2.5 Blocks

In Ruby, a chunk of codes between curly brackets or do. .end is treated as block. Blocks
is known as anonymous lambda or anonymous function in other languages. The DSL
support the block features and the usage of block is almost the same as in Ruby.

A block can take parameters like method. Users can also turn them into named Proc
object. Users can yield a block or invoke call method on Proc object to execute it. And
blocks are closures, which means they can store the values of local variables that are in
the scope in which the block is declared. Following DSL code shows how to use them.

a = lambda { puts "a" } # Literal Proc definision.
a.call # Prints "a"
def foo
yield 1
end
foo{lx| puts x} # Invoke an anonymous block

In Ruby there are 2 syntax to create an Proc object, which are lambda {block} and
proc {block}. However, in the DSL, we only support the 1lambda syntax to avoid confu-
sion. The 2 kinds of block syntax are almost the same except for the return statement in
the block has different meaning. The return statement in lambda block will return from
the lambda to the place of invocation. However, the return statement in proc block will
return to the location where the Proc object is defined.
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3.2.6 Variables

The variables in the DSL are quite different from Ruby. First, the DSL has the conception
of immutable variable, which Ruby does not have. Second, mutable class variable and
mutable global variable in the Ruby are not supported in the DSL. Third, the DSL
introduce the global reference conception from X10.

Immutable Variables

First of all, all variables in the Ruby are mutable. It means that a variable can be
reassigned many times, even for constant. The DSL is differ from Ruby here by introducing
the immutable variable conception. An immutable variable cannot be reassigned after
initialization. Reassigning an immutable variable will get compile time error.

In the DSL, users can declare a variable is immutable by prefixing val_ to a variable
name. Similarly, by prefixing var_ to a variable can make the variable is mutable. Further
more, if the mutable variables’ type can be confirmed, either by type annotation or type
inference of translator, then reassigning to different type object is not allowed. Here is an
example to use local variable in the DSL.

immu = 1
immu = 2 # compile error

var_mut = 1
mut = "string" # Compile error

The immutable/mutable rules for different kinds of variable in the DSL are:

1. Local variables are immutable by default.

Parameters are always immutable.

Fields (instance variables) are mutable by default.

Constant are always immutable.

Reassigning immutable variables gets compile error.

It is allowed to reassign different types value to a mutable variable only when the
type cannot be confirmed at compile time. Otherwise, compile error occurs.

oot

There are 2 reasons why we employ immutable variables in the DSL. First, X10 language
distinguishes between immutable and mutable variables. When we implement the DSL
in X10, we have to face this problem. It is convenient for code generation to employ
immutable variable because the definition of immutable variables in X10 does not require
type.

Second, the local variables and parameters are generally used as immutable. Reusing a
local variable for different purpose is a bad programming habit and in practical it is rare.
Therefore, we believe this exception would not effect the Ruby style programming.

Class Variables, Global Variables and Constants
There are class variable, global variable and constant in the Ruby language. However, in
the DSL, these tree kinds of variables are less different.

In Ruby, a class variable (@@var) is defined for a class and is shared among all in-
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stances of that class. A global variable ($var) is accessible from anywhere in the Ruby
program. The scope of constant in Ruby depends on the declaration position. Constants
declared within a class or module are accessible within the context of that class or module.
Constants declared outside of a class or module are accessible globally.

In the DSL, first of all, mutable global or class variables are not supported. Because
the DSL is supposed to support parallel programming and shared mutable variables are
not thread safe. For the similar reason, in the DSL, reassigning a constant is not allowed,
which is acceptable in Ruby language. Therefore, in the DSL, immutable global and class
variables are less different from constant.

Moreover, because the DSL employ the PGAS moduel, so the meaning of global is
different from Ruby. In the DSL, a global variable is only visible in the place (The place
conception is explained in the section ?7) where the variable is defined but not available
from entire program. To make a variable available from different places, users must use
global reference that described in next section.

Following code shows how these variables are used in the DSL.

$g = "g"
$g = "f" # Error! "global" variables are immutable.
C1 = "c1"
class Foo
@Qcls = 1; C2 = "c2"
def foo
return @Q@cls
end
def bar
puts $g, C1, C2 # Cl’s scope is the same as $g
end
end

a = Foo.new; b = Foo.new
a.foo == b.foo # true
a.bar # print g, cl, c2

In brief, the syntax of global and class variable is preserved in the DSL but the usage
of variables defined by these syntax is different from Ruby: 1) Variables defined like Ruby
global variables and constants declared outside a class or module can be visible for any
code in the place where they are declared; 2) Variables defined like Ruby class variables
are visible among all instances of a class; 3) Constants declared inside a class or module
can be visible within the context of that class or module. All these three kinds of variable
are immutable.

Global References
The DSL employs the PGAS module that is used in the X10 language. The address
space is partitioned. Each address partition is represented by Place object in the DSL.
An object exists only in the place where it is declared and cannot be refered from other
places. To make a variable referable cross multiple places, in the DSL, users must use the
GlobalRef object to wrap the variable.

Underlying, a global reference (not the value wrapped in it) will be serialized by X10
runtime so that it can be transmitted to different places. However, to use the value that
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Table. 3.1. Control Structures in DSL

category syntax
case. .when;

Selection Structures if; postfix if; if..then. .else; if..elsif; begin..end if;
unless; postfix unless; unless. .else; begin. .end unless;
for..in

while; postfix while; begin. .end while;

Repetition Struct
CPEILION SLIUCtures until; postfix until; begin. .end while;

loop block
Exception Handling rescue; ensure; else; retry; raise
Others redo; next; break;

wrapped inside a global reference, users need to shift back to the place (Place changing
is explained in section 3.4.2) where the global reference is created. The value can be
retrieved by calling the apply method on the global reference. Following code shows the
usage of global reference in the DSL.

s = "string"
gref = GlobalRef(s) # Wrapper a object
at(gref.home) { # Shift place

s = gref.apply() # Retrieve the value
}

3.3 Control Structures

Ruby has many control structures(about 13). They are all supported in the DSL. For
clarity, in table 3.1 we summary the control structures that are available in the DSL.

Both Ruby and X10 are structured programming language, so the control structures
in 2 languages are similar. For example, both languages support exception handling. So
exception handling structures can be implemented in the X10 language.

One difference between our proposed DSL and Ruby is that the redo and break in
the DSL can only be used inside a loop. In the Ruby, redo goes back to the begin of
a block and break leaves the block. Because they may be misused to break the object
initialization, we decide only allow them be used inside loop. In the Ruby and DSL, users
can pass a block to the constructor to perform initialization. Bad use of redo or break
in such blocks will cause the initialization never finish (redo cause dead loop) or finish
unexpected (break leave block).

3.4 Parallel Programming Module

The parallel programming module in the DSL consists of primitives for concurrent pro-
gramming and structures for distributed programming.

3.4.1 Concurrent Programming Primitives

The concurrent programming in the DSL can be achieved by using the following primitives
instead thread and lock in Ruby. These primitives comes from X10 language. We express
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them in a Ruby style in the DSL.

async {S} Spawn a new thread to perform S and return immediately. So the S is evalu-
ated asynchronously. Different from the Thread object in Ruby, the async cannot
be aborted or cancelled. And the async cannot return value. In following example
code, method foo and bar are executed in parallel.

1 async { foo() }
2 bar ()

finish {S} The execution of finish {S} will be blocked until all threads spawned by S
are finished. It is similar to the effect of invoking Thread#join method on each
thread defined in a block in Ruby. In following code, the method bar is executed
only when the thread spawned in the second line terminate.

1 finish {

2 async { foo() }
3 }

4 bar ()

atomic {S} The statement S in atomic block will be executed as one step. The execution
cannot be interrupted. Users can use atomic blocks to guarantee that invariants of
shared data. Following example show how to use atomic to achieve thread safety

in the DSL
1 Q@size = @size + 1 #not thread-safe
2 atomic {@size = @size + 1} #thread-safe

when (cond) {S} : The execution of statement S will be suspended until the condition
is satisfied. The condition evaluation is atomic with the execution of the block.
Following code implement a block pop method by using when statement.

1 def pop()

2 ret = nil

3 when(@ary.length > 0) {

a ret = array.delete_at(0)
5 }

6 ret

7 end

Notice that because the X10 contains these primitives, so the implementation is just
simply mapping DSL syntax to corresponding X10 code.

3.4.2 Distributed Programming Structures
We introduce following structures from X10 into the DSL to express distributed program.

Place The Place object represents a virtual computing resource. A place approximately
equal to a process. For example, it may represent a core in a SMP environment
or a node in a cluster environment. The variable access in local place is always
synchronized. And reference to remote place requires asynchronous action. Com-
munication may occurs for object access between different places. The Place object
cannot be created at runtime by users. The Place is the concrete programming
structure to express PGAS module.

Point The Point object is used to represent the index of an element in an distributed
array. In the DSL, we use the same syntax as Ruby array to access coordinate of
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a point. For example, following DSL define a 3-dimension point and access to the
first coordinate and the rank(n-dimension) of the point.

1 p = Point.new(4,5,6)
2 p[O] #=> 4
3 p.rank #=> 3

Region The Region object represents a collection of Point objects. It is used to control
the shape of an array. In the DSL, the Region is represented by using the same syn-
tax as the Range object in Ruby((n .. m) defines a Range object from n to m).
Multiple dimensions region can be expressed by using product operator(*). Fol-
lowing DSL code define a 2-dimension region and iterate over the point in the

region.
1 r=(1..3) * (1..3) # Define a Region object
2 r.each do |ptl|
3 puts pt # Print [1,1], [1,2],[1,3],
4 end

Dist The Dist object represents a distributed object that specify the mapping between
points and places. It is used to control what computing should be performed at
which place. In the DSL, users cannot define their own Dist object. There are
three kinds of predefined Dist object and users can get instance through factory
methods: makeBlock, makeUnique, and makeConstant. Following DSL code creates
a Region object and distribute points to different places.

1 r=(1..2) * (1..2) # Define a Region object

2 d = Dist.makeBlock(r) # Suppose there 2 places, then
3 # Points [1,1],[2,2] => placel
4 # Points [2,1],[2,2] => place2

DistArray The DistArray is used to represent an array that contains objects across mul-
tiple places. It has three basic methods, scan, map and reduce, to perform action
over elements in the distributed array. To create a DistArray object in the DSL,
users can use the constructor shown in following code. Different from general Array
object in the DSL, the DistArray object can only contain objects that have the
same type. The first parameter in the constructor specifies the element type.

1 d = Dist.makeBlock(1..5)

2 # Create a DisArray object and
3 # initialize the element by the index value.
4 dis_ary = DistArray.new(:int, d) { I|ptl| pt[0] }

at (place) S The at primitive is used to perform place shifting. In the DSL, code can only
directly access variables defined in the place where the code is evaluated. Therefore,
to access variables defined in other places, must change the place. Suppose there are
2 places pl and p2 and current the code is execution at pl. The code at (p2) {S}
will change place to p2 and evaluate S at p2. Finally return the value back to pl.
The at is synchronous construct.
Notice that the mechanism underlying the place shifting is serialization. X10 will
perform a deep copy of the value transmitted. So the variable referred inside at
block is different from the object referred by local variable, although the variable
names are the name.

Similar to the concurrent programming primitives, the implementation of distribution
programming model in the DSL is simply converting the DSL code to corresponding X10
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object.

3.5 Features Summary

In this section, we summarize the features supported in the DSL. Table 3.2 compare the
features among Ruby, X10 and the DSL.

From the results we can know that the feature defined for DSL are basically the same to
Ruby and plus concurrent and distributed structures that we learn from X10. The syntax
of the DSL are consistent with Ruby’s. Therefore, Ruby users won'’t feel discomfort when
programming with the DSL.

In addition to some detailed syntax in the DSL are different from Ruby, the dynamical
evaluation is not supported in the DSL. Dynamic evaluation means a string can be eval-
uated as Ruby code by interpreter at runtime. To support this feature, need an available
Ruby VM at X10 runtime environment. Compare the implementation cost to the benefits
of dynamic evaluation, we decided to drop this feature in our DSL.
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Table. 3.2. Features comparison among Ruby, X10 and the DSL(— stands for unavailable)

Feature \ example in Ruby \ example in X10 \ example in DSL
Object Oriented Features
Class class A class A class A
Headerless class - struct A -
Module module B abstract class B module B
Interface - interface A -
Inheritance class A < String | class A extends String | class A < String
Mix-in include B - include B
Open-class (support) - (support)
Final-class - final class A -
public public public
c s - protected —
Visibility
- package -
protected private protected
private - -
Methods
Singleton method def a.foo - def a.foo
Class method def A.foo() static def foo() -
Default arguments | def foo(a=1) - -
Multiple arguments | def foo(*a) - -
Parallel assignment | a,b=1,2 — —
Return multi-values | return 1,2 - —
Variables
Immutable - val a = 1 a=1
Mutable (always mutable) | var a = 1 var_a = 1
Local a=1 val a = 1 a=1
Instance @a var a @a
Class QQa static val a @@a(immutable)
Global $g - $g(immutable)
Constants Cons static final val Cons
Literal expressions
Sring "string" "string" "string"
Number 123; 1.23 123; 1.23 123; 1.23
Regexp \regexp\ - \regexp\
Array [1,2,1+2] [1,2,1+2] (fixed size) [1,2,1+2]
Hash {1=>"a||} _ {1=>lla"}
Block {lilbody} (a:int)=>{body} {lilbody}
Region - (1..3)*(1..3) (1..3)*(1..3)
Concurrent Programming
Thread Thread.new{} async{} async{}
Mutex.new atomic{} atomic
Lock when (cond) {} when (cond) {}
Thread#join finish{} finish{}
Distributed Programming
Point - new Point(1,2) Point.new(1,2)
Region - Region.make(1,3) Region.new(1,3)
Dist - Dist.makeBlock Dist.makeBlock
DistArray - new DistArray DistArray.new
Place - at(place) {3} at(place) {%}

Dynamically Evaluation

eval

eval "1+1"

‘ _

‘ _
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Chapter 4

System Design and Implementation

4.1 System Overview
The core components of the DSL implementation consist of the following parts:

An abstract Syntax Tree and AST builder The C Ruby release contains a Ruby syntax
parser ripper. However, the output of the ripper is a parse tree. For conve-
nience of later code generating, we define an AST and develop a AST builder which
consume the parse tree and generate the AST.

A code generator The code generator output X10 source code from based on the AST.
The assistant system consists type infer, return statement infer and scope checker.
First of all, the assistant system will analysis the AST and append necessary infor-
mation to it. Then the code generator will emit X10 code from the AST.

Runtime libraries The generated X10 code should be compiled by X10c with the runtime
libraries together in X10 environment. The runtime libraries contains the extension
functionalities we developed for X10, for example, the reflection feature, the array
and hash object, the regular expression libraries, etc.

AST

Parser Builder

A4

AST

DSL Code »| Syntax Tree

Code Inference
generator system

\ 4

X10 Code

Runtime
libs

Fig. 4.1. Structure of DSL implementation
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| \ |
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VarRefNode
CallNode

|FunctionCaII | | BinaryCall | | UnaryCall |
ClassNode
4| LiteralNode |o

| StringLiteral | |RegexpLiteraI | | |

NewStmtNode
DefineNode

Fig. 4.2. Layout of AST

4.2 Parsing and AST

In this section, we will explain how we parse the source code of DSL and to build an
abstract syntax tree.

4.2.1 Parsing

C Ruby 1.9.x release contains a parser for Ruby script — ripper. We use the ripper
to generate a parse tree (also known as syntax tree), and then travels the parse tree to
generate an abstract syntax tree (AST).

The ripper is a event driven parser. It has some predefined events, such as stmts_new
which means starting a new statement, string_literal which means a literal string
statement and so on. The ripper steps through a Ruby script and when meets a prede-
fined event, it tries to invoke method associated to that event. In such a way, users can
register methods to interested events to get meta data, such as the line number, the col-
umn number, the token name, etc.. With these data, it is easy to construct a parse tree,
in which the input symbols are grouped into subtrees. Subtrees represent the structure of
phrases.

Because the parse trees are specific to grammars and the grammar of Ruby is very
flexible, it turns out the parse tree is full of noise. For example, the conditional statement
in Ruby has if, postfix if, unless and postfix unless 4 different formats. And each format
generates different parse tree. So the parse trees are inconvenient to walk and transform.
To overcome this problem, we generate a abstract syntax tree from the parse tree.

422 AST Layout

The UML in figure 4.2 shows the basic layout of we defined AST. The root object is named
as Node, in which some basic methods are defined. Other main nodes are explained in
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Table. 4.1. Main AST Nodes and Explanation

Node Explain

VarNode Represents definition of a variable.
VarRefNode Represents a reference to variable.
ClassNode Represents definition of a class.
DefineNode Represents definition of a method.
NewStmtNode | Represents a single statement(logically).
CallNode Represents invocation of a method.
LiteralNode represents literal expressions.

the table 4.1.

4.2.3 Generating AST

The AST builder is implemented by using the external tree visitor pattern[26], in which
the tree walking and action execution code are separated from the AST node definitions.
The visitor object in this pattern is generally implemented with object-oriented feature
such as method overload and need a big switch case to switch on token type. For example,
to execute code on a node, the visitor object would be implemented as (in Java):

#Java code
public void parse(Node n) {
switch (n.token.type) {
case Token.ASSIGN: parse(AssignNode)n); break;
case Token.ID: parse(VarNode)n) ; break;
//and so on ...
default:
throw new Exception("Unsupported Node type");

However, thanks to Ruby’s introspection features, we can avoid the big switch case by
invoking method by name. The visitor object in Ruby will be implemented as following;:

def parse(node)
_send__("parse_" + node.node_type, node)

end

This implementation is conciser than the former one that dispatch with switch case. And
the tree walking can be simply implemented by recursively invoke the parse method in
visitor.

4.3 Converting DSL to X10

In this section, we describes how DSL’s features are implemented in X10 language.
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Fig. 4.3. Object Oriented Conceptions Mapping between Ruby and X10

4.3.1 Classes, Objects and Methods

In this section, we describe how we convert DSL classes, objects and methods into X10.
They are the cornerstone of implementing object oriented features. To put simple, we de-
fine ruby.RubyClass, ruby.RubyObject and ruby.RubyMethod to represents DSL classes,
objects and methods, respectively. The diagram 4.3 shows the relationships.

Classes

We cannot directly convert DSL class to X10 class. The classes in X10 are static. The
methods and fields defined in a class are fixed at runtime. But classes in DSL can be
dynamically modified. Users can add or change methods or fields in a class at runtime.
Moreover, the static class feature of X10 comes from Java. X10 is implemented by Java
language and run on JVM. JVM does not allowed to modify a loaded class.

We defined an X10 class (ruby.RubyClass) to represent DSL class. The parent class is
hold by one field in the RubyClass. Therefore the instances of RubyClass can be chained
together to implement the hierarchy of class inheritance. RubyClass also hold a method
table that is a hash table with method names and method as key/value pairs. Therefore,
each class defined in our DSL is converted to an instance of RubyClass. And modifying
methods in a class is equal to adding or updating method table entries.

Objects
Like all Ruby objects are inherited from a Ruby class named Object, all DSL objects
are inherited from an X10 class named ruby.RubyObject. The RubyObject has a field
that store the class object(RubyClass object) of the object. So the class-instance(object)
relationship can be satisfied. The Ruby0Object also has a methods table and a fields table.
The methods table is same as the one in RubyClass. The fields tables is a hash table that
maps the instance variable names to values. The method table in the RubyObject is used
for implement singleton method. We will describe it later.

Creating an object in DSL is converted to create an instance of RubyObject, set the
object class and initialize the filed table.

Methods
DSL methods are represented by X10 class ruby.RubyMethod. ruby.RubyMethod is im-
plemented as an abstract class. Each method in DSL corresponds to one subclass of
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Fig. 4.4. Implementation of mixin

RubyMethod. Singleton pattern is employed to make sure there is only one instance for
each class. Therefore each method at runtime is unique. The instances of RubyMethod
are stored in methods table of RubyClass or RubyObject.

Method objects can be invoked by invoke method that defined in RubyMethod class.
Because the method object does not belong to any class, the first argument of invoke
methods must refer to the receiver object. The arguments of a method invocation can be
passed to the invoke method by wrapping in a list. To save the overhead of creating list,
and decompose arguments from the list, the RubyMethod class defined a set of abstract
invoke methods that take from 0 to 10 arguments. For the method with more than 10
arguments, there is a general purpose invoke method that takes an array as argument.
The subclass of RubyMethod can override a invoke method according to the number of
argument it required.

When store into the table method, the method name is mangled to be used as key. The
rule of name mangling is that method name follows a $ character and follows the number
of arguments. Because the DSL does not support method overload, the method name
with argument number can make sure the mangled name is unique in side a class.

4.3.2 Mixins and Open class

Before explain how mixin and open class feature are implemented, we need to clarify how
method is resolved.

Resolving Methods
The procedure of finding the correct method to be invoked is known as resolving a method.
The rules for resolving a method in our implementation is simple.

First find the method on the receiver’s method table. If not found,

Next retrieve the receiver’s class object and then find method on the class object. If still
not found,

Finally repeatedly find method on the class’ parent class until reach the root class whose
parent field refer to null object.

With the knowledge of how a method is resolved, it is easy to understand how to
implement override, mixin and singleton class.
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Mixin

In DSL, a class can include modules to bring methods that are defined in modules into
the class’ scope. Similar to DSL classes, DSL module is represented by an X10 class
x10.RubyModule that maintain a method table. RubyModule can generate RubyClass
object that contain a reference to the RubyModule object’s method table. Therefore,
mixin is implemented by inserting the RubyClass object generated from module object
into the class’s inherited class chain. Figure 4.4 shows the image of mixin. Notice that,
mixin a module, won’t change the class’ parent class.

Open Class

Open class feature represents as at runtime 1) defining new method to a class and 2)
defining new method to an object. The later one is also known as singleton method. Be-
cause the implementation approach behind are similar, here we only explain the singleton
method.

In DSL, singleton methods are defined on an object but not in class. So other instance
of the object’s class, cannot use these methods. Singleton methods is easy to implement
with our class structure. Because each instance of X10 RubyObject class corresponds to
a object in DSL, defining singleton methods just means adding methods to the method
table hold by Ruby0Object object. The translation between singleton method definition in
DSL to add method in method table is handled by code converter automatically.

4.3.3 Method Invocation

Method invocation in our implementation is handled by 2 ways. First, with dynamic typ-
ing, methods are invoked dynamically by the method name. Second, with type annotation,
methods are called directly.

Invoking by Name

Ruby is a dynamically typed language, so no type information is available at compile
time. When compile the DSL code to X10, the converter has no idea on the object’s type
and what methods are available. In this case, method is invoked by method name. Here
is an example.

a+b # DSL code
invoke$(a, "sum", b); # Generated X10 code

The invoke$ method will first resolve the method through its name as described in
section 4.3.2 and retrieve a RubyMethod object. If the method is not found, then an
UndefinedMethodException will be throw. If the method is found, then execute the
method by calling invoke method defined on the method object.

Directly Invoking

Dynamic invocation is flexible, but slow. Each time to invoke a method, must first find
the method and then invoke it. To speed up the method invocation, the converter will
generate native X10 method and call them directly when following conditions are all
satisfied.

1. The type of object is known at compile time. The converter can infer some simple
types. And for those that cannot be inferred, users can use type annotation.
2. The method invoked on the type is visible at compile time.
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3. No open-class feature is used on the class.

m Type Annotation To know the type information at compile time, there are 2 approaches.
First is type inference. Concurrent implementation of converter perform easy type infer-
ence from assignment. For example, given DSL code a = 1, then the converter can infer
that variable a is an integer. Because it is impossible to completely infer type, currently,
we make little effort on type inference.

Second, to use type annotation to mark type explicitly. This is a very straightforward
solution. It gives programmers opportunity to use annotation to attach type information
in the DSL code. We defined the following two syntax to annotate type as mentioned in
previous chapter.

type_def <types>, <type2>,
type_var <var_name>, <typel>, <type2>,

The type_def will define type(s) for the next statement, either a method definition or a
variable assignment. To define types for a method definition, the arguments of type_def
will be treated as types for the method arguments and return value sequentially. Here is
an example.

type_def :int, :int, :int # DSL code to annotate type
def foo(a, b)

a+b
end

def foo(a:int, b:int):int { # Generated X10 code
return a + b

}

The type_var is similar to type_def but define a variable whose value is types. It
is used to avoid repeatedly annotating the same type. For example, following DSL code
equals to the above code.

type_var :a, :int, :int, :void
type_def :a
def foo(a, b); end

Obversely, annotation is easy to implement but dirty the code. It also against the
Ruby’s philosophies that to make code as concise as possible.

m Check Open-class Feature Even if the type is known at compile time, it is not enough
to call method directly. Because the open-class feature, the method invoked may does
not exist at compile time. In this case, the converter will generate X10 code to invoke the
method by its name.

Furthermore, even if the method is visible at compile time, it is still not safe to call
method directly. Because the method may be overridden at runtime. To handle this
problem, the converter will check whether open-class feature is used on a class and set a
flag in each generated class to indicate whether the open-class feature is used. The direct
invoked methods will check this flag before execution. If the flag is true, which means
open-class feature is used on the class, and then the method invocation will fall back to
dynamic invocation.
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4.3.4 Local Variables

Basically, the local variable in the DSL will be converted to X10 local variable. However,
there 2 special case need to handle: 1) immutable/mutable local variables and 2) local
variable enclosed in the block.

Immutable Local Variables

As mentioned in the chapter 3.2.6, in our DSL, the local variables are immutable until it
is explicitly declare as a mutable variable. The mutable variable is declared by prefixing
var_ to the variable name. The type of value that is reassigned to the mutable variable
will be checked. If the type is different from previous, compile time exception will be
thrown. Reassignment to a immutable value will get a error at compile time.

Enclosed Local Variables
In Ruby, the local mutable variable is accessible in the block but in X10 it is not. In X10,
only immutable local variable or mutable filed can be access in a block.

In the DSL, we follow the Ruby’s convention that mutable variable should be accessible
inside a block. So instead store local variable on stack, we store the local variables that
are used inside a block on heap.

First of all, the code generator will check how the local variable is used in the code. If
it finds mutable variables defined outside a block are used in the block, it will mark the
variable to be replaced. Next, the code generator will define an inner class, which has a
public field, inside the class in which the replaced variable lives. And then, the definition
of the mutable variable will be replaced by creating an instance of the inner class and
assign the value to the public file inside the inner class. Finally, all access to the mutable
variable will be replaced by the reference to the public field. Following is a pseudo code
show the implementation.

DSL code: Generated X10 code:

static final class valueHolder { public i:Any; }
val ins = new valueHolder();

var_i = 1 ins.i = 1;
finish async {i = foo()} | finish { async { ins.i = foo(); }3}
i+=1 ins.i +=1

4.35 “Global” Variables

First of all, as mentioned in chapter 3, the global variables here are not really global but
just accessible in local place. However, we still use the name for convenience.

The Ruby’s global variables and constant defined outside any module or class, are visible
to all code in the place where the variable/constant are declared. Moreover, the global
variables and constants are immutable for the sake of thread safe.

Global variables and constants are compile to X10’s public static val variables that
contain in a public static final class. The class has a private constructor so that no
instance can be created. Here is an example.
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#DSL code
$value = 1
Const = 2

# Generated X10 code

public final class GlobalVar {
private def this () {//no instance}
public static val value = 1;
public static val Cons = 2;

}

GlobalVar.value = 1;

GlobalVar.Cons = 2;

4.3.6 Wrapper Classes for Built-in Types

Ruby has some built-in types, such as Fixnum, String, etc.. In our implemented
runtime, these built-in types are wrapped to objects that are inherited from RubyObject.
For example, the X10 ruby.rtt.RubyFixnum wraps the Ruby Fixnum object and
ruby.rtt.RubyString wraps the Ruby String object.

Providing the built-in type wrappers has 2 advantage. First, all runtime object are a
subclass of ruby.RubyObject. It is convenient for managing objects in runtime. Second,
we can simulate the behavior of Ruby built-in types. For example, string object in ruby
is mutable whereas string in X10 is immutable. Methods that change the string itself,
such as gsub!, reverse!, etc., can be simulated by changing the underlying value field in
the RubyString object. Currently, we provide wrapper class for String, Fixnum, Regexp,
Match, Array and File type in Ruby.

Moreover, we also provide wrapper classes for some of types defined in X10 language,
such as Point, DistArray and so on. These wrapper class define some new API to make
usage of them is like to Ruby. For example, Ruby users are used to use each method to
iterate an array. So the DistArray wrapper class provides the each method.

4.3.7 Control Structures

Most of control structures in DSL can be simply mapped to X10’s controrl structures.
However, there are 2 exceptions. First is case...when selection structure. Second is
exception handling.

Implement case..when

case. .when is similar to X10’s switch..case but much more powerful. The switch
statement in X10 is same as C language that the switch condition can only be integer
value. However, the case statement can accept any value, such as string or regular
expression. Moreover, each when statement can have multiple values. If any of the value
match the case condition, then the following block will be evaluated.

So case..when in Ruby cannot be mapped to switch..case in X10. We convert
the case..when into if..else if..else block. Each case statement is converted to a
else if statement. Multiple match values are converted to multiple if conditions connect
with OR operator.
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Exception Handling

X10 provides exception handling primitives and basic functionalities are similar to Ruby.
The begin. .rescue. .ensure in Ruby is converted to try.catch..finally in X10. Mul-
tiple exceptions in one resuce statements is translated to multiple catch statements with
same block.

However, Ruby code can use retry to go back to the start of block and use else to
run code when no exception occurs in block. These two primitives are implemented in
X10 by wrapping the try. .catch block in a loop and using labeled continue and break
statements.

4.4 Parallel Programming Model

In this section, we shows how parallel programming model is implemented in the DSL.

4.4.1 Concurrent Programming Primitives

In our proposed DSL, we represent some X10 primitives (finish, async, when and atomic)
with Ruby syntax to replace the thread and lock for concurrent programming. Thanks
to the Ruby syntax feature that a method invocation can omit parentheses of arguments
and can be attached with a bock, we can represent new primitives in a way that looks like
build-in features for Ruby. For example, following DSL code represents the async usage.

async { 1 + 1}

In fact, Ruby interpreter treats the code as a method invocation with no arguments, as
following:

async() {1+ 11}

So the code translation is a easy. By using pattern match, the code generator filters out
these special methods from general method invocation and then emit corresponding X10
code. This kind of representation is also close to the grammar in X10. So either Ruby
users or X10 users can adapt to the syntax easily.

4.4.2 Distributed Programming Structures

The distribute programming model in the DSL is achieved by using 4 new type objects
— Point, Region, Dist and DistArray The construction of object follows the Ruby
convention, which is calling the new method on the class and the initial status can be set
by the attached block. For example, following code will create a distribute array over a
4x4 matrix and initialize all elements to 0.

val region = (1..4) * (1..4)
DistArray.new(:int, region) { 0 }

Three things need to notice. First, different from literal array, which is translated to
RubyArray runtime type, the DistArray can only contain same type objects and the type
is specified by the first argument. Second, to emit X10 code, code generator will translate
the initialization block to a function object in X10 and then pass it to the constructor as
an argument. 3) the literal for Region object is implemented by asterisk production of
two range literal as showed in the first line in the above example.
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Chapter 5

Evaluation

This chapter presents a evaluation of the DSL. The focus of the evaluation is on the
productivity and the scalability.

5.1 Productivity Evaluation

We evaluate the productivity of the DSL from 2 aspects: a) the resemblance between the
DSL and Ruby, and b) the code size of the DSL program.

5.1.1 Resemblance to Ruby

The major target of the DSL is to enable Ruby users to write parallel program in Ruby
style and one of the design principles is to make the DSL as resemble as possible to Ruby.
If the DSL is resemble to the Ruby, it is easy for Ruby users to learn and use the DSL.
Hence, the likeness to Ruby benefits the productivity of write parallel program.

The likeness to Ruby is measured by comparing the main features of the DSL to the
Ruby language. Table 5.1 shows the major functionalities of Ruby and the support status
in the DSL. As we state in the chapter 3, the dynamic evaluation is impossible to imple-
ment without a Ruby VM at runtime and the DSL does not support it. Other features
are all supported by the DSL.

Table. 5.1. Functionalities supported by DSL

Ruby Features DSL Support
Dynamic evaluation | No
Open class Yes
Singleton class Yes
Dynamic typing Yes
Mix-in Yes
Blocks and lambda | Yes
Literals Yes
Exception and GC | Yes
Object-Oriented Yes
Implicit return Yes

This result shows that users can write the DSL as they write Ruby script. Little effort
is required for learning the DSL.
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5.1.2 Code size

By measuring the code size, we can measure the effort required for writing a parallel
program. A program with a smaller code size will require less effort to develop and
maintain. Moreover, to achieve a specific functionality, smaller code size means better
expressiveness of the programming language. Therefore, the code size can be used for
productivity analysis.

We implement 5 benchmark programs with both X10 and the DSL and then compare
the code size of each implementation. The benchmarks we used are 4 benchmark programs
from X10 release and 1 benchmark program from Ruby release. The 4 benchmarks from
X10 are:

HeatTransfer A program that simulates 2-dimension heat transfer problem by using the
SPMD style implementation.

FSSimpleDist A program that implement the STREAM problem in the HPCC
benchmark[27] with distributed array.

NQueenPar A program that solves N-Queen problem is implemented with control flow
parallel style.

NQueenDist This program is identical to NQueenPar except that it is implemented with
distributed array.

We implement these benchmarks in the DSL.

The benchmark from Ruby release is regex-dna that reads in some DNA sequences
and then uses regular expression to count matched patterns in the DNS sequence. It is
original a sequential program, we implement the parallel version with the DSL and X10.

We use 2 metrics for measuring code size:

Byte size Measuring the size in bytes that a program source-code file occupies after re-
move comments, duplicate whitespace characters and then compress with GZip.

Effective Lines of Code(eLOC) The lines of code but does not count stand-alone braces
{} or parenthesis ().

The byte size of source code shows the real quantity of code for programmers to input.
It may be effect by the programming convention, for example, how to name a variable.
In the evaluation, to reduce noisy, all function name, variable, class name are same in
different implementations.

The eLOC is used widely. Comparing to the source line of code (SLOC) the eLOC is
more precise. It is defined by Resource Standard Metrics(RSM)[28] as a realistic code
metric independent of programming style. For example, given following code segment,
eLLOC will be 2 but SLOC will be 4.

if (x<10)
{
//comment
y=x+1;
}

The result of code size evaluation shows in table 5.2.
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Table. 5.2. Code size comparison for X10 and DSL

Benchmark Code size metric | X10 impl. | DSL impl. | DSL(annotation)
) byte size 559 536 278
Heattransfer LOC 91 24 9%
. . byte size 575 438 459
FSSimpledist LOC 35 31 31
. byte size 866 708 756
NQueenDist | 7 o¢ 57 51 56
byte size 812 625 684
NQueenPara | 1 ¢ 52 46 51
d byte size 412 222 222
reseeana 1 eLod 27 16 16

5.2 Scalability Evaluation

Scalability for parallel program refers to the ability that decrease the program execution
time by involving more processors. It is critical for parallel program and the major moti-
vation for programming in parallel. This section represents a evaluation of the scalability
for the program implemented with DSL and compare to the X10 implementation.

5.2.1 Evaluation Environment

All evaluation were performed on a system with 4 Intel Xeon(R) 2.40GHz CPUs that each
CPU has 6 cores. The system has 16GB memory. The OS is 64-bit Linux with kernel
version 2.6.26. The JDK is ORACLE JDK 1.6.0.21. The GCC version is 4.3.2. The X10
language version is 2.1.0. The execution time is measured with the time command.

We used 3 benchmarks: 1) NQueensPar, 2) NQueensDist, and 3) the regex-dna. All of
them are described in previous section. We measure the wall-clock execution time of the
X10 and the DSL implementation for each benchmark. For each benchmark, we measure
following 3 cases:

e X10 implementation.
e DSL implementation without dynamic typing.
e DSL implementation with dynamic typing.

To show the scalability, the computing set for the program must big enough. After
all, short running program does need to bother with parallelization. For the NQueenPar
benchmark, we calculate the problem with N = 12. And for the regex-dna, the program
matches 20 patterns on a 49MB input file.

The X10’s current Java back-end implementation does not support real distributed
execution. All calculation are performed in one JVM. So the distribution in benchmark
NQueensDist is simulated on the multi-core environment. This simulation cannot show
real execution time but can reflect the scalability. So it won’t be problem in our evaluation.

5.2.2 Results

Figures 5.1, 5.2 show scalability of NQueensPar and NQueensDist benchmark. We can
see, both parallel and distribute implementation have good scalability. For parallel style



Chapter 5 Evaluation 36

mX10 mDSL ~ DSL(dyn)

14

12
10
8
6 I
1 4 8 12 16 20 24

# Cores

execution time ratio (1 core /*core)
-

(8]

Fig. 5.1. NQueensPar Benchmark (N = 12)

mX10 mDSL © DSL(dyn)

10

0 - ' ' ' I l i
1 4 8 12 16 20 24

#Cores

Execution Time Ratio(1 core [ * cores)
ra w b o

=

Fig. 5.2. NQueensDist Benchmark (N = 12)

implementation, the best performance comes when the number of cores are 16. And
for distributed style implementation, the best performance comes when the number of
cores are 12. The DSL implementations of these 2 benchmarks are slower than the X10
implementation. However, scalability is similar.

Figure 5.3 shows the scalability of regex-dna benchmark. The figure shows the execution
time ratio of sequential Ruby version to parallel X10 and DSL versions. Execution with
1 core is slower than sequential Ruby version. As more cores are used to computing,
the parallel version becomes faster than sequential version. The best performance comes
when there 8 cores to compute. The benchmark does not scale well.
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5.2.3 Scalability Analysis

To figure out why the regex-dna benchmark does not scale well, we measure the execution
time of each step in the program. The regex-dna program redirects a large DNA sequence
from stdin and uses some regular expression patterns to find how many are matched in
the input DNA sequence. The program consists of 3 steps: 1/O reading, formatting the
read string and regular expression matching. Only the 3rd step is implemented in parallel.

Figure 5.4 shows the execution time proportion of each steps. From the figure, we can
know, although the regular expression match step gets speedup as more cores are used to
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computing, the I/O operation speed drops down. The figure 5.5 shows the ratio between
execution time of matching step in the parallel version and the sequential version. We can
see that the parallel parts in the program has a good scalability and the best performance
shows up at 16 cores.

We suspect that the I/O performances in X10 is effected by current X10’s thread sched-
uler. X10 creates a set of worker threads and put them into a thread pool at the initial-
ization phrase of X10 execution environment. During the execution of an X10 program,
“idle” worker threads are constantly searching for work. The idle thread tries to steal jobs
from a random selected thread. It is known as job stealing. It means that the thread that
is performing I/O action will be interrupted by other idle threads. More idle threads there
are, more interruption occurs on the I/O thread. Therefore, I/O performance decreases
as there are more cores.
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Chapter 6

Discussion

6.1 Productivity of DSL

The code size evaluation in previous chapter shows 2 interesting results.

1. The byte size of the DSL is smaller than the X10 for all benchmark.

2. The eLOC depends on benchmarks. For the HPC benchmark program, eLOC
of DSL and X10 implementation has no big difference. For the Ruby benchmark
program, the DSL implementation has smaller eLOC than the X10 implementation.

These 2 results demonstrate that our proposed DSL has equal or better productivity
than the X10 program. Further, smaller byte size of the DSL implementation mainly
benefits from the dynamic typing character of Ruby. Even for the program that two
implementation have similar eLOC, the DSL implementation has less code. This results
shows that our decision of supporting dynamic typing in the DSL is correct and receives
good payoffs. The overhead of dynamic typing is covered by the scalability of program as
the evaluation shows.

The fact that DSL has same abstract level as the X10 language explains why the eLOC
of HPC benchmarks are similar. We borrow the programming model and primitives
from X10 language for concurrent and distributed programming. Therefore, for the HPC
benchmarks that concentrate on parallel problem, the structures that used to construct
program are the same. From another aspect, the X10 language is also a modern, high
level language. The major features of Ruby, such as closure, exception handling, GC and
so on, are also supported by the X10. So Ruby has less advantage on this side.

The result that the eLOC depends on benchmark program points out that the require-
ment for popular parallel programming is different from HPC parallel programming. The
HPC program alway focus on how to productively and efficiently achieve parallelism.
However, for the general program, the requirement from sequential and parallel code are
mixed together. The different code size between the DSL and the X10 implementation
is largely due to the sequential part implementation. Therefore, a productivity language
for popular parallel programming should have good expressiveness for both sequential
program and parallel program. Our proposed DSL inherits the advantages of Ruby and
X10. Thus, it satisfies this requirement.

6.2 Dynamic Typing and Parallel Programming

When comparing dynamic typing language to static typing language, the performance is
alway be mentioned as a disadvantage of dynamic typing language. It is true that runtime
type check and dynamic method invocation has more overhead.

However, the scalability evaluation in previous chapter shows that the dynamic version
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and statically typed version has similar scalability. This result points out that in the
parallel environment, the scalability can cover the dynamic invocation overhead. And the
prevalence of multi-core CPU makes sure that the computing system is dominated by
parallel is not far anymore. So we believe that the language developers should turn their
focus from making a language run faster to making a language more scalable. And the
performance of a dynamic programming language is no more a big problem in parallel
computing environment.

6.3 Scalability

The results of scalability evaluation demonstrate that the DSL has similar scalability to
X10 language. Enabling the dynamic typing feature will introduce runtime overhead, but
does not hurt the scalability. With the good scalability, the DSL is adequate for parallel
programming.

However, the scalability is very difficult to achieve. First of all, programmers has to
choose suitable parallelism algorithms and model for the problem. And then programmers
have to implement the program carefully and correctly. Even all these are done perfectly,
the implementation of language may also effect the scalability. So it requires that the
programmers should have a deep understand of the language that they are using and some
tools to tuning the scalability. In our case, due to the X10 implementation, although the
parallel processing part of regex-dna benchmark scale very well, the entire program does
not scale.

Right now, there are less tools to help users to debug and tune the programs on X10
environment. Therefore, it is very tough to solve the scalability problem. This situation
reminds us that we have developed a Ruby memory profiler to help Ruby users to solve
memory related problems. It would be helpful if we could port the Ruby memory profiler
to the X10 in future.

6.4 Parallel Programming Model

Same as X10, the DSL employs the PGAS model to express parallel programming. Gen-
erally speaking, there are 3 models to express parallel: shared memory, message passing
and PGAS. In our case, we choose the PGAS because the PGAS model has similar pro-
gramming experience to the shared memory model, which general programmers are used
to.

Recently, the messaging passing model has been adopted by lots languages. For ex-
ample, the Go language uses the CSP model, the Scala language implemented the Actor
library. However, some programmers argue that it is hard to program in message passing
style. Gorlatch even pointed out that the send/receive in message passing is harmful to
parallel programming as the goto is harmful to sequential programming|[29].

One benefit we experienced from PGAS model is that PGAS model requires less efforts
to adapt program to different styles of parallel programming. For example, the bench-
marks that solve NQueens problem uses two different styles. One achieve parallel by using
concurrent control structures, which is shared memory style and other is using distributed
array. These two versions of implementation only have 3 different lines. From program-
mers perspective, they may start programming aiming at an shared memory system but
later they may want to change the program to a cluster system. The PGAS model make
the adaption work less effort.



Chapter 6 Discussion 41

6.5 Hybrid of Ruby and X10

Our proposed DSL can be considered as a hybrid of Ruby and X10 language. Ruby is a
dynamic scripting language. X10 is a static system language. In our research, we uses
DSL and source-to-source translator to bridge the large gap between these 2 languages.

From the development, we have learned that although completely converting all Ruby’s
features to X10 is difficult, most of Ruby’s features can be supported to preserve the
productivity of Ruby while achieve efficient parallel execution. It applies the Pareto
principle*!. The main challenge is converting Ruby’s dynamic features.

The dynamic character of Ruby represents at 3 perspectives: 1) the dynamic typing,
2) open-class(class can be modified dynamically), and 3) dynamic evaluation. We im-
plemented the first 2 features. The dynamic typing can be handled by combining type
inference, type annotation and dynamic method dispatch. And the overhead of dynamic
typing can be covered by the speedup gained from scalability.

What makes the implementation hard is the open-class feature. Because the class itself
is a mutable shared object at runtime, the implementation has to consider thread safety.
What makes the situation worse is dynamic evaluation. Because the input string can be
executed as Ruby source code, if users combine open-class with dynamic evaluation, it
would be very difficult to detect when a class is modified.

In our case, because the DSL does not support the dynamic evaluation, the action that
modified the class can be detected at the converting phrase and non-necessary overhead
of dynamic dispatch can be avoided. Therefore, we believe what we gained is more than
what we lost by dropping the support of dynamic evaluation feature.

*1 Also known as the 80-20 rule.http://en.wikipedia.org/wiki/Pareto_principle
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Chapter 7
Related Work

7.1 DSL for Parallel Programming

The approach we proposed to achieve parallel programming is to build a DSL on Ruby
and implement it by employing a source-to-source compiler. DSL have been employed
to improve domain-expert programmer productivity for a long time. And the embedded
(or internal) DSL proposed by Hudak[30] simplifies building a DSL. For an embedded
DSL, the DSL is implemented by using the constructs provided by the host language.
Therefore, a embedded DSL is always treated as libraries or a framework to the host
language. Our proposed DSL borrowed the syntax from the host language so it looks like
an embedded DSL. However, the DSL is implemented by converting to another language
which is different from traditional embedded DSL’s definition.

OpenMP is an embedded DSL hosted on C language by using directives to mark out
the code that can run in parallel. OpenMP is effective for shared memory system only.
Our proposed language is capable for hybrid SMP cluster environment.

Ypnos[31] is a DSL hosted on Haskell programming language for structured grid pro-
gramming. The Ypnos defined special syntax to express computing on an element and its
neighborhood elements in the grid. The implementation is hold by Haskell itself. Differ-
ent from the Ypnos, our proposed DSL is not limited to the structured grid computing
problem but for general parallel programming problems.

Hassan Chafi[32] points out that embedded DSL is a promising approach for heteroge-
neous parallel programming but the key is how to overcome the limitation (expressiveness,
the implement efficiency, etc.) from the host language. In our research, we bypass the
limitation that Ruby is not inadequate for implementing parallel DSL by converting the
DSL to the X10 language. The source-to-source translating is a general strategy for im-
plement a new language. In fact, the X10 itself is implemented by converting to Java
language.

7.2 Hybrid of Productivity and Efficient Language

The SEJITS|[33] is a project that tries to achieve high performance computing by using
high productivity language. The SEJITS, first, will defined some special tasks as library
in a high productivity language, such as Ruby or Python. And then at runtime, these
predefined tasks will be translated to a low level parallel programming language, such as C
language with OpenMP. Next, the translated code will be linked to the original program
and can be executed through the foreign-function interface(FFI) that is provided by the
high productivity language.

First of all, the aim of SEJITS is different from ours. They are aiming at making
a high productivity language runs faster by parallel executing parts for the code. Our
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purpose is to write parallel program using a high productivity language. Therefore, in
our research, we introduce parallel programming mode and primitives to the original high
productivity language but they does not. Second, the SEJITS is similar to our approach
at the point that compiling a high productivity language into a high efficient language.
However, they try to do this at runtime, or called JIT compiling and they only compile the
predefined tasks. Our proposed solution compiles the entire program before execution,
or called AOT compiling. Third, the SEJITS Ruby code is 1 3 times slower than the
program written in efficient language mostly due to overhead of the JIT code generation
and execution through FFI. Our proposed solution does not have this performance issue.
And we cannot compare the scalability of SEJITS because their work does not show the
scalability evaluation.

7.3 Removing GVL in Ruby

As mentioned in previous, one limit of current Ruby implementation is that the giant
VM lock (GVL) prevents Ruby code executing in parallel. In fact, not only Ruby, the
Python language has a similar issue. The lock in Python implementation is called global
interpreter lock (GIL). Therefore, there are many efforts to remove the lock, GVL or GIL.
To remove the GVL or GIL means using fine-giant locks on all mutable data structures
instead a global lock.

However, the problems of removing GVL/GIL are: 1) Lots of locking/unlocking slow
down the single-threaded execution. In 1999, Greg Stein created a fork of Python(1.5)
with the patch that remove the GIL in Python and benchmarking showed that the single-
threaded execution is slowed down nearly two-fold. 2) Without global lock complicates
the extension development. With the protection of global lock, the C extension is thread
safe. So the developers do not have to worry about protecting their mutable data with
lock by themselves. Sasada Koichi has implemented a Ruby VM without GVL and has
similar conclusions([34].

7.4 Others

dRuby[22] is a implementation of distributed object system by pure Ruby. It employs
some technique similar to remote method invocation(RMI) in Java to achieve distribute
computing in Ruby. However, it is hard for this approach to achieve performance and
scalability.[23].

Diamondback Ruby[35, 36] is an extension to Ruby that uses annotation to attach type
system to Ruby. By using this extension, users can mark Ruby program like a static
typing language program. We also use annotation to mark type in our implementation
but not as serious as Diamondback Ruby. The type annotation in our research is optional
feature to help reduce the cost of dynamic invocation.
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Chapter 8

Conclusion

We design and implement a DSL based on Ruby for parallel programming. To achieve
the popular parallel programming, a parallel programming language that is productive,
efficient, hardware and algorithms independent and easy to be accepted by mainstream
programmers is necessary. We observed that these requirements are difficult to be sat-
isfy by one language and propose the approach that bridge the gap between popular,
productive language and efficient parallel language by building a DSL.

We designed a DSL based on Ruby to use Ruby’s syntax to express parallel program-
ming. The DSL is consistent with Ruby’s syntax and programing conversion. It supports
most of Ruby’s main features including object oriented, dynamic typing, open-class, mix-
in and flexible control structures. We introduce the primitives and structures original
in X10 to express parallel programming. In the DSL, the concurrent programing is ex-
pressed by using primitives of finish, async, atomic and when instead of thread/lock.
The distributed programming can be constructed by using the Point, Region, Dist and
DistArray structures with place shifting primitive at. Although the DSL support dy-
namic typing, users can also use the define_type syntax to annotate type explicitly to
reduce the overhead of dynamic typing.

The DSL is implemented by compiling to X10 language. We design and implement
a source-to-source translator to convert the DSL code to X10 program. With runtime
libraries that we developed, the converted code can be executed in X10’s environment.
The code translator and runtime libraries work together to implement most of Ruby’s
features. We implement the dynamic method dispatch in runtime libraries, so that the
dynamic typing, open-class and mix-in features can be supported. Runtime libraries also
wrap the built-in types of X10 to provide Ruby-like API. For example the each method
iteration. The new defined syntax and lots of difference on syntax between Ruby and X10
is handled by translator. For example to automatically insert return statements which is
required in X10 but not in Ruby. The effort of code translator and runtime libraries make
sure the DSL is consistent with Ruby’s syntax and programming conversion.

We evaluated the productivity and scalability of the DSL. The results show that the
DSL has equal or better productivity than the X10 language and has similar scalability
to the X10 language. We measured the byte size and effective lines of code(eLOC) to
evaluate the productivity. The DSL has smaller byte size than X10 and similar or smaller
eLLOC than X10 depends on benchmarks. We discuss the result and conclude that for HPC
applications that focus on numerical computing, due to the abstract level of the DSL is
same as X10, the expressiveness of both language is also similar; for general purpose
applications, thanks to Ruby’s productivity, the DSL has better expressiveness than X10.

We evaluated the scalability of DSL with and without dynamic typing and compare the
results to X10. Although both DSL implementations are slower than X10, the scalability is
similar to X10. Therefore, we conclude that our DSL has good enough scalability for par-
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allel computing. Furthermore, because the dynamic typing overhead can be compensated
by speedup gained from the scalability, we argued that language developers should make
more efforts on chasing scalability rather than performance in sequential environments.

The DSL benefits the Ruby programmers by making them able to write parallel program
in Ruby style. Ruby is a popular language with lots of users. By make Ruby users easy to
adapt to parallel programming, we also contribute to the popular parallel programming.
The DSL also provides an alternative to HPC users. With the DSL that we proposed, HPC
users can enjoy the productivity of the Ruby language. Achievements of our research show
that the approach of using DSL to achieve high productivity and high performance parallel
programming is possible and effective. And the source-to-source translator strategy is an
effective solution to bypass the limit from host language on implementing the DSL.

In future, we plan to use the DSL as base language and build a more high level DSL on
it. Our proposed DSL has a modest abstract level to enable programmers to handcraft
parallel code for performance. However, for some specific parallel problem domain, a
higher level DSL is possible to achieve better productive while guarantee the performance.
One good example is structured grid computing.

Consider to the implementation, we want to improve the type inference of code transla-
tor in future. Current implementation only infer type on assignment. More aggressive type
inference can reduce the overhead of dynamic typing or the necessary of type annotation.

Another direction for future work is to develop performance analysis tools, such as CPU
or memory profiler. We have developed a memory profiler for Ruby. It would be helpful
if we could port it for parallel programming.
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