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Kemal Ebciŏglu Vijay Saraswat Vivek Sarkar

IBM Research
T.J. Watson Research Center

P.O. Box 704, Yorktown Heights, NY 10598

{kemal,vsaraswa,vsarkar}@us.ibm.com

Abstract

It is well established that application development pro-
ductivity is a significant bottleneck in the time to solution for
obtaining production applications on High-End Computing
(HEC) systems. Previously, we introduced a simple model
for defining application development productivity in the
presence of multiple expertise levels, and used this model
to motivate the programming model and tools solution be-
ing pursued in the IBM PERCS project [9]. In this paper,
we describeX10, an experimental language that embodies
a new parallel programming model serves as the foundation
for multiple productivity-improving technologies in PERCS
ranging from visualization and refactoring tools to static
and dynamic optimizing compilers.

1 Introduction and Motivation

The key challenges faced by current and future-
generation large-scale systems are 1)Scalability: the abil-
ity to effectively utilize multiple levels of available paral-
lelism in a high system, such as clusters, SMPs, multi-
ple cores on a chip, co-processors, SMT, and SIMD lev-
els, and 2)Non-uniform data access:the ability to support
a global data model in the presence of severe nonunifor-
mities in latency, bandwidth and interfaces for accessing
data in different parts of the system. It is now common
wisdom that the ongoing increase in hardware complexity
of large-scale parallel systems to address these challenges
has been accompanied by adecrease in software productiv-
ity for developing, debugging, and maintaining applications
for such machines [12]. This is a serious problem because

current trends for next generation systems, including SMP-
on-a-chip and tightly coupled “blade” servers, indicate that
these complexities will be faced not just by programmers
for large-scale parallel systems, but also by mainstream ap-
plication developers.

In the area of scientific computing, the programming
languages community responded to these challenges with
the design of several programming languages, includ-
ing Sisal, Fortran 90, High Performance Fortran, Kali,
ZPL, UPC, Co-Array Fortran, and Titanium. The ulti-
mate challenge facing this community is supportinghigh-
productivity, high-performance programming: that is, de-
signing a programming model that is simple and widely
usable (so that hundreds of thousands of application pro-
grammers and scientists can write code with felicity) and
yet efficiently implementable on current and proposed ar-
chitectures without requiring “heroic” compilation efforts.
This is a grand challenge, and past languages, while taking
significant steps forward, have fallen short of this goal ei-
ther in the breadth of applications that can be supported or
in the ability to deliver the underlying performance of the
target machine. MPI still remains the most common model
used in obtaining high performance on large-scale systems,
despite the productivity limitations inherent in its use.

During the same period, significant experience has
also been gained with the widespread adoption of object-
oriented languages, such as JAVA andC#, that are executed
on virtual machinesand managed runtime environments.
These languages, along with their accompanying libraries,
frameworks and tools, have enjoyed much success in im-
provingproductivityfor commercial applications.

X10 is an experimental new object-oriented language for
high performance computing that is currently under devel-
opment at IBM in collaboration with academic partners.



The X10 effort is part of the IBM PERCS project (Pro-
ductive Easy-to-use Reliable Computer Systems) whose
goal is to design adaptable scalable systems for the 2010
timeframe. The PERCS technical agenda is focused on
hardware-software co-design that combines advances in
chip technology, computer architecture, operating systems,
compilers, programming environments and programming
language design. The main role ofX10 is to simplify the
programming model so as to increase the programming pro-
ductivity for future systems like PERCS, without degrad-
ing performance. Combined with the PERCS Programming
Tools agenda [9], the ultimate goal is to use a new program-
ming model and a new set of tools to deliver a 10× im-
provement in development productivity for large-scale par-
allel applications by 2010.

To manage concurrency and distribution,X10 introduces
constructs that are expected to be amenable to automatic
static and dynamic optimizations by 2010. Specifically,
X10 introducesatomic sectionsin lieu of locks,clocksin
lieu of barriers, andasynchronous operationsin lieu of
threads. To increase performance transparency,X10 inte-
grates new constructs (notably,places, regionsanddistri-
butions) to model hierarchical parallelism and non-uniform
data access.

X10 is a strongly typed language that emphasizes the
static expression of program invariants (e.g. about locality
of computation). Such static expression improves both pro-
grammer productivity (in documenting design invariants)
and performance. TheX10 type system supports generic
type-abstraction (over value and reference types), is place-
and clock-sensitive and guarantees the absence of deadlock
(for programs without conditional atomic sections), even in
the presence of multiple clocks.X10 specifies a rigorous,
clean and simple semantics for programming constructs in-
dependently from a specific implementation.

In the remainder of this extended abstract, we present an
overview of theX10 design, and use example programs to
illustrate some of the individual features inX10.

2 The X10 language design

This section provides a brief summary of theX10 lan-
guage, focusing on the core features that are most relevant
to locality and parallelism. A number of other features in
X10 are not mentioned here due to space limitations. These
include generic interfaces, generic classes, type parameters,
sub-distributions, array constructors, exceptions, place casts
and the nullable type constructor.

A central concept inX10 is that of aplace. A place is a
collection of resident light-weight threads (calledactivities)
anddata, and is intended to map to a data-coherent unit in
a large scale system such as an SMP node or a single co-
processor. It contains a bounded, though perhaps dynami-

cally varying, number ofactivitiesand a bounded amount
of storage. Cluster-level parallelism can be exploited in an
X10 program by creating multiple places.

There are four storage classes in anX10 program:

1. Activity-local — this storage class is private to the
activity, and is located in the place where the activity
executes. The activity’s stack and thread-local data
are allocated in this storage class.

2. Place-local— this storage class is local to a place,
but can be accessed coherently by all activities exe-
cuting in the same place.

3. Partitioned-global— this storage class represents a
unified or global address space. Each element in
this storage class has a unique place that serves as
its home location,referencesto the element can be
manipulated by both local activities (activities in the
same place as the element) and remote activities (ac-
tivities in a different place from the element). How-
ever, as discussed below,accessesto the element can
only be performed by local activities.

4. Values— Instances ofvalue classes(value objects),
are immutable and stateless inX10, following the
example of Kava[7]. Such value objects are in this
storage class. Since value objects do not contain any
updatable locations, they can be freely copied from
place to place. (The choice of when to clone, cache
or share value objects is left to the implementation.)
In addition, methods may be invoked on such an ob-
ject from any place.

X10 activities operate on two kinds ofdata objects. A
scalarobject has a small, statically fixed set of fields, each
of which has a distinct name. The mutable state of a scalar
object is located at a single place. Anaggregate(array) ob-
ject has many elements (the number may be known only
when the object is created), uniformly accessed through
an index (e.g. an integer) and may be distributed across
many places. Specifically, anX10 array specifies 1) a set
of indices (called aregion) for which the array has val-
ues, 2) adistribution mappingfrom indices in this region
to places, and 3) the usual array mapping from each in-
dex in this region to a value of the given base type (which
may itself be an array type). Operations are provided to
construct regions (distributions) from other regions (distri-
butions), and to iterate over regions (distributions). These
operations include standard set-based operations such as
unions and intersections, some of which are available in
modern languages such as ZPL [10]. It is also worth not-
ing that commonly-used basic types such asint , float ,
complex andstring are defined asvalue classesin the



x10.lang standard library, rather than as primitive types
in the language.

Activities represent lightweight threads inX10. An ac-
tivity is created in a given place and remains in that place
for its lifetime, but each place may have several activities
executing in parallel. An activity can recursively spawn ad-
ditional activities at places of its choosing. Throughout its
lifetime an activity executes at the same place, and has di-
rect access only to data stored at that place. Remote data
can only be accessed by spawning asynchronous activities
at the places at which data is resident. Any attempt by an
activity to directly access a non-local datum is made mani-
fest either as a type-checking error during compilation or as
aBadPlaceException during execution.

The X10 type system is used to catch many common
cases

Asynchronous activities have two forms — statements
and expressions. The expression form of an asynchronous
activity is called afuture, and is discussed further below.
The statement form of an asynchronous activity isasync
(P) S whereS is a statement andP is a place expres-
sion. Such a statement is executed by spawning an activ-
ity at the place designated byP to execute statementS. As
a convenient means of identifying the place of a datum in
the partitioned-global storage class, when the expressionP
specifies an array element or object, it evaluates to the place
containing that array element or object.(P) can also be
omitted, in which case, it is inferred to be the place of the
data accessed by statementS (provided that a single place
can be unambiguously inferred).

For example, theX10 statement,

async (A[99]) { A[99] = k }

creates a new activity at the place containing element
A[99] of a global distributed arrayA. The values of lo-
cal variables such ask are passed as implicit parameters to
this activity. We believe that the use of implicit parameters
aids in productivity, since it relieves the programmer of the
burden of encapsulating remote activities as procedure calls
with explicit parameters. As an additional productivity aid,
X10 also supports animplicit syntaxfor async statements
and other constructs e.g., the above example could sim-
ply be written asA[99] = k; , which denotes the same
asynchronous activity to be executed at the place contain-
ing A[99] . This example illustrates how anasync state-
ment can be used to accomplish a remote store operation.
However,async statements can be used as the foundation
for many other common programming idioms in HEC ap-
plication development including fine-grained threads, asyn-
chronous DMA operations, message send (for an active or
passive message), and scatter operations.

In addition to theasyncstatement, theforeachconstruct
serves as a convenient mechanism for spawning local activi-

ties across a specified index set (region) and theateach(pro-
nounced “at each”) construct serves as a convenient mech-
anism for spawning activities across a set of local/remote
places or objects.

X10 provides five mechanisms for the coordination of
activities — clocks, force operations, finish operations,
atomic sections, andconditional atomic sections— which
are summarized below in the following paragraphs.

Clocks Clocks are a generalization of barriers, which
have been used as a basic synchronization primitive for MPI
process groups and in other SPMD programming models.
X10 clocksare designed to offer the functionality of multi-
ple barriers in the context of dynamic, asynchronous, hier-
archical networks of activities, while still supporting deter-
minate, deadlock-free parallel computation.

A clock is defined as a special value class instance, on
which only a restricted set of operations can be performed.
At any given time an activity isregisteredwith zero or more
clocks. The activity that creates a clock, is automatically
registered with this clock. An activity may register other ac-
tivities with a clock, or may un-register itself with a clock.
At any given step of the execution a clock is in a given
phase. The first phase of the clock starts when the clock
is created. The clockadvancesto its next phase only when
all its currently registered activities have quiesced (either
by performing anext operation, or by terminating), and
all statements scheduled for execution in the current phase
have terminated. In this manner, clocks serve as a general-
ization of barriers for a dynamically varying collection of
activities. From an activity’s viewpoint, when it performs a
next operation, it quiesces onall the clocks it is registered
with, and suspends until all of them have advanced to their
next phase.

Force Operations When an activityA executes the state-
ment, F = future (P) E , it asynchronously spawns
an activity B at the place designed byP to evaluate the
expressionE. Execution of the expression inA terminates
immediately, yielding afuture [4] in F, thereby enablingA
to perform other computations in parallel with the evalua-
tion of E. A may also choose to make the future stored inF
accessible to other activities. When any activity wishes to
examine the value of the expressionE, it invokes aforce
operation onF. This operation blocks untilB has completed
the evaluation ofE, and returns with the value thus com-
puted. Likeasync statements,future ’s can be used
as the foundation for many other common programming
idioms in HEC application development including fine-
grained threads, asynchronous DMA operations, message
send receive, and gather operations.



Finish Operations When an activityA executes the state-
ment,finish S , whereS is a statement, it is guaranteed
that the finish statement will not be completed till all activ-
ities that are (recursively) spawned byS have terminated.
Therefore,finish is a convenient operation that can be
used to enforce global termination.

Unconditional Atomic Sections A statement block or
method that is qualified asatomic has the semantics of
being executed by an activity as if in a single step, during
which all other activities are frozen1. Thus, atomic sec-
tions may be thought of as executing in some global se-
quential order, even though this order is indeterminate. An
atomic section is a generalization of user-controlled lock-
ing, so that theX10 programmer only needs to specify that
a collection of statements should execute atomically and
can leave the responsibility of lock management and other
mechanisms for enforcing atomicity to the language imple-
mentation. Primitives such as fetch-and-add, updates to his-
togram tables, updates to a bucket in a hash table, airline
seat reservations arriving at an online data base, and many
others, are a natural fit for coordination using atomic sec-
tions. X10 also requires that each access to shared mutable
data (i.e.,mutable data that can be accessed by multiple ac-
tivities) must occur in an atomic section, thereby easing the
constraints imposed by the memory consistency model.

Consider the following atomic section as a concrete ex-
ample:

atomic { node = new Node(data, head);
node.next = head; head = node; }

By declaring the statement block as atomic, the program-
mer is able to maintain the integrity of a linked list data
structure in a multithreaded context, while still giving the
X10 system the flexibility of using fine-grained synchro-
nization or even non-blocking implementations.

From a scalability viewpoint, it is important to avoid in-
cluding long-running or blocking operations in an atomic
section. In addition, we call an atomic sectionanalyzable
if the locations and places of all data to be accessed in the
atomic section can be computed on entry to the atomic sec-
tion. Analyzability of atomic sections is not a language re-
quirement, but serves as an important special case for which
optimized implementations of atomic sections can be devel-
oped [8].

Conditional atomic sections Conditional atomic sections
in X10 are akin to conditional critical regions [3], and have

1The implementation may of course allow concurrent execution of
atomic sections, using techniques such as non-blocking algorithms and
optimistic concurrency, as long as atomic sections are made to appear to
execute in a “single step” to the rest of the program.

the formwhen (c) S . If the guardc is false in the cur-
rent state, the activity executing the statement blocks until
c becomestrue. Otherwise, as far as any other concurrently
executing activity is concerned, the statement is executedin
a single stepwhich begins with the evaluation ofc = true,
and ends with the completion of statementS. This implies
that c is not allowed to change between the time it is de-
tected to be true and the timeS begins execution.X10 cur-
rently does not permit the statementS to contain or invoke
a nested conditional atomic section.

A conditional atomic section for which the conditionc
is statically true is considered to be equivalent to an uncon-
ditional atomic section.

3 RandomAccess Example

Figure 1 outlines one possible implementation for the
RandomAccess HPC Challenge benchmark inX10. The
group of statements labeled (1) is used to allocate and ini-
tialize table as a global block-distributed array. Note the
definitions of region r and distribution d, which
provide the foundation for allocating thetable array.
Since the index variable used in theateach construct has
the same distribution as thetable array, it is guaranteed
that each access totable[i] will be performed by a lo-
cal activity i.e., by an activity located in the same place
as table[i] . The use of thefinish operator ensures
that all initialization activities spawned in theateach con-
struct must be completed before execution moves to group
(2).

Next, the group of statements labeled (2) is used to al-
locate and initializeranStarts as a “unique-distributed”
arrayi.e., an array with exactly one element per place, and
the group of statements labeled (3) is used to allocate and
initialize avaluearray namedsmallTable .

The group of statements labeled (4) defines the core
computational kernel of RandomAccess, with one activity
per place that executes a long running sequential loop, (5).
Each iteration of the loop performs anasync statement
on the place containingtable[j] group of statements la-
beled (2) , and the async statement performs an atomic read-
exor-write operation ontable[j] .

Finally, the statement labeled (6) performs a sum reduc-
tion ontable[] , and compares the sum value with an ex-
pected result.

4 Jacobi Example

Figure 2 outlines one possible implementation for the Ja-
cobi example program inX10. The group of statements la-
beled (1) is used to create a block distribution,D, a second
distribution, D inner , that contains only the interior el-
ements ofD, and a third distribution,D boundary , that



public boolean run() {
// (1) Allocate and initialize table as a block-distributed array
final region r = new region(0,TABLE_SIZE-1);
final distribution d = distribution.block(r);
ranNum[d] table = new ranNum[d];
finish ateach(int i:d) {table[i]=new ranNum(i);}

// (2) Allocate and initialize ranStarts as a unique-distributed array
// with one random number seed for each place
final distribution d2= distribution.unique(place.places);
ranNum[d2] ranStarts = new ranNum[d2];
finish ateach(int i:d2) {ranStarts[i]=new ranNum(...);}

// (3) Allocate a small immutable table that can be copied on all processors
// and is used in generating the update values
final region r3=new region(0,SMALL_TABLE_SIZE-1);
final place valuePlace=(1).place;
final distribution d3=distribution.constant(r3,valuePlace);
value ranNum[d3] smallTable = new ranNum[d3];
foreach(int i:r3) {smallTable[i]=new ranNum(i * SMALL_TABLE_INIT);}

// (4)In all places in parallel, repeatedly generate random table indices
// and perform atomic read-modify-write operations on corresponding table elements
finish ateach (point p : ranStarts.distribution) {

long ran = nextRandom(ranStarts[p]);
// (5) Sequential loop
for (int count=1; count<=N_UPDATES_PER_PLACE; count++) {

final int j = f(ran);
final long k = smallTable[g(ran)];
async(table.distribution[j]){atomic{table[j]ˆ=k};}
ran = nextRandom(ran);

}
}

// (6) Return true iff sum of elements in table[] matches expected result
return table.reduce(ranNum.add,0)==EXPECTED_RESULT;

}

Figure 1: RandomAccess example inX10



contains all the remaining elements. Next, the group of
statements labeled (2) is used to allocate and initialize ar-
ray b. Note the use of different initialization statements for
the inner and boundary elements.

The statements in (3) creates a new array,temp[] , that
is used to compute the new values of the interior elements
of b[] . The overlayoperator is used to merge in temp[]
values intob[] .

Finally, the statement labeled (4) performs a sum reduc-
tion onb[] , and compares the sum value with an expected
result.

5 Conclusion

X10 is considerably higher-level than thread-based lan-
guages in that it supports dynamically spawning very light-
weight activities, the use of atomic operations for mutual
exclusion, and the use of clocks for repeated quiescence de-
tection of a data-dependent set of activities. Yet it is much
more concrete than languages like HPF in making explicit
the distribution of data objects across places. In this, the
language reflects the designers’ belief that issues of locality
and distribution cannot be hidden from the programmer of
high-performance code in high-end computing. A perfor-
mance model that distinguishes between computation and
communication must be made explicit and transparent. At
the same time we believe that the interaction between the
concurrency constructs and the place-based type system (in-
cluding first-class support for type parameters) will enable
much of the burden of generating distribution-specific code
and coordination of activities to be moved from the pro-
grammer to the underlying implementation.

In future work we plan to extendX10 along two dimen-
sions. First we plan to develop animplicit syntaxwhich
allows the programmer to elide certain details. The com-
piler will automatically fill-in these details based on type
information. For instance, the programmer may specify an
assignmentl = x wherex is not known to be local; the
compiler may automatically introduce aforce/future
combination to read the remote value synchronously and
store it in l . Several simplifications to theX10 syntax are
possible in this fashion.

Second we plan to develop mechanisms to support li-
brary developers writing place- and clock-generic code and
their own high-level domain-specific abstractions. For in-
stance, it should be possible for library developers to write
code for hierarchically tiled arrays [2], and for distributed
data-structures [6]. It should be possible for such develop-
ers to use the equivalent offoreach/ateach over their
own distributed data-structures.

We plan to evaluate the effectiveness of theX10 lan-
guage by designing and runningproductivity trials. These
trials will primarily be designed to evaluate the ease of de-

veloping new code in the HPC domain usingX10. We plan
to target developers in the HPC domain who are focused
on developing performance-efficient library code, as well
as developers interested in rapidly prototyping new appli-
cations (that must use high degrees of concurrency). Once
a performance-efficient implementation ofX10 is available
we also plan to evaluate the performance ofX10, for a range
of benchmark programs.
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