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Abstract
Scale-out programs run on multiple processes in a cluster.
In scale-out systems, processes can fail. Computations using
traditional libraries such as MPI fail when any component
process fails. The advent of Map Reduce, Resilient Data
Sets and MillWheel has shown dramatic improvements in
productivity are possible when a high-level programming
framework handles scale-out and resilience automatically.

We are concerned with the development of general-
purpose languages that support resilient programming. In
this paper we show how the X10 language and implementa-
tion can be extended to support resilience. In Resilient X10,
places may fail asynchronously, causing loss of the data and
tasks at the failed place. Failure is exposed through excep-
tions. We identify a Happens Before Invariance Principle
and require the runtime to automatically repair the global
control structure of the program to maintain this principle.
We show this reduces much of the burden of resilient pro-
gramming. The programmer is only responsible for contin-
uing execution with fewer computational resources and the
loss of part of the heap, and can do so while taking advantage
of domain knowledge.

We build a complete implementation of the language,
capable of executing benchmark applications on hundreds
of nodes. We describe the algorithms required to make the
language runtime resilient. We then give three applications,
each with a different approach to fault tolerance (replay, dec-
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imation, and domain-level checkpointing). These can be ex-
ecuted at scale and survive node failure. We show that for
these programs the overhead of resilience is a small fraction
of overall runtime by comparing to equivalent non-resilient
X10 programs. On one program we show end-to-end perfor-
mance of Resilient X10 is ∼100x faster than Hadoop.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—Frameworks

Keywords X10, Distributed, Parallel, Resilience

1. Introduction
Scale out programs run on multiple processes in a cluster.
In scale-out systems, processes can fail. They run out of
memory, the node they are running on may lose power,
overheat, or suffer a software failure.

Computations using traditional libraries such as MPI fail
when any component process fails. If the mean time between
failures (MTBF) of a single node is 6 months, a 24 hour job
running on 1000 nodes has less than 1% chance of success-
ful completion. Supercomputers are generally designed to be
significantly more reliable than commodity clusters; never-
theless, resilience is a serious issue at extremely large scales.

Traditionally, long-lived multi-node applications have
addressed node failure only via application-level check-
pointing. This is ad hoc, error prone, problematic when
the amount of state to be saved is large, and not applicable
(or inefficient) in certain cases. For instance, for some ma-
chine learning applications a reasonable recovery strategy
is to ignore the work assigned to the failed node and pro-
ceed to completion with the remaining nodes. We call this
(checkpoint-free) strategy decimation. Depending on the al-
gorithm, it may also be possible to proceed by recovering
state from neighbors, from the original input files, through
replay of work, or some combination of the above.

More recently, the advent of Map Reduce [12, 29], Re-
silient Data Sets [32], Pregel [17] and MillWheel [2] has
shown the dramatic improvement in productivity possible



when a high-level programming framework handles scale-
out and resilience automatically. Nevertheless, the under-
lying programming model for which resilience is provided
is very limited in these cases. Performance is a significant
problem, and derivative frameworks such as M3R [25] im-
prove performance but at the cost of loss of resilience.

We are concerned with the development of general-
purpose, imperative languages that support resilient pro-
gramming.1 Over the last ten years, the X10 programming
language [6, 22] has been developed as a simple, clean,
but powerful and practical programming model for scale
out computation. Its underlying programming model, the
APGAS (Asynchronous Partitioned Global Address Space)
programming model [23], is organized around the two no-
tions of places and asynchrony. A place is an abstraction
of shared, mutable data and worker threads operating on
the data, typically realized as an operating system process.
A single APGAS computation consists of hundreds, poten-
tially tens of thousands of places. Asynchrony is provided
through a single block-structured control construct, async S.
If S is a statement, then async S is a statement that executes
S in a separate thread of control (activity or task). Dually,
finish S executes S, and waits for all tasks spawned (recur-
sively) during the execution of S to terminate, before contin-
uing. Memory locations in one place can contain references
(global refs) to locations at other places. To use a global ref,
the at (p) S statement must be used. It permits the current
task to change its place of execution to p, execute S at p and
return, leaving behind tasks that may have been spawned
during the execution of S. The termination of these tasks
is detected by the finish within which the at statement
is executing. The values of variables used in S but defined
outside S are serialized, transmitted to p, and de-serialized
to reconstruct a binding environment in which S is executed.
Constructs are provided for unconditional (atomic S) and
conditional (when (c) S) atomic execution. Finally, Java-
style non-resumptive exceptions (throw, try/catch) are
supported. If an exception is not caught in an async, it is
propagated to the enclosing finish statement. Since there
may be many such exceptions, they appear wrapped in a
MultipleExceptions exception.

The power of X10 lies in that these constructs can nest
arbitrarily, almost without restriction2. A diverse variety
of distributed control and communication idioms (e.g. re-
cursive parallelism, active messaging, single process mul-
tiple data, accelerator off-load, remote memory transfers
etc.) can be realized just through particular combinations of
async/at/finish/when. Indeed, the usefulness of X10 for
scale-out programming has been amply demonstrated. Large
portions of the X10 runtime are written in X10. [28] presents

1 Erlang is an example of a general-purpose language supporting resilience
that is not imperative.
2 X10 restricts the atomic S and when(c) S constructs so that S may not
dynamically execute at (p) T, finish T or when (c) T constructs.

benchmark results on over 50,000 cores, with performance
comparable to MPI (in some cases significantly better). [25]
develops a main memory implementation of Hadoop with
significant performance improvements over Hadoop. [24]
presents a novel, high performance algorithm for unbalanced
tree search that leverages finish. [18] presents a large, so-
phisticated, computational chemistry code written in X10.
[11] develops a graph library in X10. [10, 13, 14] present
results on the productivity of programming in X10.

In this paper, we show how the X10 language and im-
plementation can be modified to support resilience. Because
of the orthogonality of the core X10 constructs, this is con-
ceptually straightforward. A place p may fail at any time,
with the loss of its heap and tasks. Any at(p) S executing
at a place q will see a DeadPlaceException (DPE). Any
attempt to launch an at(p) S at p will also throw a DPE.
Global refs pointing to locations hosted at p now “dangle”,
but they can only be dereferenced via an at (p) S, which
will throw a DPE.

However, X10 permits arbitrary nesting of async/at/
finish. Hence when a place p fails, one or more tasks
running at other places may be in the middle of executing
an at (p) S and, conversely, code running at the dead place
p may be in the middle of running at (q) T statements at
other (non-failed) places q. What should be done about such
cross-place dependencies?

Let u = at (p) S be a statement running at r, and S

(running at p) contain a sub-statement v = at (q) T, for
p 6= q. We will call v a non-local child task of u. Note
that v may have been launched within an arbitrarily nested
finish/async sub-statements of u. What should be done
with such “orphan” tasks when the spawning place (p) fails?
We argue that it is unwise to track down and terminate such
tasks. Asynchronous termination of tasks can leave the heap
at different unfailed places in an inconsistent and unknown
state. Tasks should either run to completion or not at all.
However, we insist on a key design principle, the Happens
Before Invariance (HBI) Principle:

Failure of a place should not alter the happens be-
fore relationship between statement instances at the
remaining places.

This guarantee permits the Resilient X10 programmer to
write code secure in the knowledge that even if a place fails,
changes to the heap at non-failed places will happen in the
order specified by the original (unfailed) program. Failure of
a place p will cause loss of data and control state at p but will
not affect the concurrency structure of the remaining code.

As described below, this principle requires that the X10
runtime maintain some information about the control (finish/
async) graph at every place in resilient storage (storage that
outlasts the failure of a place). This information is used to re-
pair the finish and at control dependency structure across
places so as to correctly implement the HBI Principle.



Thus, Resilient X10 is obtained from X10 by permit-
ting places to fail asynchronously, exposing failure through
exceptions, and ensuring that the X10 runtime repairs the
global control structure of the executing program to correctly
implement the HBI Principle. In related work [8], we de-
velop a formal semantics for Resilient X10 as a derivative of
the formal semantics of X10. The semantics is presented as a
transition system over configurations that are pairs 〈s, g〉 of
a statement s (representing the tree of all tasks running in all
places) and the global heap g. To model Resilient X10, this
semantics need only be extended by a single rule that permits
a place to fail asynchronously. g is changed to a g′ that is the
same as g except that all the state of p is lost. s is rewritten
in a single step to a new statement s′ that represents the loss
of all tasks running at p and repairs the structure of the re-
maining tasks so that the HBI Principle (and an associated
Exception Masking Principle) are preserved.

This paper presents the design and implementation of Re-
silient X10. Resilient X10 was implemented by modifying
the X10 runtime and core libraries. Because the source lan-
guage was unchanged, the X10 compiler is unchanged. The
Resilient X10 programmer essentially writes X10 code, but
with the awareness that DPEs may be thrown. User code
may catch these exceptions and take appropriate recovery
steps, based on domain specific information (e.g., discard
lost state, reload from resilient storage, recompute, recover
from neighbors, etc.). Note that a Resilient X10 program can
run on an X10 implementation without change, and behaves
just like an identical X10 program (such programs abort
when a place fails). An X10 program can run on a Resilient
X10 implementation without change, but may see DPEs on
place failure. In summary, the contributions of this paper are:

1. The design and implementation of Resilient X10, which
we believe to be the first implementation of a real,
general-purpose, imperative programming language that
allows applications to handle node failure without signif-
icant loss of scalability, performance, or productivity.

2. An evaluation of the overhead and scalability of our im-
plementation for a variety of concurrency patterns.

3. A demonstration of the flexibility of Resilient X10 via
benchmarks that handle failure in diverse ways. In partic-
ular, we identify decimation, an idiom that is applicable
in many relaxed computing [5] settings, and which can
be very simply and elegantly expressed in Resilient X10.

4. A comparison of sparse matrix dense vector multiply im-
plementations showing that the end-to-end performance
of Resilient X10 is ∼100x faster than Hadoop.

Section 2 continues with a more detailed comparison to ex-
isting work. Section 3 is a deeper discussion of the language
design and programming idioms. Section 4 describes our im-
plementation. Section 5 gives performance analysis and de-
scribes Resilient X10 applications, and Section 6 concludes.

2. Related Work
Hadoop [9, 29] handles failures invisibly, by writing all data
out to a resilient disk store (HDFS) after each MapReduce
job, and at key intermediate points. Hadoop, while relatively
easy to program, is also restrictive in the types of algorithms
it can support. Resilient X10 gives more flexibility to the
programmer, both in how distributed programs are written,
as well as giving the programmer control over how to cope
with failures.

The Spark framework [32] uses Resilient Distributed
Datasets, which provides a read-only collection of objects
partitioned across multiple nodes. RDDs offer more flexi-
bility and performance over Hadoop MapReduce, because
all data does not need to be re-written to disk between each
phase of the computation, and the programmer has more
control over what data is persisted vs discarded. But Spark’s
programming model is much closer to MapReduce than a
general programming language such as X10.

The Charm++ programming system [21] for distributed
systems supports distributed termination detection as well as
fault-tolerance via checkpoint/restart, but the user is respon-
sible for combining the two safely. Typically checkpoint-
ing only happens at global synchronization points with no
outstanding asynchronous processing. A similar approach,
X10-FT, checkpoints the X10 state at the granularity of AP-
GAS language constructs [31]. In contrast, Resilient X10
precisely defines the semantics of termination detection in
the presence of failures. This makes it possible to continue
executing in spite of failures without reverting to a check-
point, while preserving the execution order of all surviving
tasks.

Lifflander et al. [16] propose three fault-tolerant algo-
rithms for detecting distributed termination for a core pro-
gramming model and failure model similar to ours (asyn-
chronous tasks, single root, fail-stop failures). They consider
a single termination scope whereas we support multiple fin-
ish scopes (side-by-side or nested) thus providing more ex-
pressive power. In their algorithms, the shape of the spawn
tree dictates the flow of control messages of the distributed
termination detection as well as the layout of the redundant
storage of the control state. A parent process is responsible
for handling the failure of its children (possibly transitively),
but the opposite is not possible. The memory overhead of
fault tolerance is therefore not balanced across processes.
In contrast, we decouple the resiliency implementation from
the application structure. For instance, we provide an imple-
mentation where the task management state is centralized
and another where it is distributed across all the nodes.

Containment domains [7] are a methodology whereby the
programmer can provide fault tolerance in a modular fash-
ion by choosing to either mask or report faults at the module
boundary. In Resilient X10 it is easy for the programmer
to follow this methodology. Masking errors means catching
exceptions within a module and employing some internal re-



dundant application-level computation/storage to return the
correct result despite the failure. If that is not possible, the er-
ror can be reported by either simply not catching the excep-
tion (which may expose details of the module’s implemen-
tation) or preferably by catching it and rethrowing a more
abstract version that better matches the module’s API.

3. Language Design and Examples
A complete but simple Resilient X10 program, a Monte
Carlo application that calculates π, is given in Figure 1. Ex-
ecution begins at place zero. Because of this, place zero
typically has a special role of communicating the result to
the user, so we assume it can never fail (if it does fail,
the whole execution is torn down)3. From there, the ap-
plication is free to spawn tasks on other places. In this
example, an asynchronous task is created at every place
(Lines 9, 11), tries a number of random samples (Lines 14–
18), and communicates its result back to place 0 using a
global ref4 (Lines 20–25). If a place dies during this work, its
task throws a DeadPlaceException (DPE) which is silently
caught (Line 26). The last few lines (Lines 28–30) will there-
fore execute when all the work is either completed or dead.
If places die before they communicate back, then they con-
tribute no result, and the accumulated number of tested sam-
ples is correspondingly lower. Thus losing a place will cause
the computed value of π to be less accurate.

This simple example does not show-case the full expres-
sive power of Resilient X10. In particular Resilient X10 is
unique in allowing the arbitrary nesting of finish and at.
This allows blocking for distributed termination within a
task, which is not supported by Charm++ [21]. This allows
two levels of concurrency for distributed multicore program-
ming, and the writing of libraries that internally use finish.
It also allows divide-and-conquer parallelism where each in-
vocation of a recursive method waits for the termination of
its recursive calls before returning control [19]. In the con-
text of this rich concurrency, Resilient X10 attempts to make
handling errors as easy as possible without compromising
performance.

The Happens Before Invariance (HBI) Principle means
programmers need not be concerned with subtle concurrency
bugs due to failed synchronization. In the following three
examples, place p fails during the execution of S.

In this example, Resilient X10 ensures that R is executed
after S, as in regular X10:

try {
at (p) { at (q) S; ... }

} catch (e:DPE) { } R

3 This means the MTBF of the system is the same as the MTBF of a
single node, which we consider to be acceptable given the prevalence of
divide-and-conquer and the convenience of orchestrating and completing
the execution at a single root node. We discuss this further in Section 6.
4 In the at block, any outer scope variables may be captured. All captured
variables are copied deeply to the target place. Global refs override copying
to enable the creation of cross-place references.

1: import x10.util.Pair;
2: import x10.util.Random;
3: public class ResilientMontePi {
4: static val ITERS = 10000000 / Place.MAX_PLACES;
5: public static def main (args : Rail[String]) {
6: // (points_in_circle, samples)
7: val cell = new Cell(Pair[Long,Long](0, 0));
8: val cell_gr = GlobalRef(cell);
9: finish for (p in Place.places()) async {

10: try {
11: at (p) {
12: val rand = new Random(System.nanoTime());
13: var total : Long = 0;
14: for (iter in 1..ITERS) {
15: val x = rand.nextDouble(),
16: y = rand.nextDouble();
17: if (x*x + y*y <= 1.0) total++;
18: }
19: val total_ = total;
20: at (cell_gr) async atomic {
21: // add our result to global total
22: val the_cell = cell_gr();
23: the_cell(Pair(the_cell().first+total_,
24: the_cell().second+ITERS));
25: } }
26: } catch (e:DeadPlaceException) { /* just ignore */ }
27: } /* end of finish */
28: val samples = cell().second;
29: val pi = (4.0 * cell().first) / samples;
30: Console.OUT.println("pi = "+pi+" (samples: "+samples+")");
31: } }

Figure 1. Computing π with the Monte Carlo method.

Adding async means R may execute in parallel with S. In
Resilient X10, the termination of S is detected by the outer
(implicit, not shown) finish as in regular X10:

try {
at (p) { at (q) async S; ... }

} catch (e:DPE) { } R

Resilient X10 preserves the ordering guarantees from X10
by ensuring that R is executed after S, even though the
finish governing S executes in a failed place:

try {
at (p) { finish at (q) async S; ... }

} catch (e:DPE) { } R

In the examples above, what if S throws a user-defined
exception? In regular X10 it would propagate to the closest
catch block. However in the event of failure, the run-time
representation of part of that control stack is now lost. We
cannot tell whether the exception would have been caught
in this lost part of the stack. Our options are: (1) Propagate
the exception around the failure. (2) Drop the exception.
(3) Make the control stack resilient. We decided that option 1
would be too surprising for programmers, since suppressed
exceptions would never escape in regular X10. We chose
option (2) to avoid the overhead and complexity of (3). The
semantics of option (2) are actually quite reasonable. We
give the programmer guarantees about synchronization, but
we do not attempt to recover that task’s exception output.
A user-defined exception is never lost without there being
at least one DPE appearing in its place, so the user-defined
exception can be considered to be masked, rather than lost;
we call this the Exception Masking Principle. Note that in
the second example, the presence of the async means that
any exception thrown by S will be routed directly to the outer
finish, thus is not propagated through p and is not lost.



In summary, loss of place p will cause loss of the heap at
p, loss of (most of) the control state at p and also masks any
exceptions that would have been propagated through p.

3.1 Resilient Storage
A resilient store is a data structure that internally stores data
in a manner that survives node failure. This can involve
replication in another node’s memory or on disk. Storing
in memory is faster, but has space overhead. However it is
attractive because the application is self-contained. Either
way has a performance overhead, so use of resilient stores
should be limited to critical data that cannot be recovered by
other means. Another useful application of resilient stores is
infrequent checkpoints of application state.

Resilient in-memory stores can be easily implemented in
Resilient X10. A class can be designed that provides a sim-
ple interface to read and write to the store. The implemen-
tation of that class will then update one or more backups
behind the scenes. If a synchronous update is not required,
the async construct can be used. This can provide better
performance with fewer consistency guarantees. As in col-
lection libraries, we expect that there will not be one re-
silient store for all potential uses. Instead there will be a
few different stores abstracted into utility libraries, as well
as applications occasionally implementing specialized ver-
sions with particular properties. Using the resilient storage,
we have prototyped several resilient-aware libraries such as
a resilient DistArray. The design, implementation, and us-
age of resilient data structures is an area of current research.

4. Implementation
Implementing Resilient X10 required significant work at
all levels of the X10 runtime. Failure of remote nodes is
discovered at the lowest level (the communication layer)
and propagated up the stack. Special termination detection
algorithms needed to be written in order to implement the
HBI Principle.

4.1 X10RT
The X10 runtime has the ability to use one of several com-
munications libraries, depending on network it is running on.
A common API (X10RT) exists within the X10 runtime for
abstracting the different libraries [30]. X10RT implementa-
tions exist that support running on top of TCP/IP sockets,
shared memory, MPI, or PAMI [20].

Node failure is handled by current MPI and PAMI by
ending the entire program. Therefore, it is not possible to
constructively handle failure by building on top of MPI and
PAMI. However, the sockets backend gave us the freedom to
handle the failure of individual connections.5 We therefore
built Resilient X10 on top of sockets. We could support

5 In sockets backend, 1-to-1 connections are established between each pair
of communicating places.

future implementations of MPI and PAMI if they provide
appropriate failure notifications.

We extended the sockets implementation thus: Upon de-
tection of a dead place (via a communication error or a con-
figurable timeout), we clean up the link to that place, mark
it as dead, and continue running. The message send API is
asynchronous, which meant the failure to send a message
could not be synchronously communicated up the stack. In-
stead, we added an API call to return the number of dead
places (which never decreases) as well as calls to query the
life/death status of arbitrary places. The typical use of this
API by the X10 runtime involves checking whether the re-
mote place has died while waiting for a message from that
place. The runtime can thus tell if it is never going to receive
the message and yield an error. The other X10RT backends
(MPI, PAMI) continue to force an abort of the entire appli-
cation upon the detection of a dead place, and so their imple-
mentations of the new methods never report a place death.

4.2 Finish
The finish S construct blocks until all tasks spawned by S

have terminated. Since it is not statically known how many
tasks there will be, where they will be running, and for how
long, implementing finish requires a distributed termination
detection algorithm. Regular X10 already has such an algo-
rithm. Typically, an X10RT message from the spawning task
to the finish home (the place on which the finish was cre-
ated) records new tasks, and an X10RT message from the
task’s place to the home place is used to notify that a task
has terminated. Often, global refs are used to reference the
finish representation from a remote task.

A variety of finish implementations take advantage of
particular patterns of concurrency. The default finish is op-
timized to locally cache updates and only update the home
upon local quiescence. Other implementations are special-
ized for single remote tasks or SPMD-style workloads. How-
ever none of these implementations are resilient. If a place
dies, these finish implementations forever wait for termina-
tion messages from the dead place.

We implemented 3 new finish implementations for Re-
silient X10. All are based on an abstract algorithm that main-
tains counters and can be described assuming its own state
is resilient. The implementations differ in how the resilient
storage is achieved.

Each implementation is realized with a finish object that
is created at the opening brace of the finish. The ending
brace of the finish is compiled to a wait() call on the
object. Finish objects are used both for the explicit finish
statements that occur in the code, and to implement the
synchronous semantics of the at construct by spawning the
remote task under an implicit finish. New tasks are governed
by the closest enclosing explicit finish. When a finish object
is copied across the network, the remote copy acts as a proxy
that allows implicit communication but otherwise can be
considered an alias of the original finish object.



public class FinishObject {
public static def make(parent:FinishObject) : FinishObject;
public def wait() : void; // may throw MultipleExceptions
public def fork(src:Place, dst:Place) : void;
public def begin(src:Place, dst:Place) : Boolean;
public def join(dst:Place) : void;
public def pushExc(e:Exception) : void;

}

Figure 2. Runtime API of a finish implementation.

1: finish {

2:     at (dst) async {

3:         body();

4:     }

5: }

At place src

1: f = FinishObject.make(current_f);

1: /* set activity’s current_f to f */

2: f.fork(here, dst);

2: x10rt_runAsync(dst, body, f);

:

:

:

:

:

:

:

5: f.wait();

5: /* restore current_f */

X10 code

Pseudo codes at runtime

At place dst

/* receive body, f, and src */

2: if (f.begin(src, here) == true) {

2:     try {

3:         body();

4:     } catch (e:Exception) {

4:         f.pushExc(e);

4:     }

4:     f.join(here);

4: }

Figure 3. How the finish APIs are called.

The runtime maintains two stacks of finish states per task.
The synchronization stack can be peeked to find the closest
synchronization point. This is the closest implicit finish that
is not outside of an async, otherwise it is the closest explicit
finish. The explicit stack can be peeked to find the closest
explicit finish, which governs new asyncs. In regular X10,
only the explicit stack was needed. The synchronization
stack is used for adoption, which will be explained shortly.

Any task can peek at either of these stacks to obtain the
relevant finish object. As tasks are spawned and terminate,
they call methods on the relevant finish object which inter-
nally communicates with the waiting task via X10RT mes-
sages and/or shared storage. The finish object API is shown
in Figure 2.

Figure 3 shows how these APIs are used for executing
an asynchronous task and waiting for its termination. When
spawning a remote task6, the finish object on the top of the
explicit stack is used. The fork() method is called by the
src place, and then an X10RT message is sent to create the
remote task. Since the message is asynchronous, the src

place then advances to the next program statement. When
the X10RT message is received by the dst place, begin() is
called, and if this returns true then the task is concurrently
executed. If not, the message is silently discarded which hap-
pens when the source place died after transmission but be-
fore reception of the message. When the task terminates at

6 Local task creation is exactly the same, except src = dst

dst, join() is called. A given finish implementation may,
within these methods, communicate with the finish home
place using more X10RT messages. If an exception from the
task is uncaught, it is communicated just before the join()
call, via the pushExc() call. If there are any such excep-
tions, they are combined into a MultipleExceptions ob-
ject which is thrown from the wait() call after termination.
In the case of an implicit finish, the MultipleExceptions
can only contain a single exception, so this is unwrapped and
thrown as normal, thus propagating the exception through
the at construct.

Conceptually, the finish state objects encapsulate coun-
ters that record what tasks are running where. We call this
the live counter set. It also stores the exceptions accumulated
via pushExc(). The wait() call returns control only when
the counters representing non-dead places are zero. The dead
counters are used to generate DeadPlaceException (DPE)
objects which are added to the user-generated exceptions.
The space overhead of the live counter set is O(n) in the
number of places per each active finish object.

In addition to this, if src dies after calling fork() but
before dst calls begin(), then it is possible the message
was not completely transmitted and the task is lost even
though dst is still alive. Thus, the finish implementation
must record the messages in transit between each pair of
places. Such messages can be lost if either src or dst dies.
If src dies, the message is silently dropped, but if dst dies,
a DPE is generated. This ensures we get one DPE per task
that was running at the time of the place death. Conceptually
this is a 2-dimensional matrix, but the representation need
not be O(n2) in memory overhead since it is very sparse
(the number of messages in transit is limited by the size of
network buffers). We call these the transit counters.

If src dies after sending the message, but before dst

calls begin(), it is possible the finish will terminate and the
task could execute on dst after the termination of the finish,
violating the happens-before relationship. This is why we
have the begin() call return false in this case, to prevent
the execution of a task when it has been assumed to be lost.

The above semantics are sufficient for properly handling
and reporting place failure, so long as the finish home place
does not die. In that event, we call the tasks under that finish
(which may be at other places that are still live) orphaned.
The parent finish, which is determined when each finish is
created by peeking the synchronous stack, must not assume
that all tasks under it have terminated just because its coun-
ters are zero, because these counters do not record orphaned
tasks. To solve this problem, if a place dies and there were
active finishes on that place, the closest parent finish that
is still alive must adopt these orphaned tasks. Broadly, this
means exceptions are discarded, and the counters (both live
and transit) from the dead finish are merged into its own



counters7. This work is done during the wait() call, before
checking the counters for termination.

To handle the case where these adopted tasks die (due to
further place failures), we must ensure the generated DPEs,
like any other exceptions, should not make it to the adopting
finish. This difference in behavior means we need two sets
each of live and transit counters. One set of counters records
the non-adopted tasks, and is used both for termination de-
tection and to generate DPEs upon place death. The other set
of counters records adopted tasks and is only used for termi-
nation detection.

The orphaned tasks themselves must send subsequent fin-
ish updates to the adopting finish rather than to the dead fin-
ish, and these operations will modify the adopted counters.
This can be achieved by setting a flag on the adopted finish
during the adoption process, and leaving a forwarding refer-
ence. Any updates that must occur after the finish has died
but before it has been adopted by the parent finish can sim-
ply update the dead finish state as usual. Both adopted and
non-adopted counters from the dead finish are merged into
the adopted counters of the adopting finish. To minimize the
overhead, there is no built-in support for a user-level task to
know whether it is adopted or not. However, if such knowl-
edge is needed in specific cases, it could be implemented
at the application (or framework) level on top of the basic
primitives provided by Resilient X10.

In summary, a resilient finish implementation must record
the tasks running directly under the finish, as well as adopt-
ing tasks from dead child finishes. It must record user-
generated exceptions and generated DPEs for its immediate
child tasks, while dropping them from adopted child tasks.
The space overhead for a finish implementation is O(n) as-
suming the transit matrix remains sparse. Having described
how tasks are to be managed in the context of failure, we
now describe 3 ways of using resilient storage to maintain
the finish states.

4.2.1 Place-Zero-Based Finish
The simplest way to ensure that the finish state survives
place failure is to store everything at place 0, which is as-
sumed to never fail. This means every finish operation initi-
ated by a place other than 0 involves a synchronous commu-
nication to 0. This is a bottleneck and requires more commu-
nication. However it is simple and performs reasonably well
up to hundreds of nodes in common cases.

Place 0 contains a database of every finish state in the
execution. Each finish state has a field indicating the home
place and a field pointing to the parent finish, as well as all
the counters. When place 0 discovers some other place has
died, it scans the whole list, looking for finishes on the dead
place. Each that it finds is adopted up to the nearest non-dead
finish, by chasing the parent field.

7 Note that the states of finish objects are stored in a resilient storage and
are accessible even after the finish home place is dead.

We experimented with a simple 2-D array for the transit
matrix, and a sparse representation based on the standard
X10 standard library hash map. At the scales measured, the
space overhead was negligible in both cases. Finish states
are removed from the database (allowing garbage collection)
when they terminate.

4.2.2 ZooKeeper-Based Finish
To provide a more scalable finish implementation, we tried
to leverage ZooKeeper [15] to implement the required re-
silient storage. This seemed reasonable since ZooKeeper is
touted for reliable task management in a cluster environ-
ment. Like a file system, ZooKeeper exposes a hierarchi-
cal database where each znode holds arbitrary data. In the
ZooKeeper-based finish, all finish states are stored within
ZooKeeper so can survive the death of places without de-
pending on place 0 and should be more scalable.

X10 is implemented via translation to either Java (Man-
aged X10) or C++ (Native X10). Currently, communication
with the ZooKeeper server is implemented using Managed
X10’s Java interoperability framework [26, 27]. Therefore,
the ZooKeeper-based finish is available only for Managed
X10. The Native X10 implementation is left as future work.

Naive znode mapping: We considered two ways of map-
ping a finish state to znodes. The first method represents each
counter of a finish state as a znode which holds the integer
value, as shown in Figure 4(a). For each FinishState, a znode
FinishState-ID is created, which holds various informa-
tion for the finish state such as home ID, parent finish state
ID and adopted flag. Under this FinishState znode, znodes
active and transit are prepared, each of which contains
znodes which hold corresponding counter values.

For example, a znode “transit/0to1” contains the
number of tasks being created by place 0 at place 1 and a zn-
ode “live/1” contains the number of tasks being executed
at place 1 under this finish. To reduce initialization overhead,
these counter znodes are created dynamically when they are
first used. Since the counter value may be modified in paral-
lel from multiple places, a special znode “lock” is prepared
for mutual exclusion. We use a lock mechanism provided in
[3] with some modifications. Another znode “excs” is used
to hold exception information.

The counter znodes are incremented and decremented by
contacting the ZooKeeper server in each of the finish API
methods. The wait() call blocks until all the counter znodes
become zero. This logic is implemented by utilizing the
Watcher callback mechanism of ZooKeeper. We evaluated
the naive znode mapping and discovered it to be 50 times
slower than the place zero implementation when creating an
task.

Optimized znode mapping: In the naive znode mapping,
the processing of fork(), begin(), and join() needed
multiple ZooKeeper operations, each of which needs syn-
chronous communication with the ZooKeeper server(s). To
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Figure 4. Mappings of a finish state to znodes.

minimize the overhead in ZooKeeper-based finish, we im-
plemented another mapping of finish state optimized for
ZooKeeper. This variation utilizes a ZooKeeper function that
creates a znode with unique sequence number, enabled by
specifying “CreateMode.PERSISTENT SEQUENTIAL” for
ZooKeeper.create. As shown in Figure 4(b), counter val-
ues are represented as the number of znodes rather than held
in the znodes.

In fork(S,D) processing, a znode “transitStoD-

SeqNo” is created, where SeqNo is assigned by ZooKeeper
server. The sequence number is passed to the destination
place D along with the task being created. In begin(S,D)

processing, a znode “liveD-SeqNo” is created, then the
passed znode “transitStoD-SeqNo” is deleted. In join(D),
the znode “liveD-SeqNo” is deleted. Since unique se-
quence numbers are assigned by ZooKeeper server, lock op-
erations are not necessary for these processings. The wait()
call waits until all of the transit and live znodes under
the finish state are deleted. This blocking operation is also
implemented by watching for znode deletion through the
Watcher mechanism. Through this new mapping, the num-
ber of ZooKeeper operations necessary to spawn a task was
reduced to 4 (create for fork(), create and delete for
begin(), and delete for join()).

When we benchmarked this implementation, we discov-
ered it was considerably faster than the naive mapping. How-
ever, it was still 13 times slower than the place-zero-based
finish. To identify the reason of this overhead, we imple-
mented a ZooKeeper-specific microbenchmark to measure
the cost of ZooKeeper operations in our testing environment.
The numbers were measured on the system described in Sec-
tion 5 using IBM J9 Java VM [4] for Linux x86 64, ver-
sion 7.0 SR6. We used ZooKeeper server version 3.4.5. To
obtain a bound on the best possible performance we ran Zoo-
Keeper on the same machine as the X10 program and used
a ram disk for the snapshot storage of ZooKeeper. Table 1
summarizes our results.

Our experiments showed that each ZooKeeper operation
takes 0.3 to 1.4 msec. The result is consistent with the num-
bers shown in a ZooKeeper paper [15], which states that the
latency of a synchronous create operation is 1.2–1.4 msec.
In our most efficient mapping to znodes, 4 ZooKeeper oper-
ations (2 create (with SeqNo) and 2 delete) are necessary
for spawning one task. The total cost of these operations are

ZooKeeper operation Time
create 0.56 msec
create (with SeqNo) 0.58 msec
delete 0.33 msec
exists 0.34 msec
getData 0.49 msec
setData 0.57 msec
lock 1.43 msec
unlock 0.34 msec

Table 1. Cost of ZooKeeper operations.

1.82 msec, which indicates that the slowness of ZooKeeper-
based finish is a directed result of the cost of ZooKeeper
operations.

For sufficiently large tasks, these overheads do not mat-
ter. However many X10 programs use fine-grained concur-
rency and small messages. We believe that, as a general-
purpose resilient disk-backed database, ZooKeeper is too
heavyweight to be the basis of termination detection in X10.
After this experience, we decided to implement our own re-
silient store with the performance characteristics we needed.

4.2.3 Distributed Resilient Finish
The final finish implementation is an attempt to improve
on the place-zero bottleneck by using an X10-level resilient
storage for the finish state instead of relying on the implicit
resilience of place 0. While this requires storing all the state
in more than one place, this extra cost should be a constant
factor overhead, and it can be done in a distributed man-
ner that scales well. Moreover, implementing the resiliency
within X10 avoids any out-of-process overheads and allows
us to influence performance by controlling the manner in
which the data is stored. However creating a resilient store
within a finish implementation is harder than described in
Section 3.1, because it must be built on top of X10RT mes-
saging primitives instead of the high level APGAS primi-
tives.

The basic idea is to store the finish at its home place, with
a backup at some other place (more backups could be used
for more resiliency but also more cost). If the home place
happens to be place 0, then there is no need for a backup,
and the implementation behaves like the place-zero-based
finish. Otherwise, another place is chosen to contain a syn-
chronized replica of the finish state. If both the master and
the backup die, there is a fatal system-wide error. Otherwise,
the finish implementation will transparently handle the fault.
Currently, the next place is chosen for the backup, but more
sophisticated algorithms could be used based on some model
of failure correlation. The backup is accessed only to (1) re-
ceive updates from the master to keep it in sync, (2) receive
updates from child tasks after the master had died but before
adoption, (3) facilitate adoption. Every operation on the mas-
ter internally performs a synchronous communication with
the backup. This adds extra latency to the operation but en-



sures that the backup contains the most up-to-date informa-
tion.

Because the backup is only used for termination detection
if the finish home place dies, the backup need only store
the data required to allow adoption by another finish. The
backup therefore need not distinguish between regular and
adopted counters, so to save memory it stores the pointwise
sum of the master’s two counter sets. After adoption, the
backup is tagged with a forwarding pointer and is essentially
inert. Another optimization is local tasks need not be backed
up. This is because they die with the finish, so they never
need to be adopted.

Each place has a backup table that can be used to find the
backup of a given master if that master is dead. The table
maps the master identity (the global ref to the master) to
the backup object. Thus, if some task fails to communicate
with the master because that place is dead, it can instead find
the backup by searching other places’ backup tables. The
search can be accelerated if the backup place is chosen using
a deterministic algorithm. This is an example of a global
ref to a dead place being useful even though it cannot be
dereferenced. The global ref still has a hash code and can be
tested for equality with other global refs; thus it can be used
to index a hash map. The fatal error for loss of master and
backup arises when an exhaustive search (every place) does
not find the backup.

With the distributed implementation, care must be taken
when the master and backup are lost and a fatal error needs
to be raised. Storing a list of child finishes at each finish
(instead of a single parent pointer) means that even if master
and backup disappear, the dangling pointer from the parent
will indicate something has gone wrong. If a place dies, each
finish checks if any of its child finishes were on that place. If
so, the child pointer is used by the parent to find the backup
and adopt the tasks. If a backup cannot be found, the fatal
error is raised.

The finishes in the system thus form a distributed tree of
masters and backups, with tasks referencing the masters, as
shown in Figure 5. If a master is lost, one can still use the
master reference to access the backup through the backup
table. Thus the tree remains implicitly connected despite the
loss of either Mn or Bn (but not both) for all n. When a
parent finish adopts a child finish, it modifies its own list
of child finishes by replacing the dead finish with the dead
finish’s child finishes. This process is repeated until all child
finishes are alive, thus eliminating the dead finishes from
the tree and ensuring there is no single point of failure. For
example, if M2 were to die, the tree would be modified such
that M2’s tasks were governed by M1 and M1 would have
M3 and M4 as child finishes.

5. Evaluation
We evaluate the practicality of the language design by writ-
ing one microbenchmark and three benchmark applications,

Figure 5. Distributed resilient finish tree.

each with a different approach to achieving resiliency. The
microbenchmark tests the overhead of our X10-based finish
implementations (compared to the regular algorithm). The
applications show end-to-end running time and scalability,
with and without resiliency.

Our benchmarking system is a 23 node AMD64 Linux
cluster, each node having 16G RAM and 2 quad core AMD
Opteron 2356 processors. The nodes are linked by gigabit
ethernet, and are divided between two bladecenters. In this
section we use Native X10 (the X10 C++ backend).

5.1 Microbenchmark
Just like X10, Resilient X10 supports arbitrary nesting of
APGAS constructs. This makes the implementation chal-
lenging and can require significant runtime bookkeeping to
orchestrate the running tasks and preserve the HBI Principle
during failures. Therefore it is necessary to investigate both
the constant overheads of this approach and identify poten-
tial scalability problems. To measure the overhead we wrote
a number of microbenchmarks, each of which stresses the
finish implementation in a different way. The microbench-
marks contain empty tasks, so only the termination detec-
tion overhead is measured. We tested many patterns but the
differences we found can be illustrated with 3 of these in
particular, shown in Figure 6.

The left benchmark spawns a single task at each place
under a single finish (fan-out), and each of these tasks sends
a single message back to the finish home place. This is of
interest because it is a common pattern in our applications,
e.g., Figure 1. The middle benchmark is a fan-out where each
task creates its own local finish that governs 100 local tasks.
This pattern occurs when using two levels of concurrency to
both scale out and make use of multicore architectures. The
right benchmark is a fan-out with each task doing another
fan-out within a nested finish. This last case involves n2

tasks and shows the non-scalability of the place-zero-based
finish.

To demonstrate scalability on a machine that is closer to
a typical supercomputer, we also ran these benchmarks on
13 node, 32 core per node Power775 cluster, enabling a max
of 416 places. These results are shown on the bottom row of
graphs in Figure 6. We used the MPI backend of X10RT to
take advantage of the cluster’s very fast interconnect. This
was possible because we were not testing failure, only over-
head (the underlying HPC network library does not support



Figure 6. Scalability of the finish implementations, for different concurrency patterns. The top row of graphs are results from
our 23 node AMD64 Linux cluster (max 184 places); the bottom row of graphs are results from a 13 node IBM Power775
cluster (max 416 places). The X axis is the number of places, the Y axis is the execution time in seconds.

failure). We hope that our work on Resilient X10 will moti-
vate the development of HPC network libraries that handle
failures so we can use them in the future.

We ran 5 experiments per benchmark. We compared the
non-resilient (default), the place-zero-based and the dis-
tributed resilient finishes. Since the resilient implementa-
tions have different behaviors depending on whether the
home is 0 or some other place, we ran the tests based at
both place 0 and place 1. The results expose some qualita-
tive differences between the implementations.

Firstly, there is a cost to resiliency. This is because re-
silient finish implementations require more synchronous
communication because failure can preempt the execution
at any time. In the left hand case, the two resilient imple-
mentations are similar in performance, but the need to store
state in a resilient store (when finish is based outside of place
0) costs an order of magnitude in performance. In the middle
case, the weakness of the place-zero-based implementation
becomes clear: The distributed implementation is optimized
to not store local tasks in the backup. However, the place-
zero-based implementation must always communicate with
place 0 even when managing local tasks. The final bench-
mark shows the place-zero-based implementation scaling
very poorly because n2 messages contend at place 0.

Exploiting our base assumption that place 0 will not fail,
some communication is avoided for finishes based at place 0.
This is why “home0” configurations showed slightly better
performance than “home1” (i.e., non place 0 home). How-
ever, putting more work in place 0 can easily become a scal-
ability bottleneck. It also depends on the application whether
the finishes can be scattered among places.

In summary, there is measurable but manageable cost to
resiliency. The place-zero-based implementation performs
well enough in some cases but in general the distributed
implementation is faster and more scalable.

5.2 Iterative sparse matrix dense vector multiply
This application represents a kernel found in a diverse range
of analytics applications, including GNMF (Gaussian non-
negative matrix factorization) and page rank. It was partic-
ularly interesting to us, because we had access to a Hadoop
implementation of this algorithm that performed well within
the Hadoop framework. This allowed direct comparison of
Resilient X10 performance with Hadoop.

The input is an N × N sparse matrix (0.1% of elements
are non-zero) of doubles, G, and a dense vector of N Dou-
bles, V . The algorithm computes U = G × V and then U
is used in place of V in the next iteration. Thus, the matrix
remains constant for the whole execution but the vector con-



verges to the end result. For benchmarking purposes we run
for a fixed number (30) of iterations instead of testing con-
vergence. Our input is randomly generated between 0 and 1.
Both matrix and vector are blocked with a factor of 1000.

Since Hadoop only offers end-to-end (job) timings and
does not separate disk I/O from other overheads, we im-
plemented a full application capable of reading the input
matrices and writing the resulting vector to disk. We used
GPFS instead of HDFS, since GPFS manifests as an OS-
level filesystem and thus the data was accessible using X10’s
standard I/O library. Rather than parse the file metadata from
the Hadoop SequenceFileFormat, we wrote a Hadoop pro-
gram to write out the data to a simpler format that we then
read in the X10 program. The metadata is a negligible pro-
portion of the file size so this does not affect our results.

This is not a computationally dense benchmark. During
the matrix multiply, each matrix element is read from mem-
ory and has only one multiply-add instruction performed on
it. Yet it is desirable to use more than one node because G
will not fit in the memory of a single node. Therefore G is
partitioned into N/1000 row blocks, and the multiplication
work associated with these row blocks is divided across the
available nodes as evenly as possible. The initial V is loaded
from disk by place zero at initialization time. At each itera-
tion, the places load any fragment of G they need but have
not already loaded. Ignoring failures, this means G is loaded
only once at the first iteration. When failures occur, the work
assigned to dead places is reassigned, so places will load
these new parts of G when they are first needed. When G
is known to be ready, the input V is broadcast to all nodes.
Each place uses all of V and its fragments of G to compute
corresponding fragments of U . Finally the fragments of U
are then concatenated at place zero to become the next itera-
tion’s V .

When distributed in the above manner on our cluster,
the algorithm is network-bound as each place receives a
full copy of V each iteration. For this reason we chose to
use one worker thread and one place per node. There is
not enough computational work to justify using more cores,
and creating more places per node would just mean sharing
RAM and network bandwidth. For the smallest data sizes, it
may be possible to do the whole computation on one node to
get better absolute performance. However we are primarily
interested in investigating the scalability of the computation
when the matrix (G) cannot fit in one node. Therefore all
measurements are performed with the data distributed.

When a place fails, we lose its portion of G, the input V
and its partially computed U . The loss of V is immaterial
since that is duplicated on every other place. The partial loss
of G is not a problem since it is never modified, and the lost
fragments still exist on disk. The only real loss is the partial
U which cannot be recovered without replaying that work.

Our implementation responds to place failure as follows:
Any/all DPEs are caught together at the finish block for that

Size Hadoop X10 Res. X10 1 Dead Place
100K 3301 12 12 14
200K 3390 20 19 20
400K 3563 32 30 32
800K 5392 73 70 76
1M 6820 96 96 105

1.2M 8737 128 129 142
1.5M 12559 180 182 199
2M 21773 293 290 317

2.5M 33664 434 438 480
3M 52075 596 595 656

Table 2. End-to-end duration (seconds) for 30 iterations
of sparse matrix dense vector multiply over the 23 nodes
(23 places). In the final column, a place was killed at iter-
ation 15; the longer execution time reflects the recovery and
completion of the program with fewer nodes.

iteration. If there are any failures, the work assigned to the
dead places is reassigned, all U are discarded and the last
iteration is replayed with the new work assignment (missing
out the dead nodes).8 The execution then continues for the
remaining iterations. Since G is now spread across fewer
nodes, each place must have spare RAM to accommodate
place failures. The cost of a failed place can be broken down:
The previous iteration is lost, the remaining places must load
their newly assigned parts of G from disk. Finally, each
future iteration is slower due to each place having more work
to do. Thus, the cost of place failure depends on the number
of failures and when they occur.

In order to further improve the performance of the Re-
silient X10 version, we implemented the broadcast of V each
iteration using a broadcast tree instead of naive iteration to
each place. One must avoid dead places, so we modify the
tree to avoid routing through places that have no work as-
signed. Our solution was simply to delete nodes of the tree
and merge their children into the parent. A method that pre-
serves the depth of the tree is future work.

In Table 2, we give the end-to-end times for various ma-
trix sizes, running on our full cluster (23 nodes, 23 places).
Hadoop is on average 100x slower than X10, due to exces-
sive disk I/O. The cost of Resilient X10 as opposed to regular
X10 is lost in the noise, and the cost of recovering from the
a single node failure half way through execution is 10%.

In the case of size 3M, the Resilient X10 end-to-end time
(596 seconds) breaks down into 273 seconds reading the
matrix form disk, and 11 seconds per iteration. Clearly if
the number of iterations were increased, the performance
gap between X10 and Hadoop would increase. The 536
lines of code in this benchmark break down as follows:
I/O: 33%, matrix/vector block data structures and multiply:

8 Partial replay for faster recovery can be implemented, but we focused here
on the non-failure overheads. Our long term vision is that such details would
be handled by various frameworks depending on the resiliency model.



29%, distribution/concurrency control: 21%, command line
options: 11%, failure handling: 6%.

We hope these results show that while Hadoop can be a
good choice for certain large data traversals, it is not suitable
for general-purpose cluster programming.

5.3 K-Means
The K-Means benchmark is a distributed implementation of
Lloyd’s algorithm. The problem is to find the k centroids that
approximate the distribution of n points, where n is much
larger than k. Arbitrarily, we chose our points to be 4D and
represented with Floats.

The algorithm starts with guessed positions for the k cen-
troids, and iteratively refines them. Each iteration, each cen-
troid’s new position is calculated by averaging the points for
whom that centroid was closest. The algorithm is distributed
by splitting the points evenly across places, and replicating
the cluster positions across every place. Each iteration, each
place uses its local points to calculate a partial average for
the new cluster locations, and these are then aggregated to
form the new clusters for the next iteration.

We chose this problem because it allows an approach to
resilient programming that we call decimation. If a place
dies, we simply use the remaining state to continue execut-
ing. This makes sense because in analytics, the input points
are not precise, and likely to already be a sampling of a
real phenomenon. The loss of an arbitrary but small percent-
age of that input should therefore yield an equivalent result.
Other algorithms that operate on a sampled input dataset
would also apply, such as any Monte Carlo problem.

The benefit of decimation is that error recovery is essen-
tially instantaneous and the running time is unaffected by
failures. If the input data is ordered in any meaningful way
then loss of a contiguous portion of it could yield a substan-
tially different result, but this can be fixed by storing the data
in a random order. If failures are anticipated then the amount
of input data can be over-provisioned to control the error
bounds.

Implementing the decimation technique in Resilient X10
means catching and ignoring any DPEs that arise, and modi-
fying the output to inform the user that the result is approx-
imate due to place death. This requires only a few lines of
code to be added to a regular implementation of K-Means
in X10. We show the performance of the implementation in
Figure 7. We execute the implementation on Resilient X10
(using the place 0 implementation of finish) and on regular
X10. The measurements were done for 1 to 184 places allo-
cated on the 23 nodes in a round-robin manner. The scaling
is close to linear for the non-resilient case, and about 10%
slower with the Resilient X10 runtime. The performance is
not affected by failures.

5.4 Resilient Heat Transfer
The heat transfer application computes the diffusion of heat
through a two-dimensional grid (represented with an array

Figure 7. Strong scaling of K-Means (n = 184000000,
k = 100), for 1 to 184 places over the 23 nodes.

of Double). The algorithm iteratively updates heat values
by averaging the values from neighboring points (i.e. by
performing a stencil computation – a common HPC pattern).
Usually the computation is run until convergence but for
benchmarking purposes we ran a fixed number of iterations.

The array of heat values is distributed across multiple
places. Each place contains a front and back array. Each
iteration, one of them is assigned to, while the other stores
the last iteration’s result. These arrays are 2 elements bigger
in each dimension, so that they can store the skirt, i.e. the
values they need from their neighbors. The skirt is updated
via communication between places, each iteration.

While the matrix multiply benchmark had a large amount
of state, most of it (G) was not updated during execution.
This allowed recovery to proceed by reloading it from the
original input files. Heat transfer also has a large amount of
state, but this state is frequently updated during execution. A
different approach to resiliency is thus required.

For resilience, the heat values array is periodically check-
pointed into a resilient store. We chose a single backup in
a neighboring place’s RAM. This is easier and faster than
disk I/O and means the application is self-contained, but has
more memory overhead. Other variations are possible.

Upon failure, all state outside the resilient store is dis-
carded. The data is recovered from the resilient store and re-
distributed according to a new distribution over the remain-
ing nodes. Execution then continues from the last check-
point iteration. The frequency of checkpointing can be cus-
tomized. Depending on the speed of the network, the prob-
lem size, and the expected frequency of failures, it is possi-
ble to tune the checkpoint frequency to give the best end-to-
end time. Infrequent checkpoints reduce checkpointing over-
head, but require more CPU time to recover from failure.

In order to survive failure during the checkpointing oper-
ation, it is necessary to keep both old and new checkpoints



Figure 8. Strong scaling of heat transfer (16384 × 16384
grid) from 2 to 16 places with a variety of checkpointing
frequencies.

in RAM until every place has finished checkpointing. This
avoids the case where a place dies leaving its checkpoint not
updated, but other places have completed their checkpoint.
Recovering from that situation is impossible since there is
no complete set of data for any given time point. This sit-
uation is analogous to using a disk storage, where the last
checkpoint is not deleted until the new checkpoint is com-
pletely written. With our implementation, the space required
is 3x that of the non-resilient version.

The stencil kernel is computationally non-intensive, so to
avoid sharing the network interface we use 1 place per node.
In Figure 8 we show the benchmark scaling to 16 nodes
(16 places)9 with a variety of checkpointing frequencies.

6. Conclusions and Future Work
We have designed and implemented an extension to X10
that allows general-purpose programming in an environment
where node failure is common without compromising per-
formance, scalability or productivity. We have made our
implementation publicly available as part of the X10 2.4.1
open source release [1]. Resilient X10 preserves the hap-
pens before order of the original program, greatly simpli-
fying the burden of handling node failures, while retaining
performance transparency and allowing the programmer to
use domain-specific knowledge to efficiently code resilient
applications. We have measured the additional overhead of
Resilient X10 in isolation, and found it to be modest, as well
as scalable up to 416 places.

9 Partitioning of the grid into equal squares is much harder for 23 nodes. To
avoid additional communication overhead in the stencil algorithm by worse
partitioning, we measured only 2, 4, 8 and 16 places.

We have described three ways of writing resilient appli-
cations in X10. Replaying from disk is appropriate when
there is a large amount of immutable state that can be re-
covered from the original input file. Decimation is appropri-
ate for applications where an approximate result is accept-
able; it is the simplest to achieve and also the fastest. Finally,
if there is a large amount of mutable state then a resilient
store can be implemented in Resilient X10 to allow state to
be checkpointed in memory at neighboring nodes. Resilient
X10 makes implementing such stores much easier than other
languages, and they can also be provided as a utility library.

In the future, we would like to construct frameworks on
top of Resilient X10 for transparent resilient programming
in specialized programming models. A wide range of frame-
works are possible: MapReduce, bulk synchronous paral-
lelism, matrix processing, etc. Each should be easy to write
on top of Resilient X10 since it provides a lot of the basic
functionality required. Research into brand new paradigms
for transparent resilient programming can also be conducted
on top of Resilient X10.

We would also like to revisit our immortal place 0 de-
sign. One option is to decentralize the execution, allowing
the code to start at every place and co-operate in a peer-to-
peer fashion. Another option is to make place 0 transpar-
ently resilient (by synchronously checkpointing all the pro-
gram state). This would allow relocating it upon failure, but
would also cripple its performance. However that would not
be a problem if the only work at place 0 is initialization,
coordination and communication with the user. Extending
basic distributed classes such as DistArray to make them
resilient is also underway.

Finally, we would like to support adding new places dur-
ing the execution as well as detecting failed places. This
would allow nodes to be replaced, e.g. for online mainte-
nance of highly available distributed applications such as
web servers and databases.

Acknowledgments
We would like to thank Avraham Shinnar for his advice re-
garding the Hadoop comparison, Josh Milthorpe for helpful
discussions about the fast multipole method and Silvia Crafa
for discussions about semantics.

This work was funded in part by the Air Force Office of
Scientific Research under Contract No. FA8750-13-C-0052.

References
[1] X10 web site, 2013. URL http://x10-lang.org/.

[2] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haber-
man, R. Lax, S. McVeety, D. Mills, P. Nordstrom, and S. Whit-
tle. MillWheel: Fault-Tolerant Stream Processing at Internet
Scale. In Very Large Data Bases, pages 734–746, 2013.

[3] Apache Software Foundation. ZooKeeper Recipes and Solu-
tions, 2012. URL http://zookeeper.apache.org/doc/-

current/recipes.html.



[4] C. Bailey. Java Technology, IBM Style: Introduction to the
IBM Developer Kit: An overview of the new functions and
features in the IBM implementation of Java 5.0, 2006. URL
http://www.ibm.com/developerworks/java/library/-

j-ibmjava1.html.

[5] M. Carbin, D. Kim, S. Misailovic, and M. C. Rinard. Prov-
ing acceptability properties of relaxed nondeterministic ap-
proximate programs. In Proceedings of the 33rd ACM SIG-
PLAN conference on Programming Language Design and Im-
plementation, PLDI ’12, pages 169–180, 2012.

[6] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-
oriented approach to non-uniform cluster computing. In OOP-
SLA, pages 519–538, 2005.

[7] J. Chung, I. Lee, M. Sullivan, J. H. Ryoo, D. W. Kim, D. H.
Yoon, L. Kaplan, and M. Erez. Containment Domains: A Scal-
able, Efficient, and Flexible Resilience Scheme for Exascale
Systems. In the Proceedings of SC’12, November 2012.

[8] S. Crafa, D. Cunningham, V. Saraswat, A. Shinnar, and
O. Tardieu. Semantics of (Resilient) X10. Dec. 2013. URL
http://arxiv.org/abs/1312.3739.

[9] D. Cutting and E. Baldeschwieler. Meet Hadoop. In O’Reilly
Open Software Convention, Portland, OR, 2007.

[10] C. Danis and C. Halverson. The Value Derived from the
Observational Component in an Integrated Methodology for
the Study of HPC Programmer Productivity. Third Workshop
on Productivity and Performance in High-End Computing,
page 11, 2006.

[11] M. Dayarathna, C. Houngkaew, H. Ogata, and T. Suzumura.
Scalable performance of ScaleGraph for large scale graph
analysis. In HiPC, pages 1–9. IEEE, 2012.

[12] J. Dean and S. Ghemawat. MapReduce: simplified data pro-
cessing on large clusters. Commun. ACM, 51(1):107–113, Jan.
2008.

[13] K. Ebcioglu, V. Sarkar, T. El-Ghazawi, and J. Urbanic. An
Experiment in Measuring the Productivity of Three Parallel
Programming Languages. In P-PHEC workshop, held in
conjunction with HPCA, February 2006.

[14] C. Halverson, C. B. Swart, J. P. Brezin, J. T. Richards, and
C. M. Danis. The Value Derived from the Observational Com-
ponent in an Integrated Methodology for the Study of HPC
Programmer Productivity. 1st International Workshop on Soft-
ware Engineering for Computational Science and Engineer-
ing, 2008.

[15] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper:
wait-free coordination for internet-scale systems. In Proceed-
ings of the 2010 USENIX conference on USENIX annual tech-
nical conference, pages 11–11, 2010.

[16] J. Lifflander, P. Miller, and L. Kale. Adoption Protocols
for Fanout-Optimal Fault-Tolerant Termination Detection. In
18th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’13, February 2013.

[17] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A sys-
tem for large-scale graph processing. In Proceedings of the
2010 ACM SIGMOD International Conference on Manage-

ment of Data, SIGMOD ’10, pages 135–146, New York,
NY, USA, 2010. ACM. ISBN 978-1-4503-0032-2. . URL
http://doi.acm.org/10.1145/1807167.1807184.

[18] J. Milthorpe, V. Ganesh, A. P. Rendell, and D. Grove. X10 as
a Parallel Language for Scientific Computation: Practice and
Experience. In IPDPS, pages 1080–1088. IEEE, 2011.

[19] J. Milthorpe, A. P. Rendell, and T. Huber. PGAS-FMM:
Implementing a distributed fast multipole method using the
X10 programming language. Concurrency and Computation:
Practice and Experience, pages n/a–n/a, 2013.

[20] PAMI Guide: http://tinyurl.com/pamiguide.

[21] Parallel Programming Laboratory. The Charm++ Parallel Pro-
gramming System Manual. Technical Report version 6.4,
Department of Computer Science , University of Illinois,
Urbana-Champaign, 2013.

[22] V. Saraswat and R. Jagadeesan. Concurrent clustered pro-
gramming. In CONCUR 2005 - Concurrency Theory, pages
353–367. Springer-Verlag, 2005.

[23] V. Saraswat, G. Almasi, G. Bikshandi, C. Cascaval, D. Cun-
ningham, D. Grove, S. Kodali, I. Peshansky, and O. Tardieu.
The Asynchronous Partitioned Global Address Space Model.
In The First Workshop on Advances in Message Passing (co-
located with PLDI 2010), Toronto, Canada, June 2010.

[24] V. Saraswat, P. Kambadur, S. Kodali, D. Grove, and S. Krish-
namoorthy. Lifeline-based global load balancing. In Proceed-
ings of the 16th ACM symposium on Principles and practice
of parallel programming, PPoPP ’11, pages 201–212, 2011.

[25] A. Shinnar, D. Cunningham, V. Saraswat, and B. Herta. M3R:
increased performance for in-memory Hadoop jobs. Proc.
VLDB Endow., 5(12):1736–1747, Aug. 2012.

[26] M. Takeuchi, Y. Makino, K. Kawachiya, H. Horii, T. Suzu-
mura, T. Suganuma, and T. Onodera. Compiling X10 to Java.
In Proceedings of the 2011 ACM SIGPLAN X10 Workshop,
pages 3:1–3:10, 2011.

[27] M. Takeuchi, D. Cunningham, D. Grove, and V. Saraswat.
Java interoperability in Managed X10. In Proceedings of the
third ACM SIGPLAN X10 Workshop, pages 39–46, 2013.

[28] O. Tardieu, B. Herta, D. Cunningham, D. Grove, P. Kambadur,
V. Saraswat, A. Shinnar, M. Takeuchi, and M. Vaziri. X10 and
APGAS at Petascale. In 19th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’14,
February 2014.

[29] T. White. Hadoop: The Definitive Guide. O’Reilly Media,
Inc., 1st edition, 2009. ISBN 0596521979, 9780596521974.

[30] X10RT API: http://x10.sourceforge.net/x10rt/.

[31] C. Xie, Z. Hao, and H. Chen. X10-FT: transparent fault
tolerance for APGAS language and runtime. In P. Balaji,
M. Guo, and Z. H. 0001, editors, PMAM, pages 11–20. ACM,
2013.

[32] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: cluster computing with working sets. In
Proceedings of the 2nd USENIX conference on Hot topics in
cloud computing, HotCloud’10, pages 10–10, 2010.


