
X10 Language Specification
Version 2.6.2

Vijay Saraswat, Bard Bloom, Igor Peshansky, Olivier Tardieu, and David Grove

Please send comments to x10-core@lists.sourceforge.net

January 4, 2019

This report provides a description of the programming language X10. X10 is a class-
based object-oriented programming language designed for high-performance, high-
productivity computing on high-end computers supporting ≈ 105 hardware threads
and ≈ 1015 operations per second.

X10 is based on state-of-the-art object-oriented programming languages and deviates
from them only as necessary to support its design goals. The language is intended to
have a simple and clear semantics and be readily accessible to mainstream OO pro-
grammers. It is intended to support a wide variety of concurrent programming idioms.

The X10 design team consists of David Grove, Ben Herta, Louis Mandel, Josh Milthorpe,
Vijay Saraswat, Avraham Shinnar, Mikio Takeuchi, Olivier Tardieu.

Past members include Shivali Agarwal, Bowen Alpern, David Bacon, Raj Barik, Ganesh
Bikshandi, Bob Blainey, Bard Bloom, Philippe Charles, Perry Cheng, David Cun-
ningham, Christopher Donawa, Julian Dolby, Kemal Ebcioğlu, Stephen Fink, Robert
Fuhrer, Patrick Gallop, Christian Grothoff, Hiroshi Horii, Kiyokuni Kawachiya, Al-
lan Kielstra, Sreedhar Kodali, Sriram Krishnamoorthy, Yan Li, Bruce Lucas, Yuki
Makino, Nathaniel Nystrom, Igor Peshansky, Vivek Sarkar, Armando Solar-Lezama, S.
Alexander Spoon, Toshio Suganuma, Sayantan Sur, Toyotaro Suzumura, Christoph von
Praun, Leena Unnikrishnan, Pradeep Varma, Krishna Nandivada Venkata, Jan Vitek,
Hai Chuan Wang, Tong Wen, Salikh Zakirov, and Yoav Zibin.

For extended discussions and support we would like to thank: Gheorghe Almasi,
Robert Blackmore, Rob O’Callahan, Calin Cascaval, Norman Cohen, Elmootaz El-
nozahy, John Field, Kevin Gildea, Sara Salem Hamouda, Michihiro Horie, Arun Iyen-
gar, Chulho Kim, Orren Krieger, Doug Lea, John McCalpin, Paul McKenney, Hiroki
Murata, Andrew Myers, Filip Pizlo, Ram Rajamony, R. K. Shyamasundar, V. T. Rajan,
Frank Tip, Mandana Vaziri, and Hanhong Xue.

We thank Jonathan Rhees and William Clinger with help in obtaining the LATEX style
file and macros used in producing the Scheme report, on which this document is based.
We acknowledge the influence of the JavaTM Language Specification [5], the Scala
language specification [10], and ZPL [4].

1

2

This document specifies the language corresponding to Version 2.6.2 of the implemen-
tation. The redesign and reimplementation of arrays and rails was done by Dave Grove
and Olivier Tardieu. Version 1.7 of the report was co-authored by Nathaniel Nystrom.
The design of structs in X10 was led by Olivier Tardieu and Nathaniel Nystrom.

Earlier implementations benefited from significant contributions by Raj Barik, Philippe
Charles, David Cunningham, Christopher Donawa, Robert Fuhrer, Christian Grothoff,
Nathaniel Nystrom, Igor Peshansky, Vijay Saraswat, Vivek Sarkar, Olivier Tardieu,
Pradeep Varma, Krishna Nandivada Venkata, and Christoph von Praun. Tong Wen has
written many application programs in X10. Guojing Cong has helped in the develop-
ment of many applications. The implementation of generics in X10 was influenced by
the implementation of PolyJ [2] by Andrew Myers and Michael Clarkson.

Contents

1 Introduction 12

2 Overview of X10 14
2.1 Object-oriented features . 14
2.2 The sequential core of X10 . 17
2.3 Places and activities . 18
2.4 Distributed heap management . 19
2.5 Clocks . 20
2.6 Arrays, regions and distributions 20
2.7 Annotations . 20
2.8 Translating MPI programs to X10 20
2.9 Summary and future work . 21

2.9.1 Design for scalability . 21
2.9.2 Design for productivity 21
2.9.3 Conclusion . 22

3 Lexical and Grammatical structure 23
3.1 Whitespace . 23
3.2 Comments . 23
3.3 Identifiers . 23
3.4 Keywords . 24
3.5 Literals . 24
3.6 Separators . 26
3.7 Operators . 26
3.8 Grammatical Notation . 27

4 Types 29
4.1 Type System . 30
4.2 Unit Types: Classes, Struct Types, and Interfaces 32

4.2.1 Class types . 33
4.2.2 Struct Types . 33
4.2.3 Interface types . 34
4.2.4 Properties . 34

4.3 Type Parameters and Generic Types 35
4.4 Type definitions . 36

3

4 CONTENTS

4.4.1 Motivation and use . 37
4.5 Constrained types . 39

4.5.1 Examples of Constraints 40
4.5.2 Syntax of constraints . 41
4.5.3 Constraint solver: incompleteness and approximation . . . 44
4.5.4 Acyclicity of Properties 45
4.5.5 Limitation: Generics and Constraints at Runtime 45

4.6 Function types . 47
4.7 Default Values . 49
4.8 Annotated types . 50
4.9 Subtyping and type equivalence . 50
4.10 Common ancestors of types . 51
4.11 Fundamental types . 53

4.11.1 The interface Any . 53
4.12 Type inference . 54

4.12.1 Variable declarations . 54
4.12.2 Return types . 54
4.12.3 Inferring Type Arguments 56

4.13 Type Dependencies . 60
4.14 Typing of Variables and Expressions 60
4.15 Limitations of Strict Typing . 62

5 Variables 63
5.1 Immutable variables . 64
5.2 Initial values of variables . 65
5.3 Destructuring syntax . 66
5.4 Formal parameters . 67
5.5 Local variables and Type Inference 68
5.6 Fields . 69

6 Names and packages 70
6.1 Names . 70

6.1.1 Shadowing . 70
6.1.2 Hiding . 71
6.1.3 Obscuring . 71
6.1.4 Ambiguity and Disambiguation 72

6.2 Access Control . 73
6.2.1 Details of protected . 73

6.3 Packages . 74
6.3.1 Name Collisions . 75

6.4 import Declarations . 75
6.4.1 Single-Type Import . 75
6.4.2 Automatic Import . 76
6.4.3 Implicit Imports . 76

6.5 Conventions on Type Names . 76

CONTENTS 5

7 Interfaces 77
7.1 Interface Syntax . 79
7.2 Access to Members . 79
7.3 Member Specification . 79
7.4 Property Methods . 80
7.5 Field Definitions . 80

7.5.1 Fine Points of Fields . 80
7.6 Generic Interfaces . 81
7.7 Interface Inheritance . 82
7.8 Members of an Interface . 82

8 Classes 83
8.1 Principles of X10 Objects . 83

8.1.1 Basic Design . 83
8.1.2 Class Declaration Syntax 84

8.2 Fields . 85
8.2.1 Field Initialization . 85
8.2.2 Field hiding . 85
8.2.3 Field qualifiers . 86

8.3 Properties . 87
8.3.1 Properties and Field Initialization 88
8.3.2 Properties and Fields . 89
8.3.3 Acyclicity of Properties 89

8.4 Methods . 89
8.4.1 Forms of Method Definition 91
8.4.2 Method Return Types . 91
8.4.3 Throws Clause . 91
8.4.4 Final Methods . 92
8.4.5 Generic Instance Methods 92
8.4.6 Method Guards . 92
8.4.7 Property methods . 93
8.4.8 Method overloading, overriding, hiding, shadowing and ob-

scuring . 95
8.5 Constructors . 98

8.5.1 Automatic Generation of Constructors 98
8.5.2 Calling Other Constructors 99
8.5.3 Return Type of Constructor 100

8.6 Static initialization . 100
8.6.1 Compatability with Prior Versions of X10 101

8.7 User-Defined Operators . 102
8.7.1 Binary Operators . 104
8.7.2 Unary Operators . 105
8.7.3 Type Conversions . 106
8.7.4 Implicit Type Coercions 106
8.7.5 Assignment and Application Operators 107

8.8 User-Defined Control Structures 108

6 CONTENTS

8.8.1 User-Defined for . 110
8.8.2 User-Defined if . 112
8.8.3 User-Defined try . 112
8.8.4 User-Defined throw . 113
8.8.5 User-Defined async . 113
8.8.6 User-Defined atomic . 114
8.8.7 User-Defined when . 115
8.8.8 User-Defined finish . 115
8.8.9 User-Defined at . 116
8.8.10 User-Defined ateach . 117
8.8.11 User-Defined while and do 117
8.8.12 User-Defined continue 118
8.8.13 User-Defined break . 119

8.9 Class Guards and Invariants . 120
8.9.1 Invariants for implements and extends clauses 121
8.9.2 Timing of Invariant Checks 121
8.9.3 Invariants and constructor definitions 121

8.10 Generic Classes . 123
8.10.1 Use of Generics . 123

8.11 Object Initialization . 124
8.11.1 Constructors and Non-Escaping Methods 126
8.11.2 Fine Structure of Constructors 129
8.11.3 Definite Initialization in Constructors 131
8.11.4 Summary of Restrictions on Classes and Constructors . . . 131

8.12 Method Resolution . 133
8.12.1 Space of Methods . 135
8.12.2 Possible Methods . 137
8.12.3 Field Resolution . 139
8.12.4 Other Disambiguations 140

8.13 Static Nested Classes . 141
8.14 Inner Classes . 141

8.14.1 Constructors and Inner Classes 143
8.15 Local Classes . 144
8.16 Anonymous Classes . 145

9 Structs 147
9.1 Struct declaration . 148
9.2 Boxing of structs . 149
9.3 Optional Implementation of Any methods 149
9.4 Primitive Types . 150

9.4.1 Signed and Unsigned Integers 150
9.5 Example structs . 150
9.6 Nested Structs . 151
9.7 Default Values of Structs . 151
9.8 Converting Between Classes And Structs 151

CONTENTS 7

10 Functions 153
10.1 Overview . 153
10.2 Function Application . 154
10.3 Function Literals . 155

10.3.1 Outer variable access . 156
10.4 Functions as objects of type Any 157

11 Expressions 158
11.1 Literals . 158
11.2 this . 158
11.3 Local variables . 159
11.4 Field access . 159
11.5 Function Literals . 161
11.6 Calls . 161

11.6.1 super calls . 162
11.7 Assignment . 163
11.8 Increment and decrement . 164
11.9 Numeric Operations . 164

11.9.1 Conversions and coercions 165
11.9.2 Unary plus and unary minus 165

11.10 Bitwise complement . 165
11.11 Binary arithmetic operations . 165
11.12 Binary shift operations . 166
11.13 Binary bitwise operations . 166
11.14 String concatenation . 166
11.15 Logical negation . 166
11.16 Boolean logical operations . 167
11.17 Boolean conditional operations . 167
11.18 Relational operations . 167
11.19 Conditional expressions . 167
11.20 Stable equality . 168

11.20.1 No Implicit Coercions for == 169
11.20.2 Non-Disjointness Requirement 170

11.21 Allocation . 171
11.22 Casts and Conversions . 172

11.22.1 Casts . 172
11.22.2 Explicit Conversions . 174
11.22.3 Resolving Ambiguity . 174

11.23 Coercions and conversions . 175
11.23.1 Coercions . 175
11.23.2 Conversions . 178

11.24 instanceof . 179
11.24.1 Nulls in Constraints in as and instanceof 180

11.25 Subtyping expressions . 180
11.26 Rail Constructors . 181
11.27 Parenthesized Expressions . 181

8 CONTENTS

12 Statements 183
12.1 Empty statement . 183
12.2 Local variable declaration . 184
12.3 Block statement . 185
12.4 Expression statement . 186
12.5 Labeled statement . 186
12.6 Break statement . 187
12.7 Continue statement . 188
12.8 If statement . 188
12.9 Switch statement . 189
12.10 While statement . 189
12.11 Do–while statement . 190
12.12 For statement . 190
12.13 Return statement . 192
12.14 Assert statement . 192
12.15 Exceptions in X10 . 193
12.16 Throw statement . 193
12.17 Try–catch statement . 194
12.18 Assert . 195

13 Places 196
13.1 The Structure of Places . 196
13.2 here . 196
13.3 at: Place Changing . 197

13.3.1 Copying Values . 198
13.3.2 How at Copies Values . 199
13.3.3 at and Activities . 199
13.3.4 Copying from at . 200
13.3.5 Copying and Transient Fields 201
13.3.6 Copying and GlobalRef 202
13.3.7 Warnings about at . 202

14 Activities 204
14.1 The X10 rooted exception model 205
14.2 async: Spawning an activity . 205
14.3 Finish . 206
14.4 Initial activity . 207
14.5 Ateach statements . 207
14.6 vars and Activities . 208
14.7 Atomic blocks . 208

14.7.1 Unconditional atomic blocks 210
14.7.2 Conditional atomic blocks 210

14.8 Use of Atomic Blocks . 213

15 Clocks 215
15.1 Clock operations . 217

CONTENTS 9

15.1.1 Creating new clocks . 217
15.1.2 Registering new activities on clocks 217
15.1.3 Resuming clocks . 218
15.1.4 Advancing clocks . 218
15.1.5 Dropping clocks . 219

15.2 Deadlock Freedom . 219
15.3 Program equivalences . 220
15.4 Clocked Finish . 220

16 Rails and Arrays 222
16.1 Overview . 222
16.2 Rails . 222
16.3 x10.array: Simple Arrays . 224

16.3.1 Points . 224
16.3.2 IterationSpace . 225
16.3.3 Array . 225
16.3.4 DistArray . 226

16.4 x10.regionarray: Flexible Arrays 226
16.4.1 Regions . 227
16.4.2 Arrays . 229
16.4.3 Distributions . 230
16.4.4 Distributed Arrays . 232
16.4.5 Distributed Array Construction 232
16.4.6 Operations on Arrays and Distributed Arrays 233

17 Annotations 236
17.1 Annotation syntax . 236
17.2 Annotation declarations . 237

18 Interoperability with Other Languages 239
18.1 Embedded Native Code Fragments 239

18.1.1 Native staticMethods 239
18.1.2 Native Blocks . 241

18.2 Interoperability with External Java Code 242
18.2.1 How Java program is seen in X10 242
18.2.2 How X10 program is translated to Java 244

18.3 Interoperability with External C and C++ Code 247
18.3.1 Auxiliary C++ Files . 249
18.3.2 C++ System Libraries . 249

19 Definite Assignment 251
19.1 Asynchronous Definite Assignment 252
19.2 Characteristics of Definite Assignment 253

20 Grammar 258

10 CONTENTS

References 277

Alphabetic index of definitions of concepts, keywords, and procedures 279

A Deprecations 289

B Change Log 290
B.1 Changes from X10 v2.5 . 290
B.2 Changes from X10 v2.4 . 290
B.3 Changes from X10 v2.3 . 291

B.3.1 Integral Literals . 291
B.3.2 Arrays . 291
B.3.3 Other Changes from X10 v2.3 292

B.4 Changes from X10 v2.2 . 292
B.5 Changes from X10 v2.1 . 293
B.6 Changes from X10 v2.0.6 . 294

B.6.1 Object Model . 294
B.6.2 Constructors . 295
B.6.3 Implicit clocks for each finish 295
B.6.4 Asynchronous initialization of val 296
B.6.5 Main Method . 296
B.6.6 Assorted Changes . 296
B.6.7 Safety of atomic and when blocks 296
B.6.8 Removed Topics . 297
B.6.9 Deprecated . 297

B.7 Changes from X10 v2.0 . 297
B.8 Changes from X10 v1.7 . 298

C Options 299
C.1 Compiler Options: Common . 299

C.1.1 Optimization: -O or -optimize 299
C.1.2 Debugging: -DEBUG=boolean 299
C.1.3 Call Style: -STATIC CHECKS, -VERBOSE CHECKS 299
C.1.4 Help: -help and -- -help 300
C.1.5 Source Path: -sourcepath path 300
C.1.6 Output Directory: -d directory 300
C.1.7 Executable File: -o path 300

C.2 Compiler Option: C++ . 300
C.2.1 Runtime: -x10rt impl 300

C.3 Compiler Option: Java . 300
C.3.1 Class Path: -classpath path 300

C.4 Execution Options: Java . 301
C.4.1 Class Path: -classpath path 301
C.4.2 Library Path: -libpath path 301
C.4.3 Heap Size: -mssize and -mxsize 301
C.4.4 Stack Size: -sssize . 301

CONTENTS 11

C.4.5 Places: -np count . 301
C.4.6 Hosts: -host host1,host2,... or -hostfile file . . 301
C.4.7 Runtime: -x10rt impl 301
C.4.8 Help: -h . 301

C.5 Running X10 . 302
C.6 Managed X10 . 302
C.7 Native X10 . 302

D Acknowledgments and Trademarks 303

1 Introduction

Background

The era of the mighty single-processor computer is over. Now, when more computing
power is needed, one does not buy a faster uniprocessor—one buys another processor
just like those one already has, or another hundred, or another million, and connects
them with a high-speed communication network. Or, perhaps, one rents them instead,
with a cloud computer. This gives one whatever number of computer cycles that one
can desire and afford.

The problem, then, is how to use those computer cycles effectively. One must under-
stand how to divide up the available work into chunks that can be executed simulta-
neously without introducing undesirable indeterminacy, cycles of “deadly embrace”
which jam up processors or causing processors to spin uselessly waiting for conditions
that may never materialize.

One response to this problem has been to move to a fragmented memory model. Mul-
tiple processors are programmed largely as if they were uniprocessors, but are made
to interact via a relatively language-neutral message-passing format such as MPI [12].
This model has enjoyed some success: several high-performance applications have
been written in this style. Unfortunately, this model leads to a loss of programmer
productivity: the message-passing format is integrated into the host language by means
of an application-programming interface (API), the programmer must explicitly rep-
resent and manage the interaction between multiple processes and choreograph their
data exchange; large data-structures (such as distributed arrays, graphs, hash-tables)
that are conceptually unitary must be thought of as fragmented across different nodes;
all processors must generally execute the same code in an Single Program Multiple
Data (SPMD) fashion etc.

One response to this problem has been the advent of the partitioned global address
space (PGAS) model underlying languages such as UPC, Titanium and Co-Array For-
tran [3, 16]. These languages permit the programmer to think of a single computation
running across multiple processors, sharing a common address space. All data resides
at some processor, which is said to have affinity to the data. Each processor may oper-
ate directly on the data it contains but must use some indirect mechanism to access or
update data at other processors. Some kind of global barriers are used to ensure that
processors remain roughly synchronized.

12

13

X10 is the first of the second generation of PGAS languages. It is a modern object-
oriented programming language that introduces new constructs that significantly sim-
plify scale out programming. The fundamental goal of X10 is to enable scalable, high-
performance, high-productivity transformational programming for high-end computers—
for traditional numerical computation workloads (such as weather simulation, molecu-
lar dynamics, particle transport problems etc) as well as commercial server workloads,
such as big data analytics.

X10 is based on state-of-the-art object-oriented programming ideas primarily to take
advantage of their proven flexibility and ease-of-use for a wide spectrum of program-
ming problems. X10 takes advantage of several years of research (e.g., in the context
of the Java Grande forum, [9, 1]) on how to adapt such languages to the context of
high-performance numerical computing. Thus X10 provides support for user-defined
struct types (such as Int, Float, Complex etc) and function literals, supports a very
flexible form of multi-dimensional arrays (based on ideas in ZPL [4]) and supports
IEEE-standard floating point arithmetic. Some capabilities for overloading operator
are also provided.

X10 introduces a flexible treatment of concurrency, distribution and locality, within an
integrated type system. X10 extends the PGAS model with asynchrony (yielding the
APGAS programming model). X10 introduces places as an abstraction for a computa-
tional context with a locally synchronous view of shared memory. An X10 computation
runs over a large collection of places. Each place hosts some data and runs one or more
activities. Activities can be dynamically created. Activities are lightweight threads of
execution. An activity may synchronously (and atomically) use one or more memory
locations in the place in which it resides, leveraging current symmetric multiprocessor
(SMP) technology. A distributed termination construct finish enables code to execute
after all activities in the given statement have terminated, thus ensuring that all their
side-effects have already taken place. An activity may shift to another place to exe-
cute a statement block. X10 provides weaker ordering guarantees for inter-place data
access, enabling applications to scale. Multiple memory locations in multiple places
cannot be accessed atomically. Immutable data needs no consistency management and
may be freely copied by the implementation between places. One or more clocks may
be used to order activities running in multiple places. DistArrays, distributed arrays,
may be distributed across multiple places and support parallel collective operations. A
novel exception flow model ensures that exceptions thrown by asynchronous activities
can be caught at a suitable parent activity. Asynchronous initialization of variables is
supported. Linking with native code is supported.

2 Overview of X10

X10 is a statically typed object-oriented language, extending a sequential core language
with places, activities, clocks, (distributed, multi-dimensional) arrays and struct types.
All these changes are motivated by the desire to use the new language for high-end,
high-performance, high-productivity computing.

2.1 Object-oriented features

The sequential core of X10 is a container-based object-oriented language similar to
Java and C++, and more recent languages such as Scala. Programmers write X10
code by defining containers for data and behavior called classes (§8) and structs (§9),
often abstracted as interfaces (§7). X10 provides inheritance and subtyping in fairly
traditional ways.

Example:

Normed describes entities with a norm() method. Normed is intended to be used for
entities with a position in some coordinate system, and norm() gives the distance be-
tween the entity and the origin. A Slider is an object which can be moved around on
a line; a PlanePoint is a fixed position in a plane. Both Sliders and PlanePoints
have a sensible norm() method, and implement Normed.

interface Normed {

def norm():Double;

}

class Slider implements Normed {

var x : Double = 0;

public def norm() = Math.abs(x);

public def move(dx:Double) { x += dx; }

}

struct PlanePoint implements Normed {

val x : Double; val y:Double;

public def this(x:Double, y:Double) {

this.x = x; this.y = y;

}

14

2.1. OBJECT-ORIENTED FEATURES 15

public def norm() = Math.sqrt(x*x+y*y);

}

Interfaces An X10 interface specifies a collection of abstract methods; Normed spec-
ifies just norm(). Classes and structs can be specified to implement interfaces, as
Slider and PlanePoint implement Normed, and, when they do so, must provide all
the methods that the interface demands.

Interfaces are purely abstract. Every value of type Normed must be an instance of
some class like Slider or some struct like PlanePoint which implements Normed;
no value can be Normed and nothing else.

Classes and Structs There are two kinds of containers: classes (§8) and structs
(§9). Containers hold data in fields, and give concrete implementations of methods,
as Slider and PlainPoint above.

Classes are organized in a single-inheritance tree: a class may have only a single parent
class, though it may implement many interfaces and have many subclasses. Classes
may have mutable fields, as Slider does.

In contrast, structs are headerless values, lacking the internal organs which give objects
their intricate behavior. This makes them less powerful than objects (e.g., structs cannot
inherit methods, though objects can), but also cheaper (e.g., they can be inlined, and
they require less space than objects). Structs are immutable, though their fields may be
immutably set to objects which are themselves mutable. They behave like objects in
all ways consistent with these limitations; e.g., while they cannot inherit methods, they
can have them – as PlanePoint does.

X10 has no primitive classes per se. However, the standard library x10.lang sup-
plies structs and objects Boolean, Byte, Short, Char, Int, Long, Float, Double,
Complex and String. The user may defined additional arithmetic structs using the
facilities of the language.

Functions. X10 provides functions (§10) to allow code to be used as values. Func-
tions are first-class data: they can be stored in lists, passed between activities, and so
on. square, below, is a function which squares an Long. of4 takes an Long-to-Long
function and applies it to the number 4. So, fourSquared computes of4(square),
which is square(4), which is 16, in a fairly complicated way.

val square = (i:Long) => i*i;

val of4 = (f: (Long)=>Long) => f(4);

val fourSquared = of4(square);

Functions are used extensively in X10 programs. For example, a common way to
construct and initialize an Rail[Long] – that is, a fixed-length one-dimensional array
of numbers, like an long[] in Java – is to pass two arguments to a factory method:
the first argument being the length of the rail, and the second being a function which

16 CHAPTER 2. OVERVIEW OF X10

computes the initial value of the ith element. The following code constructs a 1-
dimensional rail initialized to the squares of 0,1,...,9: r(0) == 0, r(5)==25, etc.

val r : Rail[Long] = new Rail[Long](10, square);

Constrained Types X10 containers may declare properties, which are fields bound
immutably at the creation of the container. The static analysis system understands
properties, and can work with them logically.

For example, an implementation of matrices Mat might have the numbers of rows and
columns as properties. A little bit of care in definitions allows the definition of a +
operation that works on matrices of the same shape, and * that works on matrices with
appropriately matching shapes.

abstract class Mat(rows:Long, cols:Long) {

static type Mat(r:Long, c:Long) = Mat{rows==r&&cols==c};

abstract operator this + (y:Mat(this.rows,this.cols))

:Mat(this.rows, this.cols);

abstract operator this * (y:Mat) {this.cols == y.rows}

:Mat(this.rows, y.cols);

The following code typechecks (assuming that makeMat(m,n) is a function which
creates an m×nmatrix). However, an attempt to compute axb1 + bxc or bxc * axb1
would result in a compile-time type error:

static def example(a:Long, b:Long, c:Long) {

val axb1 : Mat(a,b) = makeMat(a,b);

val axb2 : Mat(a,b) = makeMat(a,b);

val bxc : Mat(b,c) = makeMat(b,c);

val axc : Mat(a,c) = (axb1 +axb2) * bxc;

//ERROR: val wrong1 = axb1 + bxc;

//ERROR: val wrong2 = bxc * axb1;

}

The “little bit of care” shows off many of the features of constrained types. The
(rows:Long, cols:Long) in the class definition declares two properties, rows and
cols.1

A constrained type looks like Mat{rows==r && cols==c}: a type name, followed
by a Boolean expression in braces. The type declaration on the second line makes
Mat(r,c) be a synonym for Mat{rows==r && cols==c}, allowing for compact types
in many places.

Functions can return constrained types. The makeMat(r,c)method returns a Mat(r,c)
– a matrix whose shape is given by the arguments to the method. In particular, con-
structors can have constrained return types to provide specific information about the
constructed values.

1The class is officially declared abstract to allow for multiple implementations, like sparse and band
matrices, but in fact is abstract to avoid having to write the actual definitions of + and *.

2.2. THE SEQUENTIAL CORE OF X10 17

The arguments of methods can have type constraints as well. The operator this +
line lets A+B add two matrices. The type of the second argument y is constrained to
have the same number of rows and columns as the first argument this. Attempts to
add mismatched matrices will be flagged as type errors at compilation.

At times it is more convenient to put the constraint on the method as a whole, as seen
in the operator this * line. Unlike for +, there is no need to constrain both dimen-
sions; we simply need to check that the columns of the left factor match the rows of
the right. This constraint is written in {...} after the argument list. The shape of the
result is computed from the shapes of the arguments.

And that is all that is necessary for a user-defined class of matrices to have shape-
checking for matrix addition and multiplication. The example method compiles under
those definitions.

Generic types Containers may have type parameters, permitting the definition of
generic types. Type parameters may be instantiated by any X10 type. It is thus possible
to make a list of integers List[Long], a list of non-zero integers List[Long{self
!= 0}], or a list of people List[Person]. In the definition of List, T is a type
parameter; it can be instantiated with any type.

class List[T] {

var head: T;

var tail: List[T];

def this(h: T, t: List[T]) { head = h; tail = t; }

def add(x: T) {

if (this.tail == null)

this.tail = new List[T](x, null);

else

this.tail.add(x);

}

}

The constructor (def this) initializes the fields of the new object. The add method
appends an element to the list. List is a generic type. When instances of List are
allocated, the type parameter T must be bound to a concrete type. List[Long] is the
type of lists of element type Long, List[List[String]] is the type of lists whose
elements are themselves lists of string, and so on.

2.2 The sequential core of X10

The sequential aspects of X10 are mostly familiar from C and its progeny. X10 enjoys
the familiar control flow constructs: if statements, while loops, for loops, switch
statements, throw to raise exceptions and try...catch to handle them, and so on.

18 CHAPTER 2. OVERVIEW OF X10

X10 has both implicit coercions and explicit conversions, and both can be defined on
user-defined types. Explicit conversions are written with the as operation: n as
Long. The types can be constrained: n as Long{self != 0} converts n to a non-
zero integer, and throws a runtime exception if its value as an integer is zero.

2.3 Places and activities

The full power of X10 starts to emerge with concurrency. An X10 program is intended
to run on a wide range of computers, from uniprocessors to large clusters of parallel
processors supporting millions of concurrent operations. To support this scale, X10
introduces the central concept of place (§13). A place can be thought of as a virtual
shared-memory multi-processor: a computational unit with a finite (though perhaps
changing) number of hardware threads and a bounded amount of shared memory, uni-
formly accessible by all threads.

An X10 computation acts on values(§8.1) through the execution of lightweight threads
called activities(§14). An object has a small, statically fixed set of fields, each of
which has a distinct name. A scalar object is located at a single place and stays at
that place throughout its lifetime. An aggregate object has many fields (the number
may be known only when the object is created), uniformly accessed through an index
(e.g., an integer) and may be distributed across many places. The distribution of an
aggregate object remains unchanged throughout the computation, thought different ag-
gregates may be distributed differently. Objects are garbage-collected when no longer
useable; there are no operations in the language to allow a programmer to explicitly
release memory.

X10 has a unified or global address space. This means that an activity can reference
objects at other places. However, an activity may synchronously access data items only
in the current place, the place in which it is running. It may atomically update one or
more data items, but only in the current place. If it becomes necessary to read or modify
an object at some other place q, the place-shifting operation at(q;F) can be used, to
move part of the activity to q. F is a specification of what information will be sent to q
for use by that part of the computation. It is easy to compute across multiple places, but
the expensive operations (e.g., those which require communication) are readily visible
in the code.

Atomic blocks. X10 has a control construct atomic S where S is a statement with
certain restrictions. S will be executed atomically, without interruption by other activi-
ties. This is a common primitive used in concurrent algorithms, though rarely provided
in this degree of generality by concurrent programming languages.

More powerfully – and more expensively – X10 allows conditional atomic blocks,
when(B)S, which are executed atomically at some point when B is true. Conditional
atomic blocks are one of the strongest primitives used in concurrent algorithms, and
one of the least-often available.

2.4. DISTRIBUTED HEAP MANAGEMENT 19

Asynchronous activities. An asynchronous activity is created by a statement async
S, which starts up a new activity running S. It does not wait for the new activity to
finish; there is a separate statement (finish) to do that.

2.4 Distributed heap management

X10 is the language for parallel and distributed computing, which is based on the
APGAS (Asynchronous Partitioned Global Address Space) programming model. In
(A)PGAS, the address space is partitioned into multiple semi-spaces. The semi-space
is called place in X10. In Managed X10 (X10 on Java VMs), a place is represented as
a single Java VM and the semi-space is mapped to the heap of the Java VM.

X10 supports garbage collection. Objects in a local heap (local objects) are collected
with (local) garbage collection and there is no way to explicitly free them. The refer-
ence to local objects is called local reference.

In addition, X10 has another type of reference called remote reference. Unlike local
reference, remote reference can reference objects at both local and remote places.

With remote reference, an activity (something like thread, it runs on a place at a time
but it can move itself to different places) can access objects at a remote place (remote
objects) when the activity has moved to the remote place. The place where an object is
created is the home place of the object and it does not change for the lifetime.

To guarantee an activity can access remote objects at their home place, the objects with
remote reference are protected from (local) garbage collection at their home place even
if they have no local reference. Objects can be garbage collected only when they have
neither local nor remote reference. The garbage collection that takes care of remote
reference is called distributed garbage collection and it is supported in Managed X10.

Distributed garbage collection in Managed X10 [8] tracks the lifetime of remote ref-
erence with reference counting. When the local garbage collection at a remote place
detects the remote reference is no longer needed at the place, the count is decremented.
When the count becomes zero, the local garbage collection at the home place is ready
to collect the referenced object in the ordinary way.

This mechanism works in most cases, but when there is unbalance in heap allocation
rate between places, there is a risk of out of memory error at a frequently allocating
place. This is because remote reference from infrequently allocating (i.e. infrequently
garbage collected) places could retain remotely referenced objects longer than needed.

To avoid the out of memory error even with unbalanced heap allocation rate, there is a
way to explicitly release remote reference.

A single call of PlaceLocalHandle.destroy() (PlaceLocalHandle is an X10
type that bundles multiple remote references to the objects at different places) releases
all remote references immediately, thus the local garbage collection at each place be-
comes ready to collect the referenced object in the ordinary way. It can be called at the
point where the all objects referenced by the handle are no longer needed to be acces-
sible with the handle. Local reference to the object at each place won’t be affected.

20 CHAPTER 2. OVERVIEW OF X10

2.5 Clocks

The MPI style of coordinating the activity of multiple processes with a single barrier
is not suitable for the dynamic network of heterogeneous activities in an X10 compu-
tation. X10 allows multiple barriers in a form that supports determinate, deadlock-free
parallel computation, via the Clock type.

A single Clock represents a computation that occurs in phases. At any given time, an
activity is registered with zero or more clocks. The static method Clock.advanceAll
tells all of an activity’s registered clocks that the activity has finished the current phase,
and causes it to wait for the next phase. Other operations allow waiting on a single
clock, starting new clocks or new activities registered on an extant clock, and so on.

Clocks act as barriers for a dynamically varying collection of activities. They general-
ize the barriers found in MPI style program in that an activity may use multiple clocks
simultaneously. Yet programs using clocks properly are guaranteed not to suffer from
deadlock.

2.6 Arrays, regions and distributions

X10 provides DistArrays, distributed arrays, which spread data across many places.
An underlying Dist object provides the distribution, telling which elements of the
DistArray go in which place. Dist uses subsidiary Region objects to abstract over
the shape and even the dimensionality of arrays. Specialized X10 control statements
such as ateach provide efficient parallel iteration over distributed arrays.

2.7 Annotations

X10 supports annotations on classes and interfaces, methods and constructors, vari-
ables, types, expressions and statements. These annotations may be processed by com-
piler plugins.

2.8 Translating MPI programs to X10

While X10 permits considerably greater flexibility in writing distributed programs and
data structures than MPI, it is instructive to examine how to translate MPI programs to
X10.

Each separate MPI process can be translated into an X10 place. Async activities may
be used to read and write variables located at different processes. A single clock may
be used for barrier synchronization between multiple MPI processes. X10 collective
operations may be used to implement MPI collective operations. X10 is more gen-
eral than MPI in (a) not requiring synchronization between two processes in order to

2.9. SUMMARY AND FUTURE WORK 21

enable one to read and write the other’s values, (b) permitting the use of high-level
atomic blocks within a process to obtain mutual exclusion between multiple activities
running in the same node (c) permitting the use of multiple clocks to combine the ex-
pression of different physics (e.g., computations modeling blood coagulation together
with computations involving the flow of blood), (d) not requiring an SPMD style of
computation.

2.9 Summary and future work

2.9.1 Design for scalability

X10 is designed for scalability, by encouraging working with local data, and limiting
the ability of events at one place to delay those at another. For example, an activity may
atomically access only multiple locations in the current place. Unconditional atomic
blocks are dynamically guaranteed to be non-blocking, and may be implemented using
non-blocking techniques that avoid mutual exclusion bottlenecks. Data-flow synchro-
nization permits point-to-point coordination between reader/writer activities, obviating
the need for barrier-based or lock-based synchronization in many cases.

2.9.2 Design for productivity

X10 is designed for productivity.

Safety and correctness. Programs written in X10 are guaranteed to be statically type
safe, memory safe and pointer safe, with certain exceptions given in §4.15.

Static type safety guarantees that every location contains only values whose dynamic
type agrees with the location’s static type. The compiler allows a choice of how to
handle method calls. In strict mode, method calls are statically checked to be permitted
by the static types of operands. In lax mode, dynamic checks are inserted when calls
may or may not be correct, providing weaker static correctness guarantees but more
programming convenience.

Memory safety guarantees that an object may only access memory within its represen-
tation, and other objects it has a reference to. X10 does not permit pointer arithmetic,
and bound-checks array accesses dynamically if necessary. X10 uses garbage collec-
tion to collect objects no longer referenced by any activity. X10 guarantees that no
object can retain a reference to an object whose memory has been reclaimed. Further,
X10 guarantees that every location is initialized at run time before it is read, and every
value read from a word of memory has previously been written into that word.

X10 programs that use only the common, specified clock idioms and unconditional
atomic blocks are guaranteed not to deadlock. Unconditional atomic blocks are non-
blocking, hence cannot introduce deadlocks. Many concurrent programs can be shown
to be determinate (hence race-free) statically.

22 CHAPTER 2. OVERVIEW OF X10

Integration. A key issue for any new programming language is how well it can be
integrated with existing (external) languages, system environments, libraries and tools.

We believe that X10, like Java, will be able to support a large number of libraries
and tools. An area where we expect future versions of X10 to improve on Java like
languages is native integration (§18). Specifically, X10 will permit multi-dimensional
local arrays to be operated on natively by native code.

2.9.3 Conclusion

X10 is considerably higher-level than thread-based languages in that it supports dy-
namically spawning lightweight activities, the use of atomic operations for mutual ex-
clusion, and the use of clocks for repeated quiescence detection.

Yet it is much more concrete than languages like HPF in that it forces the program-
mer to explicitly deal with distribution of data objects. In this the language reflects
the designers’ belief that issues of locality and distribution cannot be hidden from the
programmer of high-performance code in high-end computing. A performance model
that distinguishes between computation and communication must be made explicit and
transparent.2 At the same time we believe that the place-based type system and sup-
port for generic programming will allow the X10 programmer to be highly productive;
many of the tedious details of distribution-specific code can be handled in a generic
fashion.

2In this X10 is similar to more modern languages such as ZPL [4].

3 Lexical and Grammatical
structure

Lexically a program consists of a stream of white space, comments, identifiers, key-
words, literals, separators and operators, all of them composed of Unicode characters
in the UTF-8 (or US-ASCII) encoding.

3.1 Whitespace

ASCII space, horizontal tab (HT), form feed (FF) and line terminators constitute white
space.

3.2 Comments

All text included within the ASCII characters “/*” and “*/” is considered a comment
and ignored; nested comments are not allowed. All text from the ASCII characters
“//” to the end of line is considered a comment and is ignored.

3.3 Identifiers

Identifiers consist of a single letter followed by zero or more letters or digits. The
letters are the ASCII characters a through z, A through Z, and _. Digits are defined as
the ASCII characters 0 through 9. Case is significant; a and A are distinct identifiers,
as is a keyword, but As and AS are identifiers. (However, case is insignificant in the
hexadecimal numbers, exponent markers, and type-tags of numeric literals – 0xbabe =
0XBABE.)

In addition, any string of characters may be enclosed in backquotes ‘ to form an identi-
fier – though the backquote character itself, and the backslash character, must be quoted
by a backslash if they are to be included. This allows, for example, keywords to be used
as identifiers. The following are backquoted identifiers:

23

24 CHAPTER 3. LEXICAL AND GRAMMATICAL STRUCTURE

‘while‘, ‘!‘, ‘(unbalanced(‘, ‘\‘\\‘, ‘0‘

Certain back ends and compilation options do not support all choices of identifier.

3.4 Keywords

X10 uses the following keywords:
abstract as assert async at

athome ateach atomic break case

catch class clocked continue def

default do else extends false

final finally finish for goto

haszero here if implements import

in instanceof interface native new

null offer offers operator package

private property protected public return

self static struct super switch

this throw transient true try

type val var void when

while

Keywords may be used as identifiers by enclosing them in backquotes: ‘new‘ is an
identifier, new is a keyword but not an identifier.

Note that the primitive type names are not considered keywords.

3.5 Literals

Briefly, X10 v2.4 uses fairly standard syntax for its literals: integers, unsigned integers,
floating point numbers, booleans, characters, strings, and null. The most exotic points
are (1) unsigned numbers are marked by a u and cannot have a sign; (2) true and
false are the literals for the booleans; and (3) floating point numbers are Double
unless marked with an f for Float.

Less briefly, we use the following abbreviations:

d = one or more decimal digitsonly starting with 0 if it is 0
d8 = one or more octal digits
d16 = one or more hexadecimal digits, using a-f or A-F for 10-15

i = d | 0d8 | 0xd16 | 0Xd16
s = optional + or -
b = d | d. | d.d | .d
x = (e | E)sd
f = bx

• true and false are the Boolean literals.

3.5. LITERALS 25

• null is a literal for the null value. It has type Any{self==null}.

• Int literals have the form sin or siN. E.g., 123n, -321N are decimal Ints, 0123N
and -0321n are octal Ints, and 0x123n, -0X321N, 0xBEDN, and 0XEBECN are
hexadecimal Ints.

• Long literals have the form si, sil or siL. E.g., 1234567890 and 0xBABEL are
Long literals.

• UInt literals have the form iun or inu, or capital versions of those. E.g., 123un,
0123un, and 0xBEAUN are UInt literals.

• ULong literals have the form iu, iul or ilu, or capical versions of those. For
example, 123u, 0124567012u, 0xFU, OXba1efu, and 0xDecafC0ffeefU are
ULong literals.

• Short literals have the form sis or siS. E.g., 414S, OxACES and 7001s are short
literals.

• UShort literals form ius or isu, or capital versions of those. For example,
609US, 107us, and OxBeaus are unsigned short literals.

• Byte literals have the form siy or siY. (The letter B cannot be used for bytes, as
it is a hexadecimal digit.) 50Y and OxBABY are byte literals.

• UByte literals have the form iuy or iyu, or capitalized versions of those. For
example, 9uy and OxBUY are UByte literals.

• Float literals have the form sff or sfF. Note that the floating-point marker
letter f is required: unmarked floating-point-looking literals are Double. E.g.,
1f, 6.023E+32f, 6.626068E-34F are Float literals.

• Double literals have the form sf 1, sfD, and sfd. E.g., 0.0, 0e100, 1.3D,
229792458d, and 314159265e-8 are Double literals.

• Char literals have one of the following forms:

– ’c’ where c is any printing ASCII character other than \ or ’, representing
the character c itself; e.g., ’!’;

– ’\b’, representing backspace;

– ’\t’, representing tab;

– ’\n’, representing newline;

– ’\f’, representing form feed;

– ’\r’, representing return;

– ’\’’, representing single-quote;

1Except that literals like 1 which match both i and f are counted as integers, not Double; Doubles
require a decimal point, an exponent, or the d marker.

26 CHAPTER 3. LEXICAL AND GRAMMATICAL STRUCTURE

– ’\"’, representing double-quote;

– ’\\’, representing backslash;

– ’\dd’, where dd is one or more octal digits, representing the one-byte
character numbered dd; it is an error if dd> 0377.

• String literals consist of a double-quote ", followed by zero or more of the
contents of a Char literal, followed by another double quote. E.g., "hi!", "".

3.6 Separators

X10 has the following separators and delimiters:

() { } [] ; , .

3.7 Operators

X10 has the following operator, type constructor, and miscellaneous symbols. (? and
: comprise a single ternary operator, but are written separately.)

== != < > <= >=

&& || & | ˆ

<< >> >>>

+ - * / %

++ -- ! ˜

&= |= ˆ=

<<= >>= >>>=

+= -= *= /= %=

= ? : => ->

<: :> @ ..

** !˜ -< >-

The precedence of the operators is as follows. Earlier rows of the table have higher
precedence than later rows, binding more tightly. For example, a+b*c<d parses as
(a+(b*c))<d, and -1 as Byte parses as -(1 as Byte).

3.8. GRAMMATICAL NOTATION 27

postfix ()
as T, postfix ++, postfix --
unary -, unary +, prefix ++, prefix --
unary operators !, ˜, ˆ, *, |, &, /, and %
..

* / % **

+ -

<< >> >>> -> >- -< <- !

> >= < <= instanceof

== != ! !˜

&

ˆ

|

&&

||

? :

=, *=, /=, %=, +=, -=, <<=, >>=, >>>=, &=, ˆ=, |=

3.8 Grammatical Notation

In this manual, ordinary BNF notation is used to specify grammatical constructions,
with a few minor extensions. Grammatical rules look like this:

Adj ::= Adv? happy
| Adv? sad

Adv ::= very

| Adv Adv

Terms in italics are called non-terminals. They represent kinds of phrases; for exam-
ple, ForStmt (20.74)2 describes all for statements. Equation numbers refer to the full
X10 grammar, in §20. The small example has two non-terminals, Adv and Adj.

Terms in fixed-width font are terminals. They represent the words and symbols
of the language itself. In X10, the terminals are the words described in this chapter.

A single grammatical rule has the form A ::= X1X2...Xn, where the Xi’s are either
terminals or nonterminals. This indicates that the non-terminal A could be an instance
of X1, followed by an instance of X2, . . . , followed by an instance of Xn. Multiple
rules for the same A are allowed, giving several possible phrasings of A’s. For brevity,
two rules with the same left-hand side are written with the left-hand side appearing
once, and the right-hand sides separated by |.
In the Adj example, there are two rules for Adv, Adv ::= very and Adv ::= Adv Adv.
So, an adverb could be very, or (by three uses of the rule) very very, or, one or more
verys.

The notation A? indicates an optional A. This is an ordinary non-terminal, defined by
the rules:

2Grammar rules are given in §20, and referred to by equation number in that section.

28 CHAPTER 3. LEXICAL AND GRAMMATICAL STRUCTURE

A? ::=
| A

The first rule says that A? can amount to nothing; the second, that it can amount to an
A. This concept shows up so often that it is worth having a separate notation for it. In
the Adj example, an adjective phrase may be preceded by an optional adverb. Thus, it
may be happy, or very happy, or very very sad, etc.

4 Types

X10 is a strongly typed object-oriented language: every variable and expression has a
type that is known at compile-time. Types limit the values that variables can hold.

X10 supports four kinds of values, objects, struct values, functions, and null. Ob-
jects are in the grand tradition of object-oriented languages, and the heart of most X10
computations. They are instances of classes (§8); they hold zero or more data fields
that may be mutable. They respond to methods, and can inherit behavior from their
superclass.

Struct values are similar to objects, though more restricted in ways that make them
more efficient in space and time. Their fields cannot be mutable, and, although they
respond to methods, they do not inherit behavior. They are instances of struct types
(§9).

Together, objects and struct values are called containers, because they hold data.

Functions, called closures, lambda-expressions, and blocks in other languages, are in-
stances of function types (§10). A function has zero or more formal parameters (or
arguments) and a body, which is an expression that can reference the formal parame-
ters and also other variables in the surrounding block. For instance, (x:Long)=>x*y
is a unary integer function which multiplies its argument by the variable y from the
surrounding block. Functions may be freely copied from place to place and may be
repeatedly applied.

Finally, null is a constant, often found as the default value of variables of object type.
While it is not an object, it may be stored in variables of class type – except for types
which have a constraint (§4.5) which specifically excludes null.

These runtime values are classified by types. Types are used in variable declara-
tions (§12.2), coercions and explicit conversions (§11.9.1), object creation (§11.21),
static state and method accessors (§11.4), generic classes, structs, interfaces, and meth-
ods (§4.3), type definitions (§4.4), closures (§10), class, struct, and interface declara-
tions (§8.1.2), subtyping expressions (§11.25), and instanceof and as expressions
(§11.24).

The basic relationship between values and types is the is a value in relation: e is a value
in T. We also often say “e has type T” to or “e is an element of type T”. For example, 1
has type Long (the type of all integers representible in 64 bits). It has the more general

29

30 CHAPTER 4. TYPES

type Any (since all entitites have type Any). Furthermore, it has such types as “Nonzero
integer” and “Integer equal to one”, and many others. These types are expressable in
X10 using constrained types (§4.5). Long{self!=0} is the type of Longs self1 which
are not equal to zero, and Long{self==1} is the type of the Longs which are equal to
one.

The basic relationship between types is subtyping: T <: U holds if every value in T is
also a value ind U. Two important kinds of subtyping are subclassing and strengthening.
Subclassing is a familiar notion from object-oriented programming. Here we use it to
refer to the relationship between a class and another class it extends or an interface
(§7) it implements. For instance, in a class hierarchy with classes Animal and Cat
such that Cat extends Mammal and Mammal extends Animal, every instance of Cat is
by definition an instance of Animal (and Mammal). We say that Cat is a subclass of
Animal, or Cat <: Animal by subclassing. If Animal implements Thing, then Cat
also implements Thing, and we say Cat <: Thing by subclassing.

Strengthening is an equally familiar notion from logic. The instances of Long{self
== 1} are all elements of Long{self != 0} as well, because self == 1 logically
implies self != 0; so Long{self == 1} <: Long{self !=0} by strengthening.
X10 uses both notions of subtyping. See §4.9 for the full definition of subtyping in
X10.

4.1 Type System

X10 has several sorts of types. In this section, S, T, and Ti range over types. X ranges
over type variables, M and xi over identifiers, c over constraint expressions (§4.5), and
ei over expressions. For compactness, slanted brackets are used to indicate optional
elements. 2

Type ::= T

T ::= M (1)
| X (2)
| M [T1 , . . . , Tn] (3)
| T1 . T2 (4)
| F (5)
| M [[T1 , . . . , Tn]] (e1 ,. . ., ek) (6)
| T{c} (7)

F ::= ([x1 :] T1 ,. . ., [xn :] Tn) [{ c }] => T
| ([x1 :] T1 ,. . ., [xn :] Tn) [{ c }] => void

A type given by (1) is an identifier M, like Point, Long, or long. It refer to a unit –
a class, struct type, or interface, (§4.2). Or, it can refer to a name defined by a type
statement (§4.4);

1X10 automatically uses the identifier self for the element of the type being constrained.
2The actual grammar, as given in §20, is slightly more intricate for technical reasons. The set of types is

the same, however, and this grammar is better for exposition.

4.1. TYPE SYSTEM 31

Example: String refers to the standard class of strings, Long to the standard struct
type of integers, and Any to the interface that describes all X10 values. long is an
alias for the type Long, for the comfort of programmers used to other languages in the
C family.

A type of the form (2), a type variable X, refers to a parameter type of a generic (pa-
rameterized) type, as described in §4.3.

Example: The class Pair[X] below provides a simplistic way to keep two things
of the same type together.3 Pair[Long] holds two integers; Pair[Pair[String]]
holds two pairs of strings. Within the definition of Pair, the type variable X is the
parameter type of Pair – that is, the type which this pair is a pair of.

class Pair[X]{

public val first : X;

public val second: X;

public def this(f:X, s:X) {first = f; second = s;}

}

A type of form (3), M[T,U], is a use of a generic type, also described in §4.3, or
a generic type-defined type without value parameters (§4.4). The types inside the
brackets are the actual parameters corresponding to the formal parameters of the pa-
rameterized type M. Pair[Long], above, is an example of a use of the generic type
Pair.

A type of form (4), T.U, is a qualified type: a unit U appearing inside of the unit T, as
described in §8.14.

Example:

class Outer {

class Inner { /* ... */ }

}

then (new Outer()).new Inner() creates a value of type Outer.Inner.

A type of form (5), F, such as (x:Long)=>Long, is a function type. Its values are
functions, e.g., the squaring function taking integers to integers. Function types are
described in §4.6, and computing with functions is described in §10.

Example: square is the squaring function on integers. It is used in the assert line.

val square : (x:Long)=>Long

= (x:Long)=>x*x;

assert square(5) == 25;

A term of form (6), such as M[T](e), is an instance of a parameterized type definition.
Such types may be parameterized by both types and values. This is described in §4.4.

Example: Array[Long](1) is the type of one-dimensional arrays of integers. It has
one type parameter giving the type of element, here Long. It has one value parameter

3In practice, most people would use an Rail rather than making a new Pair class.

32 CHAPTER 4. TYPES

giving the number of dimensions, here 1. Region(1) is the type of one-dimensional
regions of points (§16.4.1).

In the function types (6), the variable names are bound. As with all bound variables in
X10, they can be renamed. So, for example, the types (x:Long)=>Long{self!=x}
and (y:Long)=>Long{self!=y} are equivalent, as they differ by nothing but the
names of bound variables. This is more visible with types than with, say, methods
or functions, because we can test equality of types.

Furthermore, if a variable x does not appear anywhere in a function type F save as an
argument name, it (and its “:”) can be omitted. E.g., the types (x:Long)=>Long and
(Long)=>Long are equivalent.

Example:

val f : (x:Long)=>Long{self!=x} = (x:Long) => (x+1) as Long{self!=x};

val g : (y:Long)=>Long{self!=y} = f;

val t : (x:Long)=>Long = (x:Long) => x;

val u : (Long)=>Long = t;

A term of form (7), T{c}, is a type whose values are the values of type T for which the
constraint c is true. This is described in §4.5.

Example: A variable of class Point, unconstrained, can contain null:

var gotNPE: Boolean = false;

val p : Point = null;

try {

val q = p * 2; // method invocation, NPE

}

catch(NullPointerException) {

gotNPE = true;

}

assert gotNPE;

A suitable constraint on that type will prevent a null from ever being assigned to the
variable. The variable self, in a constraint, refers to the value being constrained, so
the constraint self != nullmeans “which is not null”. So, adding a {self!=null}
constraint to Point results in a compile-time error, rather than a runtime null pointer
exception.

// ERROR: p : Point{self!=null} = null;

4.2 Unit Types: Classes, Struct Types, and Interfaces

Most X10 computation manipulates values via the unit types: classes, struct types,
and interfaces. These types share a great deal of structure, though there are important
differences.

4.2. UNIT TYPES: CLASSES, STRUCT TYPES, AND INTERFACES 33

4.2.1 Class types

A class declaration declares a class type (§8), giving its name, behavior, and data.
It may inherit from zero or one parent class. It may also implement zero or more
interfaces, each one of which becomes a supertype of it.

Example: The Position class below could describe the position of a slider control.
The example method uses Position as a type. Position is a subtype of the type
Poser.

interface Poser {

def pos():Long;

}

class Position implements Poser {

private var x : Long = 0;

public def move(dx:Long) { x += dx; }

public def pos() : Long = x;

static def example() {

var p : Position;

}

}

The null value, represented by the literal null, is a value of every class type C. The type
whose values are all instances of C except null can be defined as C{self != null}.

4.2.2 Struct Types

A struct declaration (§9) introduces a struct type containing all instances of the struct.
Struct types can include nearly all the features that classes have. They can implement
interfaces, which become their supertypes just as for classes; but they do not have
superclasses, and cannot extend anything.

Example: The Coords struct gives an immutable position in 3-space. It is used as a
type in example():

struct Position {

public val x:Double; public val y:Double; public val z:Double;

def this(x:Double, y:Double, z:Double) {

this.x = x; this.y = y; this.z = z;

}

static def example(p: Position, q: Rail[Position]) {

var r : Position = p;

}

}

34 CHAPTER 4. TYPES

4.2.3 Interface types

An interface declaration (§7) defines an interface type, specifying a set of instance
method signatures and property method signatures which must be provided by any
container declared to implement the interface. They can also declare static val fields,
which are provided to all units implementing or extending the interface. They do not
have code, and cannot implement anything. An interface may extend multiple inter-
faces. Each interface it extends becomes one of its superclasses.

Example: Named and Mobile are interfaces, each specifying a single method.
Person and NamedPoint are subtypes of both of them. They are used as types in
the example method.

interface Named {

def name():String;

}

interface Mobile {

def where():Long;

def move(howFar:Long):void;

}

interface NamedPoint extends Named, Mobile {}

class Person implements Named, Mobile {

var name:String; var pos: Long;

public def name() = this.name;

public def move(howFar:Long) { pos += howFar; }

public def where() = this.pos;

public def example(putAt:Mobile) {

this.pos = putAt.where();

}

}

4.2.4 Properties

Classes, interfaces, and structs may have properties, specified in parentheses after the
type name. Properties are much like public val instance fields. They have certain
restrictions on their use, however, which allows the compiler to understand them much
better than other public val fields. In particular, they can be used in types. E.g., the
number of elements in a rail is a property of the rail, and an X10 program can specify
that two rails have the same number of elements.

Example: The following code declares a class named Coords with properties x and
y and a move method. The properties are bound using the property statement in the
constructor.

class Coords(x: Long, y: Long) {

def this(x: Long, y: Long) :

Coords{self.x==x, self.y==y} {

4.3. TYPE PARAMETERS AND GENERIC TYPES 35

property(x, y);

}

def move(dx: Long, dy: Long) = new Coords(x+dx, y+dy);

}

Properties of self can be used in constraints. This places certain restrictions on how
properties can be used, but allows a great deal of compile-time constraint checking. For
a simple example, new Coords(0,0) is known to be an instance of Coords{self.x==0}.
Details of this substantial topic are found in §4.5.

4.3 Type Parameters and Generic Types

A class, interface, method, or type definition may have type parameters. Type parame-
ters can be used as types, and will be bound to types on instantiation. For example, a
generic stack class may be defined as Stack[T]{...}. Stacks can hold values of any
type; e.g., Stack[Long] is a stack of longs, and Stack[Point {self!=null}] is a
stack of non-null Points. Generics must be instantiated when they are used: Stack,
by itself, is not a valid type. Type parameters may be constrained by a guard on the
declaration (§4.4, §8.4.6,§10.3).

A generic class (or struct, interface, or type definition) is a class (resp. struct, interface,
or type definition) declared with k ≥ 1 type parameters. A generic class (or struct,
interface, or type definition) can be used to form a type by supplying k types as type
arguments within [. . .].

Example: Bottle[T] is a generic class. A Bottle[T]can hold a value of type
T; the variable yup in example() is of type Bottle[Boolean] and thus can hold a
Boolean. Hoever, Bottle alone is not a type.4

class Bottle[T] {

var contents : T;

public def this(t:T) { contents = t; }

public def putIn(t:T) { contents = t; }

public def get() = contents;

static def example() {

val yup : Bottle[Boolean] = new Bottle[Boolean](true);

//ERROR: var nope : Bottle = null;

}

}

A class (whether generic or not) may have generic methods.

Example: NonGeneric has a generic method first[T](x:List[T]). An invoca-
tion of such a method may supply the type parameters explicitly (e.g., first[Long](z)).

4By contrast, in Java, the equivalent of Bottle alone would be a type, via type erasure of generics.

36 CHAPTER 4. TYPES

In certain cases (e.g., first(z)) type parameters may be omitted and are inferred by
the compiler (§4.12).

class NonGeneric {

static def first[T](x:List[T]):T = x(0);

def m(z:List[Long]) {

val f = first[Long](z);

val g = first(z);

return f == g;

}

}

Limitation: X10 v2.4’s C++ back end requires generic methods to be static or final;
the Java back end can accomodate generic instance methods as well.

4.4 Type definitions

A type definition can be thought of as a type-valued function, mapping type parameters
and value parameters to a concrete type.

TypeDefDecln ::= Mods? type Id TypeParams? Guard? = Type ; (20.170)
| Mods? type Id TypeParams? (FormalList) Guard? = Type ;

TypeParams ::= [TypeParamList] (20.176)
Formals ::= (FormalList?) (20.80)
Guard ::= DepParams (20.83)

During type-checking the compiler replaces the use of such a defined type with its
body, substituting the actual type and value parameters in the call for the formals. This
replacement is performed recursively until the type no longer contains a defined type
or a predetermined compiler limit is reached (in which case the compiler declares an
error). Thus, recursive type definitions are not permitted.

Type definitions are considered applicative and not generative – they do not define new
types, only aliases for existing types.

Type definitions may have guards: an invocation of a type definition is illegal unless the
guard is satisified when formal types and values are replaced by the actual parameters.

Type definitions may be overloaded: two type definitions with the same name are per-
mitted provided that they have a different number of type parameters or different num-
ber or type of value parameters. The rules for type definition resolution are identical to
those for method resolution.

However, T() is not allowed. If there is an argument list, it must be nonempty. This
avoids a possible confusion between type T = ... and type T() =

A type definition for a type T can appear:

• As a top-level definition in a file named T.x10; or

4.4. TYPE DEFINITIONS 37

• As a static member in a container definition; or

• In a block statement.

Use of type definitions in constructor invocations If a type definition has no type
parameters and no value parameters and is an alias for a container type, a new expres-
sion may be used to create an instance of the class using the type definition’s name.
Similarly, a parameterless alias for an interface can be used to construct an instance of
an anonymous class. Given the following type definition:

type A = C[T1, . . ., Tk]{c};

where C[T1, . . ., Tk] is a class type, a constructor of C may be invoked with new
A(e1, . . ., en), if the invocation new C[T1, . . ., Tk](e1, . . ., en) is legal and
if the constructor return type is a subtype of A.

Example: The names of the class Cont[X] and the interface Inte[X] can be
used to create an object a of type Cont[Long], and an object b which implements
Inte[Long]. The two types may be given aliases A and B, which may then be used in
more compact expressions to construct objects aa and bb of the same types.

class ConstructorExample {

static class Cont[X]{}

static interface Inte[X]{

def meth():X;

}

public static def example() {

val a = new Cont[Long]();

val b = new Inte[Long](){public def meth()=3;};

type A = Cont[Long];

val aa = new A();

type B = Inte[Long];

val bb = new B(){public def meth()=4;};

}

}

Automatically imported type definitions The collection of type definitions in x10.lang._
is automatically imported in every compilation unit.

4.4.1 Motivation and use

The primary purpose of type definitions is to provide a succinct, meaningful name for
complex types and combinations of types. With value arguments, type arguments, and
constraints, the syntax for X10 types can often be verbose. For example, a non-null list
of non-null strings is
List[String{self!=null}]{self!=null}.

38 CHAPTER 4. TYPES

We could name that type:

static type LnSn = List[String{self!=null}]{self!=null};

Or, we could abstract it somewhat, defining a type constructor Nonnull[T] for the
type of T’s which are not null:

class Example {

static type Nonnull[T]{T isref} = T{self!=null};

var example : Nonnull[Example] = new Example();

}

Type definitions can also refer to values, in particular, inside constraints. The type of n-
element Array[Long](1)s is x10.regionarray.Array[Long]{self.rank==1 &&
self.size == n} but it is often convenient to give a shorter name:

type Vec(n:Long) = x10.regionarray.Array[Long]{self.rank==1, self.size == n};

var example : Vec(78L);

The following examples are legal type definitions,

import x10.util.*;

import x10.regionarray.*;

class TypeExamples {

static type StringSet = Set[String];

static type MapToList[K,V] = Map[K,List[V]];

static type Long(x: Long) = Long{self==x};

static type Dist(r: Long) = Dist{self.rank==r};

static type Dist(r: Region) = Dist{self.region==r};

static type Redund(n:Long, r:Region){r.rank==n}

= Dist{rank==n && region==r};

}

The following code illustrates that type definitions are applicative rather than genera-
tive. B and C are both aliases for String, rather than new types, and so are interchange-
able with each other and with String. Similarly, A and Long are equivalent.

def someTypeDefs () {

type A = Long;

type B = String;

type C = String;

a: A = 3;

b: B = new C("Hi");

c: C = b + ", Mom!";

}

4.5. CONSTRAINED TYPES 39

4.5 Constrained types

Basic types, like Long and List[String], provide useful descriptions of data.

However, one frequently wants to say more. One might want to know that a String
variable is not null, or that a matrix is square, or that one matrix has the same number
of columns as another has rows (so they can be multiplied). In the multicore setting,
one might wish to know that two values are located at the same processor, or that one
is located at the same place as the current computation.

In most languages, there is simply no way to say and check these things statically.
Programmers must made do with comments, assert statements, and dynamic tests.
X10 programs can do better, with constraints on types, and guards on class, method
and type definitions.

A constraint expression is a Boolean expression e of a quite limited form (§4.5.2).
. A constraint expression c may be attached to a basic type T, giving a constrained
type T{c}. The values of type T{c} are the values of T for which c is true. Constraint
expressions also serve as guards on methods (§8.4) and functions (§10.3), and invariants
on unit types (§8.9.

When constraining a value of type T, self refers to the object of type T which is being
constrained. For example, Long{self == 4} is the type of Longs which are equal to
4 – the best possible description of 4, and a very difficult type to express without using
self.

Example:

• Long{self != 0} is the type of non-zero Longs.

• Long{self == 0} is the type of Longs which are zero.

• Long{self != 0, self != 1} is the type of Longs which are neither zero
nor one.

• Long{self == 0, self == 1} is the type of Longs which are both zero and
one. There are no such values, so it is an empty type.

• String{self != null} is the type of non-null strings.

• Suppose that Matrix is a matrix class with properties rows and cols. Matrix{self.rows
== self.cols} is the type of square matrices.

• One way to say that a has the same number of columns that b has rows (so that
a*b is a valid matrix product), one could say:

val a : Matrix = someMatrix() ;

var b : Matrix{b.rows == a.cols} ;

40 CHAPTER 4. TYPES

T{e} is a dependent type, that is, a type dependent on values. The type T is called the
base type and e is called the constraint. If the constraint is omitted, it is true—that is,
the base type is unconstrained.

Constraints may refer to immutable values in the local environment:

val n = 1;

var p : Point{rank == n};

In a val variable declaration, the variable itself is in scope in its type, and can be used
in constraints.

Example: For example, val nz: Long{nz != 0} = 1; declares a non-zero vari-
able nz. In this case, nz could have been declared as val nz: Long{self != 0}
= 1.

4.5.1 Examples of Constraints

Example of entailment and subtyping involving constraints.

• Long{self == 3} <: Long{self != 14}. The only value of Long{self
==3} is 3. All integers but 14 are members of Long{self != 14}, and in
particular 3 is.

• Suppose we have classes Child <: Person, and Person has a ssn:Long prop-
erty. If rhys : Child{ssn == 123456789}, then rhys is also a Person.
rhys’s ssn field is the same, 123456789, whether rhys is regarded as a Child
or a Person. Thus, rhys : Person{ssn==123456789} as well. So,

Child{ssn == 123456789} <: Person{ssn == 123456789}.

• Furthermore, since 123456789 != 555555555, is is clear that rhys : Person{ssn
!= 555555555}. So,

Child{ssn == 123456789} <: Person{ssn != 555555555}.

• T{e} <: T for any type T. That is, if you have a value v of some base type T
which satisfied e, then v is of that base type T (with the constraint ignored).

• If A <: B, then A{c} <: B{c} for every constraint {c} for which A{c} and
B{c} are defined. That is, if every A is also a B, and a : A{c}, then a is an A
and c is true of it. So a is also a B (and c is still true of it), so a : B{c}.

Constraints can be used to express simple relationships between objects, enforcing
some class invariants statically. For example, in geometry, a line is determined by two
distinct points; a Line struct can specify the distinctness in a type constraint:5

5We call them Position to avoid confusion with the built-in class Point. Also, Position is a struct
rather than a class so that the non-equality test start != end compares the coordinates. If Position were
a class, start != endwould check for different Position objects, which might have the same coordinates.

4.5. CONSTRAINED TYPES 41

struct Position(x: Long, y: Long) {}

struct Line(start: Position, end: Position){start != end}

{}

Extending this concept, a Triangle can be defined as a figure with three line segments
which match up end-to-end. Note that the degenerate case in which two or three of the
triangle’s vertices coincide is excluded by the constraint on Line. However, not all
degenerate cases can be excluded by the type system; in particular, it is impossible to
check that the three vertices are not collinear.

struct Triangle

(a: Line,

b: Line{a.end == b.start},

c: Line{b.end == c.start && c.end == a.start})

{}

The Triangle class automatically gets a ternary constructor which takes suitably con-
strained a, b, and c and produces a new triangle.

A constrained type may be constrained further: the type S{c}{d} is the same as the
type S{c,d}. Multiple constraints are equivalent to conjoined constraints: S{c,d} in
turn is the same as S{c && d}.

4.5.2 Syntax of constraints

Only a few kinds of expressions can appear in constraints. For fundamental reasons
of mathematical logic, the more kinds of expressions that can appear in constraints,
the harder it is to compute the essential properties of constrained types – in particular,
the harder it is to compute A{c} <: B{d} or even E : T{c}. It doesn’t take much
to make this basic fact undecidable. In order to make sure that it stays decidable, X10
places stringent restrictions on constraints.

Only the following forms of expression are allowed in constraints.

Value expressions in constraints may be:

1. Literal constants, like 3 and true;

2. Accessible, immutable (val) variables and parameters;

3. this, if the constraint is at a point in the program where this is defined, but not
in extends or implements clauses or class invariants;

4. here, if the constraint is at a point in the program where here is defined;

5. self;

6. A field selection expression t.f, where t is a value expression allowed in con-
straints, and f is a field of t’s type. If t is self, then f must be a property, not
an arbitrary field.

42 CHAPTER 4. TYPES

7. Invocations of property methods, p(a,b,...,c) or a.p(b,c,...d), where the
receiver and arguments must be value expressions acceptable in constraints, as
long as the expansion (viz., the expression obtained by taking the body of the
definition of p, and replacing the formal parameters by the actual parameters) of
the invocation is allowed as a value expression in constraints.

For an expression self.p to be legal in a constraint, p must be a property. However
terms t.f may be used in constraints (where t is a term other than self and f is an
immutable field.)

Constraints may be any of the following, where all value expressions are of the forms
which may appear in constraints:

1. Equalities e == f;

2. Inequalities of the form e != f;6

3. Conjunctions of Boolean expressions that may appear in constraints (but only in
top-level constraints, not in Boolean expressions in constraints);

4. Subtyping and supertyping expressions: T <: U and T :> U;

5. Type equalities and inequalities: T == U and T != U;

6. Invocations of a property method, p(a,b,...,c) or a.p(b,c,...d), where
the receiver and arguments must be value expressions acceptable in constraints,
as long as the expansion of the invocation is allowed as a constraint.

7. Testing a type for a default: T haszero.

Note that constraints on methods may include private, protected, or package-protected
fields. It is possible to have a method whose guard cannot be directly checked, or even
whose result type cannot be expressed as a clause in the program, at some call sites.
Nonetheless, X10 uses a broader internal type representation, not limited by access
rules, and can work with fields in types even though those fields cannot be used in
executable code.

Example: This phenomenon can be used to implement a form of compile-type ca-
pability checking. We give a minimal example, providing only security by obscurity:
users unaware that the key method returns the required key will be unable to use the
secret method. This approach can be strengthened to provide better security.

The class Keyed has a private field k. The method secret(q) can only be called
when q==k. In a larger example, secret could be some priveleged behavior or secret,
available only to callers with proper authority.

At the call site in Snooper, keyed.secret() is called. It can’t be called as keyed.secret(keyed.k),
because k is a private field. It can’t be called as keyed.secret(8), even though

6Currently inequalities of the form e < f are not supported.

4.5. CONSTRAINED TYPES 43

keyed.k==8, because there is no proof available that keyed.k==8 — indeed, at this
point in the code, the requirement that keyed.k==8 cannot even be expressed in X10.

However, the value of keyed.k can be retrieved, using keyed.key(). The type of kk
cannot be expressed in Snooper, because it refers to a private field of keyed. How-
ever, the compiler’s internal representation is not bound by the rules of privacy, and
can track the fact that kk is the same as keyed.k. So, the call keyed.secret(kk)
succeeds.

class Keyed {

private val k : Long;

public def this(k : Long) {

this.k = k;

}

public def secret(q:Long){q==this.k} = 11;

public def key():Long{self==this.k} = this.k;

}

class Snooper {

public static def main(argv:Rail[String]) {

val keyed : Keyed = new Keyed(8);

//ERROR: keyed.secret(keyed.k);

//ERROR: keyed.secret(8);

val kk = keyed.key();

keyed.secret(kk);

}

}

Note: Constraints may not contain casts. In particular, comparisons of values of in-
compatible types are not allowed. If i:Long, then i==0 is allowed as a constraint, but
i==0L is an error, and i as Long==0L is outside of the constraint language.

Semantics of constraints

The logic of constraints is designed to allow a common and important X10 idiom:

class Thing(p:Long){}

static def example(){

var x : Thing{x.p==3} = null;

}

That is, null must be an instance of Thing{x.p==3}. Of course, it cannot be the case
that null.p==3— nor can it equal anything else. When evaluated at runtime, null.p
must throw a NullPointerException rather than returning any value at all.

So, X10’s logic of constraints — unlike the logic of runtime — allows x=null to
satisfy x.p==3. Building this logic requires a few definitions.

The property graph, at an instant in an X10 execution, is the graph whose nodes are
all objects in existence at that instance, plus null, with an edge from x to y if x is

44 CHAPTER 4. TYPES

an object with a property whose value is y. The rules for constructors guarantee that
property graphs are acyclic, which is crucial for decidability.

As is standard in mathematical logic, we introduce the concept of a valuation v, which
is a mapping from variable names to their values – in our case, nodes of an X10 property
graph. A valuation v can be extended to values to all constraint formulas. The crucial
definitions are:

v(a.b. . ..l.m == n.o. . ..y.z) =
a=null ∨ a.b=null ∨ . . . a.b. . ..l=null
∨ n=null ∨ n.o=null ∨ . . . n.o. . ..y=null
∨ v(a).b. . ..l.m = v(n).o. . ..y.

v(a.b. . ..l.m != n.o. . ..y.z) =
a=null ∨ a.b=null ∨ . . . a.b. . ..l=null
∨ n=null ∨ n.o=null ∨ . . . n.o. . ..y=null
∨ v(a).b. . ..l.m 6= v(n).o. . ..y.

For example, v(a.b==1) is true if either v(a) =null or if v(a) is a container whose b-
field is equal to 1. While such a valuation is perfectly well-defined, it has properties that
need to be understood in light of the fact that == is not mathematical equality.7 Given
any valuation in which v(a) =null, both v(a.b==1 && a.b==2) and v(a.b==1 &&
a.b!=1) are true. This does not contradict logic and mathematics, it does not imply that
v(false) is true (it’s not), and it does not assert that in X10 there is a number which
is both 1 and 2. It simply reflects the fact that, while == is similar to mathematical
equality in many respects, it is ultimately a different operation, and in constraints it is
given a null-safe interpretation.

From this definition of valuation, we define entailment in the standard way. Given con-
straints c and d, we define c entails d, sometimes written c |= d, if for all valuations
v such that v(c) is true, v(d) is also true.

Limitation: Although nearly-contradictory conjunctions like x.a==1 && x.a==2
entail x==null, X10’s constraint solver does not currently use this rule. If you want
x==null, write x==null.

Subtyping of constrained types is defined in terms of entailment. S[S1,. . ., Sm]{c}
is a subtype of T[T1,. . ., Tn]{d} if S[S1,. . .,Sm] is a subtype of T[T1,. . .,Tn] and
c entails d.

For examples of constraints and entailment, see (§4.5.1)

4.5.3 Constraint solver: incompleteness and approximation

The constraint solver is sound in that if it claims that c entails d then in fact it is the
case that every valuation that satisfies c satisfies d.

7No experienced programmer should actually think that == is mathematical equality in any case. It is quite
common for two objects to appear identical but not be ==. X10’s discrepancy between the two concepts is
orthogonal to the familiar one.

4.5. CONSTRAINED TYPES 45

Limitation: X10’s constraint solver is incomplete. There are situations in which c
entails d but the solver cannot establish it. For instance it cannot establish that a != b
&& a != c && b != c entails false if a, b, and c are of type Boolean. Similarly,
although a.b==1 && a.b==2 entails a==null, the constraint solver does not deduce
this fact.

4.5.4 Acyclicity of Properties

To ensure that typechecking is decidable, X10 requires that the graph whose nodes are
types, with edges from types to the properties of those types, be acyclic. This is often
stated as “properties are acyclic.” That is, given a container type T, T cannnot have a
property of type T, nor a property which has a property of type T, nor a property which
has a property with a property of type T, etc.

Example: The following is forbidden by the acyclicity requirement, as ERRORList[T]
would have a property, tail, which is also an ERRORList[T].

class ERRORList[T](head:T, tail: ERRORList[T]) {}

Without this restriction, typechecking becomes undecidable.

4.5.5 Limitation: Generics and Constraints at Runtime

The X10 runtime does not maintain a representation of constraints as part of the run-
time representation of a type. While there various approaches which could be used,
they would require far higher prices in space or time than they are worth. A represen-
tation suitable for one use of types (such as keeping a closure for testing membership
in the type) is unsuitable for others (such as determining if one type is a subtype of
another). Furthermore, it would be necessary to compute entailment at runtime, which
is currently impractical.

Rather than pay the runtime costs for keeping and manipulating constraints (which can
be considerable), X10 omits them. However, this renders certain type checks uncertain:
X10 needs some information at runtime, but does not have it. In particular, casts to
instances of generic types, and to type variables, are potentially troublesome.

Example: The following code illustrates the dangers of casting to generic types. It
constructs a rail a of Long{self==3}’s – integers which are statically known to be 3.
The only number that can be stored into a is 3. Then it tricks the ocmpiler into thinking
that it is a rail of Long, without restriction on the elements, giving it the name b at that
type. The cast aa as Rail[Long] is a cast to an instance of a generic type, which is
the problem.

But, itc an store any Long into the elements of b, thereby violating the invariant that
all the elements of the rail are 3. This could lead to program failures, as illustrated by
the failing assertion.

With the -VERBOSE compiler option, X10 prints a warning about the declaration of b.

46 CHAPTER 4. TYPES

val a = new Rail[Long{self==3}](10, 3);

// a(0) = 1; would be illegal

a(0) = 3; // LEGAL

val aa = a as Any;

val b = aa as Rail[Long]; // WARNED with -VERBOSE

b(0) = 1;

val x : Long{self==3} = a(0);

assert x == 3 : "This fails at runtime.";

Since constraints are not preserved at runtime, instanceof and as cannot pay atten-
tion to them. When types are used generically, they may not behave as one would
expect were one to imagine that their constraints were kept. Specifically, constraints at
runtime are, in effect, simply replaced by true.

Example: The following code defines generic methods inst and cast, which look
like generic versions of instanceof and as. The example() code shows that inst
and cast behave quite differently from instanceof and as, due to the loss of con-
straint information.

The first section of asserts shows the behavior of instanceof and at. We have a
value pea, such that pea.p==1. It behaves as if its p field were 1: it answers true to
self.p==1, and false to self.p==2. This is entirely as desired.

The following section of assert and val statements does the analogous thing, but us-
ing the generic methods inst and cast rather than the built-in operations instanceof
and cast. pea answers true to inst checks concerning both Pea{p==1} and Pea{p==2},
and can be cast() into both these types. This behavior is not what one would expect
from runtime types that keep constraint information. It is, however, precisely what one
would expect from runtime types that have their constraints replaced by true.

The cast2 line shows how to use this fact to violate the constraint system at runtime.
This dynamic cast produces an object of type Pea{p==2} for which p!=2.

Note that the -VERBOSE compiler flag will produce a warning that cast is unsound.

class Generic {

public static def inst[T](x:Any):Boolean = x instanceof T;

// With -VERBOSE, the following line gets a warning

public static def cast[T](x:Any):T = x as T;

}

class Pea(p:Long) {}

class Example{

static def example() {

val pea : Pea = new Pea(1);

// These are what you’d expect:

assert (pea instanceof Pea{p==1});

assert (pea as Pea{p==1}).p == 1;

assert ! (pea instanceof Pea{p==2});

// ’val x = pea as Pea{p==2};’

// throws a FailedDynamicCheckException.

4.6. FUNCTION TYPES 47

// But the genericized versions don’t do the same thing:

assert Generic.inst[Pea{p==1}](pea);

assert Generic.inst[Pea{p==2}](pea);

// No exception here!

val cast1: Pea{p==1} = Generic.cast[Pea{p==1}](pea);

val cast2: Pea{p==2} = Generic.cast[Pea{p==2}](pea);

assert cast2.p == 1;

assert !(cast2 instanceof Pea{p==2});

}

}

While in some cases it would be possible to keep constraints around at runtime and
operate efficiently on them, in other cases it would not.

4.6 Function types

FunctionType ::= TypeParams? (FormalList?) Guard? => Type (20.82)

For every sequence of types T1,..., Tn,T, and n distinct variables x1,...,xn and
constraint c, the expression (x1:T1,...,xn:Tn){c}=>T is a function type. It stands
for the set of all functions f which can be applied to a list of values (v1,...,vn)
provided that the constraint c[v1,...,vn,p/x1,...,xn] is true, and which returns
a value of type T[v1,...vn/x1,...,xn]. When c is true, the clause {c} can be
omitted. When x1,...,xn do not occur in c or T, they can be omitted. Thus the
type (T1,...,Tn)=>T is actually shorthand for (x1:T1,...,xn:Tn){true}=>T, for
some variables x1,...,xn.

Limitation: Constraints on closures are not supported. They parse, but are not
checked.

X10 functions, like mathematical functions, take some arguments and produce a result.
X10 functions, like other X10 code, can change mutable state and throw exceptions.
Closures (§10) are of function type – and so are rails and arrays.

Example: Typical functions are the reciprocal function:

val recip = (x : Double) => 1/x;

and a function which increments element i of a rail r, or throws an exception if there
is no such element, where, for the sake of example, we constrain the type of i to avoid
one of the many longs which are not possible subscripts:

val inc = (r:Rail[Long], i: Long{i != r.size}) => {

if (i < 0 || i >= r.size) throw new DoomExn();

r(i)++;

};

48 CHAPTER 4. TYPES

In general, a function type needs to list the types Ti of all the formal parameters, and
their distinct names xi in case other types refer to them; a constraint c on the function
as a whole; a return type T.

(x1: T1, . . ., xn: Tn){c} => T

The names of the formal parameters, xi, are bound in the type. As usual with bound
variables, they can be given new names without changing the meaning of the type. In
particular, the names of formals in a function type do not need to be the same as the
names in the function in a value of that type.

Example: The type of id uses the bound variable x. The type of ie uses the bound
variable z, but is otherwise identical to that of id. The two types are the same, as
shown by the assignment of id to ie. Also, id’s type uses x, and id’s value uses y.

val id : (x:Long) => Long{self==x}

= (y:Long) => y;

val ie : (z:Long) => Long{self==z}

= id;

Limitation: Function types differing only in the names of bound variables may
wind up being considered different in X10 v2.2, especially if the variables appear in
constraints.

The formal parameter names are in scope from the point of definition to the end of the
function type—they may be used in the types of other formal parameters and in the
return type. Value parameters names may be omitted if they are not used; the type of
the reciprocal function can be written as (Double)=>Double.

A function type is covariant in its result type and contravariant in each of its argument
types. That is, let S1,...,Sn,S,T1,...Tn,T be any types satisfying Si <: Ti and
S <: T. Then (x1:T1,...,xn:Tn){c}=>S is a subtype of (x1:S1,...,xn:Sn){c}=>T.

A class or struct definition may use a function type

F = (x1:T1,...,xn:Tn){c}=>T

in its implements clause; this is equivalent to implementing an interface requiring the
single operator

public operator this(x1:T1,...,xn:Tn){c}:T

Similarly, an interface definition may specify a function type F in its extends clause.
Values of a class or struct implementing F can be used as functions of type F in all
ways. In particular, applying one to suitable arguments calls the apply method.

Limitation: A class or struct may not implement two different instantiations of a
generic interface. In particular, a class or struct can implement only one function type.

A function type F is not a class type in that it does not extend any type or implement
any interfaces, or support equality tests. F may be implemented, but not extended, by a
class or function type. Nor is it a struct type, for it has no predefined notion of equality.

4.7. DEFAULT VALUES 49

4.7 Default Values

Some types have default values, and some do not. Default values are used in situations
where variables can legitimately be used without having been initialized; types without
default values cannot be used in such situations. For example, a field of an object
var x:T can be left uninitialized if T has a default value; it cannot be if T does not.
Similarly, a transient (§8.2.3) field transient val x:T is only allowed if T has a
default value.

Default values, or lack of them, is defined thus:

• The fundamental numeric types (Int, UInt, Long, ULong, Short, UShort,
Byte, UByte, Float, Double) all have default value 0.

• Boolean has default value false.

• Char has default value ’\0’.

• If every field of a struct type T has a default value, then T has a default value. If
any field of T has no default value, then T does not. (§9.7)

• A function type has a default value of null.

• A class type has a default value of null.

• The constrained type T{c} has the same default value as T if that default value
satisfies c. If the default value of T doesn’t satisfy c, then T{c} has no default
value.

Example: var x: Long{x != 4} has default value 0, which is allowed because
0 != 4 satisfies the constraint on x. var y : Long{y==4} has no default value,
because 0 does not satisfy y==4. The fact that Long{y==4} has precisely one value,
viz. 4, doesn’t matter; the only candidate for its default value, as for any subtype of
Long, is 0. y must be initialized before it is used.

The predicate T haszero tells if the type T has a default value. haszero may be used
in constraints.

Example: The following code defines a sort of cell holding a single value of type T.
The cell is initially empty – that is, has T’s zero value – but may be filled later.

class Cell0[T]{T haszero} {

public var contents : T;

public def put(t:T) { contents = t; }

}

The built-in type Zero has the method get[T]() which returns the default value of
type T.

Example: As a variation on a theme of Cell0, we define a class Cell1[T] which
can be initialized with a value of an arbitrary type T, or, if T has a default value, can
be created with the default value. Note that T haszero is a constraint on one of the
constructors, not the whole type:

50 CHAPTER 4. TYPES

class Cell1[T] {

public var contents: T;

def this(t:T) { contents = t; }

def this(){T haszero} { contents = Zero.get[T](); }

public def put(t:T) {contents = t;}

}

4.8 Annotated types

Any X10 type may be annotated with zero or more user-defined type annotations (§17).

Annotations are defined as (constrained) interface types and are processed by compiler
plugins, which may interpret the annotation symbolically.

A type T is annotated by interface types A1, . . . , An using the syntax @A1 . . . @An T.

4.9 Subtyping and type equivalence

Intuitively, type T1 is a subtype of type T2, written T1 <: T2, if every instance of T1
is also an instance of T2. For example, Child is a subtype of Person (assuming a
suitably defined class hierarchy): every child is a person. Similarly, Long{self !=
0} is a subtype of Long – every non-zero integer is an integer.

This section formalizes the concept of subtyping. Subtyping of types depends on a
type context, viz.. a set of constraints on type parameters and variables that occur in the
type. For example:

class ConsTy[T,U] {

def upcast(t:T){T <: U} :U = t;

}

Inside upcast, T is constrained to be a subtype of U, and so T <: U is true, and t can
be treated as a value of type U. Outside of upcast, there is no reason to expect any
relationship between them, and T <: Umay be false. However, subtyping of types that
have no free variables does not depend on the context. Long{self != 0} <: Long
is always true.

Limitation: Subtyping of type variables does not work under all circumstances in the
X10 2.2 implementation.

• Reflexivity: Every type T is a subtype of itself: T <: T.

• Transitivity: If T <: U and U <: V, then T <: V.

4.10. COMMON ANCESTORS OF TYPES 51

• Direct Subclassing: Let ~X be a (possibly empty) vector of type variables, and
~Y , ~Yi be vectors of type terms over ~X . Let ~T be an instantiation of ~X , and ~U ,
~Ui the corresponding instantiation of ~Y , ~Yi. Let c be a constraint, and c′ be the
corresponding instantiation. We elide properties, and interpret empty vectors as
absence of the relevant clauses. Suppose that C is declared by one of the forms:

1. class C[~X]{c} extends D[~Y]{d}
implements I1[~Y1]{i1},...,In[~Yn]{in}{

2. interface C[~X]{c} extends I1[~Y1]{i1},...,In[~Yn]{in}{

3. struct C[~X]{c} implements I1[~Y1]{i1},...,In[~Yn]{in}{

Then:

1. C[~T] <: D[~U]{d} for a class

2. C[~T] <: Ii[~Ui]{ii} for all cases.

3. C[~T] <: C[~T]{c′} for all cases.

• Function types:

(x1: T1, . . ., xn: Tn){c} => T

is a subtype of

(x′1: T
′
1, . . ., x′n: T

′
n){c

′} => T′

if:

1. Each Ti <: T′i;

2. c[x′1, . . ., x′n / x1, . . ., xn] entails c′;

3. T′ <: T;

• Constrained types: T{c} is a subtype of T{d} if c entails d.

• Any: Every type T is a subtype of x10.lang.Any.

• Type Variables: Inside the scope of a constraint c which entails A <: B, we
have A <: B. e.g., upcast above.

Two types are equivalent, T == U, if T <: U and U <: T.

4.10 Common ancestors of types

There are several situations where X10 must find a type T that describes values of two
or more different types. This arises when X10 is trying to find a good type for:

• Conditional expressions, like test ? 0 : "non-zero" or even
test ? 0 : 1;

52 CHAPTER 4. TYPES

• Rail construction, like [0, "non-zero"] and [0,1];

• Functions with multiple returns, like

def f(a:Long) {

if (a == 0) return 0;

else return "non-zero";

}

In some cases, there is a unique best type describing the expression. For example, if B
and C are direct subclasses of A, pick will have return type A:

static def pick(t:Boolean, b:B, c:C) = t ? b : c;

However, in many common cases, there is no unique best type describing the expres-
sion. For example, consider the expression E

b ? 0 : 1 // Call this expression E

The best type of 0 is Long{self==0}, and the best type of 1 is Long{self==1}.
Certainly E could be given the type Long, or even Any, and that would describe all
possible results. However, we actually know more. Long{self != 2} is a better
description of the type of E—certainly the result of E can never be 2. Long{self
!= 2, self != 3} is an even better description; E can’t be 3 either. We can continue
this process forever, adding integers which E will definitely not return and getting
better and better approximations. (If the constraint sublanguage had ||, we could give
it the type Long{self == 0 || self == 1} , which would be nearly perfect. But
|| makes typechecking far more expensive, so it is excluded.) No X10 type is the best
description of E; there is always a better one.

Similarly, consider two unrelated interfaces:

interface I1 {}

interface I2 {}

class A implements I1, I2 {}

class B implements I1, I2 {}

class C {

static def example(t:Boolean, a:A, b:B) = t ? a : b;

}

I1 and I2 are both perfectly good descriptions of t ? a : b, but neither one is bet-
ter than the other, and there is no single X10 type which is better than both. (Some
languages have conjunctive types, and could say that the return type of example was
I1 && I2. This, too, complicates typechecking.)

So, when confronted with expressions like this, X10 computes some satisfactory type
for the expression, but not necessarily the best type. X10 provides certain guarantees
about the common type V{v} computed for T{t} and U{u}:

4.11. FUNDAMENTAL TYPES 53

• If T{t} == U{u}, then V{v} == T{t} == U{u}. So, if X10’s algorithm pro-
duces an utterly untenable type for a ? b : c, and you want the result to have
type T{t}, you can (in the worst case) rewrite it to

a ? b as T{t} : c as T{t}

• If T == U, then V == T == U. For example, X10 will compute the type of b ?
0 : 1 as Long{c} for some constraint c—perhaps simply picking Long{true},
viz., Long.

• X10 preserves place information about GlobalRefs, because it is so important.
If both t and u entail self.home==p, then v will also entail self.home==p.

• X10 similarly preserves nullity information. If t and u both entail x == null
or x != null for some variable x, then v will also entail it as well.

• The computed upper bound of function types with the same argument types
is found by computing the upper bound of the result types. If T = (T1, . . .
, Tn) => T’ and U = (T1, . . ., Tn) => U’, and V’ is the computed upper
bound of T’ and U’, then the computed upper bound of T and U is U = (T1,
. . ., Tn) => V’. (But, if the argument types are different, the computed upper
bound may be Any.)

4.11 Fundamental types

Certain types are used in fundamental ways by X10.

4.11.1 The interface Any

It is quite convenient to have a type which all values are instances of; that is, a supertype
of all types.8 X10’s universal supertype is the interface Any.

package x10.lang;

public interface Any {

def toString():String;

def typeName():String;

def equals(Any):Boolean;

def hashCode():Long;

}

Any provides a handful of essential methods that make sense and are useful for every-
thing. a.toString() produces a string representation of a, and a.typeName() the
string representation of its type; both are useful for debugging. a.equals(b) is the
programmer-overridable equality test, and a.hashCode() an integer useful for hash-
ing.

8Java, for one, suffers a number of inconveniences because some built-in types like long and char aren’t
subtypes of anything else.

54 CHAPTER 4. TYPES

4.12 Type inference

X10 v2.4 supports limited local type inference, permitting certain variable types and
return types to be elided. It is a static error if an omitted type cannot be inferred or
uniquely determined. Type inference does not consider coercions.

4.12.1 Variable declarations

The type of a val variable declaration can be omitted if the declaration has an ini-
tializer. The inferred type of the variable is the computed type of the initializer. For
example, val seven = 7; is identical to

val seven: Long{self==7} = 7;

Note that type inference gives the most precise X10 type, which might be more specific
than the type that a programmer would write.

Limitation: At the moment, var declarations may not have their types elided in this
way.

4.12.2 Return types

The return type of a method can be omitted if the method has a body (i.e., is not
abstract or native). The inferred return type is the computed type of the body. In the
following example, the return type inferred for isTriangle is Boolean{self==false}

class Shape {

def isTriangle() = false;

}

Note that, as with other type inference, methods are given the most specific type. In
many cases, this interferes with subtyping. For example, if one tried to write:

class Triangle extends Shape {

def isTriangle() = true;

}

the compiler would reject this program for attempting to override isTriangle() by
a method with the wrong type, viz., Boolean{self==true}. In this case, supply the
type that is actually intended for isTriangle:

def isTriangle() : Boolean =false;

The return type of a closure can be omitted. The inferred return type is the computed
type of the body.

The return type of a constructor can be omitted if the constructor has a body. The
inferred return type is the enclosing class type with properties bound to the arguments

4.12. TYPE INFERENCE 55

in the constructor’s property statement, if any, or to the unconstrained class type. For
example, the Spot class has two constructors, the first of which has inferred return type
Spot{x==0} and the second of which has inferred return type Spot{x==xx}.

class Spot(x:Long) {

def this() {property(0);}

def this(xx: Long) { property(xx); }

}

A method or closure that has expression-free return statements (return; rather than
return e;) is said to be a void method or closure. void is not a type; there are no
void values, nor can void be used as the argument of a generic type. However, void
takes the syntactic place of a type in a few contexts. A void method can be specified
by def m():void, and similarly for a closure:

def m():void {return;}

val f : () => void = () => {return;};

By a convenient abuse of language, void is sometimes lumped in with types; e.g., we
may say “return type of a method” rather than the formally correct but rather more
awkward “return type of a method that is not a void method”. Despite this informal
usage, void is not a type and cannot be used as the value of a type parameter. For
example, given

static def eval[T] (f:()=>T):T = f();

The call eval[void](f) does not typecheck. There is no way in X10 to write a
generic function which works with both functions which return a value and functions
which do not. In such cases it may be convenient to define a type Unit thus:

struct Unit{}

Functions whose return type is Unit may simply return the expression Unit() which
evaluates to the unique value of type Unit. (By definition of equality of structurs
Unit()==Unit().)

X10 preserves known information when computing return types. A constraint on a
method induces a corresponding constraint on its return type.

Example: In the following code, the type inferred for x is Numb{self.p==n,
n!=0, self!=null}. In particular, the conjunct n != 0 is preserved from the cast
of n to Long{self != 0}.

class Numb(p:Long){

static def dup(n:Long){n != 0} = new Numb(n);

public static def example(n:Long) {

val x = dup(n as Long{self != 0});

val y : Numb{self.p==n, n!=0, self!=null} = x;

}

}

56 CHAPTER 4. TYPES

4.12.3 Inferring Type Arguments

A call to a polymorphic method may omit the explicit type arguments. X10 will com-
pute a type from the types of the actual arguments. Failure of the compiler to infer
unique types for omitted type arguments is a compile-time error. For instance, given
the method definition def m[T](){...}, an invocation m() is considered a compile-
time error. The compiler has no idea what T the programmer intends.

Example: Consider the following method, which chooses one of its arguments. (A
more sophisticated one might sometimes choose the second argument, but that does
not matter for the sake of this example.)

static def choose[T](a: T, b: T): T = a;

The type argument T can always be supplied: choose[Long](1, 2) picks an integer,
and choose[Any](1, "yes") picks a value that might be an integer or a string.
However, the type argument can be elided. Suppose that Sub <: Super; then the
following compiles:

static def choose[T](a: T, b: T): T = a;

static val j : Any = choose("string", 1);

static val k : Super = choose(new Sub(), new Super());

The type parameter doesn’t need to be the type of a variable. It can be found inside of
the type of a variable; X10 can extract it.

Example: The first method below returns the first element of a rail. The type
parameter T represents the type of the rail’s elements. There is no parameter of type
T. There is one of type Rail[String]{length==3}. When doing type inference, the
compiler is able to infer that T should be instantiated to String:

static def first[T](x:Rail[T]) = x(0);

static def example() {

val ss <: Rail[String] = ["X10", "Java", "C++"]; // ok

val s1 <: String = first(ss); // ok

assert s1.equals("X10");

}

Sketch of X10 Type Inference for Method Calls

When the X10 compiler sees a method call

a.m(b1, . . .,bn)

and attempts to infer type parameters to see if it could be a use of a method

def m[X1, . . ., Xt](y1: S1, . . ., yn:Sn),

it reasons as follows.

Let

4.12. TYPE INFERENCE 57

Ti be the type of bi

Then, the compiler is seeking a set B of type bindings

B = { X1 = U1, . . . , Xt=Ut}

such that Ti <: S∗i for 1 ≤ i ≤ n, where S∗ is Swith each type variable Xj replaced by
the corresponding Uj . If it can find such a B, it has a usable choice of type arguments
and can do the type inference. If it cannot find B, then it cannot do type inference.
(Note that X10’s type inference algorithm is incomplete – there may be such a B that
X10 cannot find. If this occurs in your program, you will have to write down the type
arguments explicitly.)

Let B0 be the set {Ti <: Si|1 ≤ i ≤ n}. Let Bn+1 be Bn with one element F <: G or
F = G removed, and Strip(F <: G) or Strip(F = G), where Strip is defined below,
added. Repeat this until Bn consists entirely of comparisons with type variables (viz.,
Yj = U, Yj <: U, and Yj :> U), or until some n exceeds a predefined compiler limit.

The candidate inferred types may be read off of Bn. The guessed binding for Xj is:

• If there is an equality Xj=W in Bn, then guess the binding Xj=W. Note that there
may be several such equalities with different choices of W; pick any one. If the
chosen binding does not equal the others, the candidate binding will be rejected
later and type inference will fail.

• Otherwise, if there is one or more upper bounds Xj <: Vk in Bn, guess the
binding Xj = V+, where V+ is the computed lower bound of all the Vk’s.

• Otherwise, if there is one or more lower bounds Rk <: Xj , guess that Xj = R+,
where R+ is the computed upper bound of all the Rk’s.

If this does not yield a binding for some variable Xj , then type inference fails. Further-
more, if every variable Xj is given a binding Uj , but the bindings do not work — that
is, if a.m[U1, . . ., Ut](b1, . . .,bn) is not a well-typed call of the original method
def m[X1, . . ., Xt](y1: S1, . . ., yn:Sn)— then type inference also fails.

Computation of the Replacement Elements Given a type relation r of the form
F <: G or F = G, we compute the set Strip(r) of replacement constraints. There are
a number of cases; we present only the interesting ones.

• If F has the form F ′{c}, then Strip(r) is defined to be F ′ = G if r is an equality,
or F ′ <: G if r is a subtyping. That is, we erase type constraints. Validity is
not an issue at this point in the algorithm, as we check at the end that the result
is valid. Note that, if the equation had the form Z{c} = A, it could be solved by
either Z=A or by Z = A{c}. By dropping constraints in this rule, we choose the
former solution, which tends to give more general types in results.

• Similarly, we drop constraints on G as well.

58 CHAPTER 4. TYPES

• If F has the form K[F1, . . ., Fk] and G has the form K[G1, . . ., Gk], then
Strip(r) has one type relation comparing each parameter of F with the corre-
sponding one of G:

Strip(r) = {Fl = Gl|1 ≤ l ≤ k}

For example, the constraint List[X] = List[Y] induces the constraint X=Y.
List[X] <: List[Y] also induces the same constraint. The only way that
List[X] could be a subtype of List[Y] in X10 is if X=Y. List of different types
are incomparable.9

• Other cases are fairly routine. E.g., if F is a type-defined abbreviation, it is
expanded.

Example: Consider the program:

import x10.util.*;

class Cl[C1, C2, C3]{}

class Example {

static def me[X1, X2](Cl[Long, X1, X2]) =

new Cl[X1, X2, Point]();

static def example() {

val a = new Cl[Long, Boolean, String]();

val b : Cl[Boolean, String, Point]

= me[Boolean, String](a);

val c : Cl[Boolean, String, Point]

= me(a);

}

}

The method call for b has explicit type parameters. The call for c infers the parameters.
The computation starts with one equation, saying that the formal parameter of me has
to be able to accept the actual parameter a:

Cl[Long, Boolean, String] <: Cl[Long, X1, X2]

Note that both terms are Cl of three things. This is broken into three equations:

Long = Long

which is easy to satisfy,

X1 = Boolean

which suggests a possible value for X1, and

X2 = String

9The situation would be more complex if X10 had covariant and contravariant types.

4.12. TYPE INFERENCE 59

which suggests a value for X2. All of these equations are simple enough, so the algo-
rithm terminates.

Then, X10 confirms that the binding X1=Boolean, X2=String actually generates a
correct call, which it does.

Example: When there is no way to infer types correctly, the type inference algorithm
will fail. Consider the program:

public class Failsome {

static def fail[X](a:Rail[X], b:Rail[X]):void {}

public static def main(argv:Rail[String]) {

val aint : Rail[Long] = [1,2,3];

val abool : Rail[Boolean] = [true, false];

fail(aint, abool); // THIS IS WRONG

}

}

The type inference computation starts, as always, by insisting that the types of the
formals to fail are capable of accepting the actuals:

B0 = {Rail[Long] <: Rail[X], Rail[Boolean] <: Rail[X]}

Arbitrarily picking the first relation to Strip first, we get:

B1 = {Long = X, Rail[Boolean] <: Rail[X] }

and then

B2 = {Long = X, Boolean = X }

(At this point it is clear to a human that B is inconsistent, but the algorithm’s check
comes a bit later.) B2 consists entirely of comparisons with type variables, so the loop
is over. Arbitrarily picking the first equality, it guesses the binding

B = {X = Long}.

In the validation step, it checks that

fail[Long](aint, abool)

is a well-typed call to fail. Of course it is not; abool would have to be a value of
type Rail[Long], which it is not. So type inference fails at this point. In this case it is
correct: there is no way to give a proper type to this program.10

10 In particular, X=Any doesn’t work either. A Rail[Long] is not a Rail[Any] — and it must not be,
for you can put a boolean value into a Rail[Any], but you cannot put a boolean value into an Rail[Long].
However, if the types of the arguments had simply been X rather than Rail[X], then type inference would
correctly infer X=Any.

60 CHAPTER 4. TYPES

4.13 Type Dependencies

Type definitions may not be circular, in the sense that no type may be its own supertype,
nor may it be a container for a supertype. This forbids interfaces like interface
Loop extends Loop, and indirect self-references such as interface A extends
B.Cwhere interface B extends A. The formal definition of this is based on Java’s.

An entity type is a class, interface, or struct type.

Entity type E directly depends on entity type F if F is mentioned in the extends or
implements clause of E, either by itself or as a qualifier within a super-entity-type
name.

Example: In the following, A directly depends on B, C, D, E, and F. It does not directly
depend on G.

class A extends B.C implements D.E, F[G] {}

It is an ordinary programming idiom to use A as an argument to a generic interface
that A implements. For example, ComparableTo[T] describes things which can be
compared to a value of type T. Saying that A implements ComparableTo[A] means
that one A can be compared to another, which is reasonable and useful:

interface ComparableTo[T] {

def eq(T):Boolean;

}

class A implements ComparableTo[A] {

public def eq(other:A) = this.equals(other);

}

Entity type E depends on entity type F if either E directly depends on F , or E directly
depends on an entity type that depends on F . That is, the relation “depends on” is the
transitive closure of the relation “directly depends on”.

It is a static error if any entity type E depends on itself.

4.14 Typing of Variables and Expressions

Variable declarations, field declarations, and some other expressions introduce con-
straints on their types. These extra constraints represent information that is known at
the point of declaration. They are used in deductions and type inference later on – as
indeed all constraints are, but the automatically-added constraints are added because
they are particularly useful.

Any variable declaration of the form

val x : A ...

4.14. TYPING OF VARIABLES AND EXPRESSIONS 61

results in declaring x to have the type A{self==x}, rather than simply A. (var decla-
rations get no such addition, because vars cannot appear in constraints.)

A field or property declaration of the form:

class A {

...

val f : B ...

...

}

results in declaring f to be of type B{self==this.f}. And, if y has type A{c},
then the type for y.f has a constraint self==y.f, and, additionally, preserves the
information from c.

Example:

The following code uses a method typeIs[T](x) to confirm, statically, that the type
of x is T (or a subtype of T).

On line (A) we confirm that the type of x has a self==x constraint. The error line
(!A) confirms that a different variable doesn’t have the self==x constraint. (B)
shows the extra information carried by a field’s type.

(C) shows the extra information carried by a field’s type when the object’s type is
constrained. Note that the constraint ExtraConstraint{self.n==8} on the type of
y has to be rewritten for y.f, since the constraint Long{self.n==8} is not correct or
even well-typed. In this case, the ExtraConstraint whose n-field is 8 has the name
y, so we can write the desired type with a conjunct y.n==8.11

Note that we use one of the extra constraints here – this reasoning requires the infor-
mation that the type of y has the constraint self==y, so X10 can infer y.n==8 from
self.n==8. This sort of inference is the reason why X10 adds these constraints in the
first place: without them, even the simplest data flows would be beyond the ability of
the type system to detect.

class Extra(n:Long) {

val f : Long;

def this(n:Long, f:Long) { property(n); this.f = f; }

static def typeIs[T](val x:T) {}

public static def main(argv:Rail[String]) {

val x : Extra = new Extra(1,2L);

typeIs[Extra{self==x}] (x); //(A)

val nx: Extra = new Extra(1,2L);

// ERROR: typeIs[Extra{self==x}] (nx); //(!A)

typeIs[Long{self == x.f}] (x.f); //(B)

val y : Extra{self.n==8} = new Extra(8, 4L);

11If y were an expression rather than a variable, there would be no good way to express its type in X10’s
type system. (The compiler has a more elaborate internal representation of types, not all of which are
expressible in X10 version 2.2.)

62 CHAPTER 4. TYPES

typeIs[Long{self == y.f, y.n == 8}] (y.f); //(C)

}

}

Once in a while, the additional information will interfere with other typechecking or
type inference. In this case, use as (§11.23) to erase it, using expressions like x as A.

Example: The following code creates a one-element rail (§11.26) containing x.

If the ERROR line were to be used, X10 would infer that the type of this rail were
Rail[T], where T is the type of x — that is, Rail[Extra{self==x}]. [x] is a
rail of x’s, not a rail of Extras. Since Rail[Extra{self==x}] is not a subtype of
Rail[Extra], the rail [x] cannot be used in a place where an Rail[Extra] is called
for.

The expression [x as Extra] uses a type cast to erase the automatically-added extra
information about x. x as Extra simply has type Extra, and thus [x as Extra] is
a Rail[Extra] as desired.

class Extra {

static def useRail(Rail[Extra]) {}

public static def main(argv:Rail[String]) {

val x : Extra = new Extra();

//ERROR: useRail([x]);

useRail([x as Extra]);

}

}

4.15 Limitations of Strict Typing

X10’s type checking provides substantial guarantees. In most cases, a program that
passes the X10 type checker will not have any runtime type errors. However, there are
a modest number of compromises with practicality in the type system: places where a
program can pass the typechecker and still have a type error.

1. As seen in §4.5.5, generic types do not have constraint information at runtime.
This allows one to write code which violates constraints at runtime, as seen in
the example in that section.

2. The library type x10.util.IndexedMemoryChunk provides a low-level inter-
face to blocks of memory. A few methods on that class are not type-safe. See
the API if you must.

3. Custom serialization (§13.3.2) allows user code to construct new objects in ways
that can subvert the type system.

4. Code written to use the underlying Java or C++ (§18) can break X10’s guaran-
tees.

5 Variables

A variable is an X10 identifier associated with a value within some context. Variable
bindings have these essential properties:

• Type: What sorts of values can be bound to the identifier;

• Scope: The region of code in which the identifier is associated with the entity;

• Lifetime: The interval of time in which the identifier is associated with the entity.

• Visibility: Which parts of the program can read or manipulate the value through
the variable.

X10 has many varieties of variables, used for a number of purposes.

• Class variables, also known as the static fields of a class, which hold their values
for the lifetime of the class.

• Instance variables, which hold their values for the lifetime of an object;

• Array elements, which are not individually named and hold their values for the
lifetime of an array;

• Formal parameters to methods, functions, and constructors, which hold their
values for the duration of method (etc.) invocation;

• Local variables, which hold their values for the duration of execution of a block.

• Exception-handler parameters, which hold their values for the execution of the
exception being handled.

A few other kinds of things are called variables for historical reasons; e.g., type param-
eters are often called type variables, despite not being variables in this sense because
they do not refer to X10 values. Other named entities, such as classes and methods, are
not called variables. However, all name bindings enjoy similar concepts of scope and
visibility.

Example: In the following example, n is an instance variable, and nxt is a local
variable defined within the method bump.1

1This code is unnecessarily turgid for the sake of the example. One would generally write public def
bump() = ++n;.

63

64 CHAPTER 5. VARIABLES

class Counter {

private var n : Long = 0;

public def bump() : Long {

val nxt = n+1;

n = nxt;

return nxt;

}

}

Both variables have type Long (or perhaps something more specific). The scope of n
is the body of Counter; the scope of nxt is the body of bump. The lifetime of n is the
lifetime of the Counter object holding it; the lifetime of nxt is the duration of the call
to bump. Neither variable can be seen from outside of its scope.

Variables whose value may not be changed after initialization are said to be immutable,
or constants (§5.1), or simply val variables. Variables whose value may change are
mutable or simply var variables. var variables are declared by the var keyword. val
variables may be declared by the val keyword; when a variable declaration does not
include either var or val, it is considered val.

A variable—even a val – can be declared in one statement, and then initialized later
on. It must be initialized before it can be used (§19).

Example: The following example illustrates many of the variations on variable
declaration:

val a : Long = 0; // Full ’val’ syntax

b : Long = 0; // ’val’ implied

val c = 0; // Type inferred

var d : Long = 0; // Full ’var’ syntax

var e : Long; // Not initialized

var f : Long{self != 100} = 0; // Constrained type

val g : Long; // Init. deferred

if (a > b) g = 1; else g = 2; // Init. done here.

5.1 Immutable variables

LocVarDeclnStmt ::= LocVarDecln ; (20.111)
LocVarDecln ::= Mods? VarKeyword VariableDeclrs (20.110)

| Mods? VarDeclsWType
| Mods? VarKeyword FormalDeclrs

An immutable (val) variable can be given a value (by initialization or assignment) at
most once, and must be given a value before it is used. Usually this is achieved by
declaring and initializing the variable in a single statement, such as val x = 3, with
syntax (20.110) using the VariableDeclarators or VarDelcsWType alternatives.

5.2. INITIAL VALUES OF VARIABLES 65

Example: After these declarations, a and b cannot be assigned to further, or even
redeclared:

val a : Long = 10;

val b = (a+1)*(a-1);

// ERROR: a = 11; // vals cannot be assigned to.

// ERROR: val a = 11; // no redeclaration.

In three special cases, the declaration and assignment are separate. One case is how
constructors give values to val fields of objects. In this case, production (20.110) is
taken, with the FormalDeclarators option, such as var n:Long;.

Example: The Example class has an immutable field n, which is given different
values depending on which constructor was called. n can’t be given its value by ini-
tialization when it is declared, since it is not knowable which constructor is called at
that point.

class Example {

val n : Long; // not initialized here

def this() { n = 1; }

def this(dummy:Boolean) { n = 2;}

}

The second case of separating declaration and assignment is in function and method
call, described in §5.4. The formal parameters are bound to the corresponding actual
parameters, but the binding does not happen until the function is called.

Example: In the code below, x is initialized to 3 in the first call and 4 in the second.

val sq = (x:Long) => x*x;

x10.io.Console.OUT.println("3 squared = " + sq(3));

x10.io.Console.OUT.println("4 squared = " + sq(4));

The third case is delayed initialization (§19), useful in cases where the code has to
make decisions (possibly asynchronously) before assigning values to variables.

5.2 Initial values of variables

Every assignment, binding, or initialization to a variable of type T{c} must be an
instance of type T satisfying the constraint {c}. Variables must be given a value before
they are used. This may be done by initialization – giving a variable a value as part of
its declaration.

Example: These variables are all initialized:

val immut : Long = 3;

var mutab : Long = immut;

val use = immut + mutab;

66 CHAPTER 5. VARIABLES

A variable may also be given a value by an assignment. var variables may be assigned
to repeatedly. val variables may only be assigned once; the compiler will ensure that
they are assigned before they are used (§19).

Example: The variables in the following example are given their initial values by
assignment. Note that they could not be used before those assignments, nor could immu
be assigned repeatedly.

var muta : Long;

// ERROR: println(muta);

muta = 4;

val use2A = muta * 10;

val immu : Long;

// ERROR: println(immu);

if (cointoss()) {immu = 1;}

else {immu = use2A;}

val use2B = immu * 10;

// ERROR: immu = 5;

Every class variable must be initialized before it is read, through the execution of an
explicit initializer. Every instance variable must be initialized before it is read, through
the execution of an explicit or implicit initializer or a constructor. Implicit initializers
initialize vars to the default values of their types (§4.7). Variables of types which do
not have default values are not implicitly initialized.

Each method and constructor parameter is initialized to the corresponding argument
value provided by the invoker of the method. An exception-handling parameter is
initialized to the object thrown by the exception. A local variable must be explicitly
given a value by initialization or assignment, in a way that the compiler can verify
using the rules for definite assignment (§19).

5.3 Destructuring syntax

X10 permits a destructuring syntax for local variable declarations with explicit initial-
izers, and for formal parameters, of type Point, §16.3.1 and Array, §16. A point is a
sequence of zero or more Long-valued coordinates; an array is an indexed collection
of data. It is often useful to get at the coordinates or elements directly, in variables.

VariableDeclr ::= Id HasResultType? = VariableInitializer (20.203)
| [IdList] HasResultType? = VariableInitializer
| Id [IdList] HasResultType? = VariableInitializer

The syntax val [a1, . . ., an] = e;, where e is a Point, declares n Long variables,
bound to the precisely n components of the Point value of e; it is an error if e is not
a Point with precisely n components. The syntax val p[a1, . . ., an] = e; is
similar, but also declares the variable p to be of type Point(n).

5.4. FORMAL PARAMETERS 67

The syntax val [a1, . . ., an] = e;, where e is an Array[T] for some type T, de-
clares n variables of type T, bound to the precisely n components of the Array[T]
value of e; it is an error if e is not a Array[T] with rank==1 and size==n. The
syntax val p[a1, . . ., an] = e; is similar, but also declares the variable p to be of
type Array[T]{rank==1,size==n}.

Example: The following code makes an anonymous point with one coordinate 11,
and binds i to 11. Then it makes a point with coordinates 22 and 33, binds p to that
point, and j and k to 22 and 33 respectively.

val [i] : Point = Point.make(11);

assert i == 11L;

val p[j,k] = Point.make(22,33);

assert j == 22L && k == 33L;

val q[l,m] = [44,55] as Point;

assert l == 44L && m == 55L;

//ERROR: val [n] = p;

Destructuring is allowed wherever a Point or Array[T] variable is declared, e.g.,
as the formal parameters of a method. Example: The methods below take a
single argument each: a three-element point for example1, a three-element array for
example2. The argument itself is bound to x in both cases, and its elements are bound
to a, b, and c.

static def example1(x[a,b,c]:Point){}

static def example2(x[a,b,c]:Array[String]{rank==1,size==3L}){}

5.4 Formal parameters

Formal parameters are the variables which hold values transmitted into a method or
function. They are always declared with a type. (Type inference is not available, be-
cause there is no single expression to deduce a type from.) The variable name can
be omitted if it is not to be used in the scope of the declaration, as in the type of the
method static def main(Rail[String]):void executed at the start of a program
that does not use its command-line arguments.

var and val behave just as they do for local variables, §5.5. In particular, the follow-
ing inc method is allowed, but, unlike some languages, does not increment its actual
parameter. inc(j) creates a new local variable i for the method call, initializes i with
the value of j, increments i, and then returns. j is never changed.

static def inc(var i:Long) { i += 1; }

static def example() {

var j : Long = 0;

assert j == 0;

inc(j);

assert j == 0;

}

68 CHAPTER 5. VARIABLES

5.5 Local variables and Type Inference

Local variables are declared in a limited scope, and, dynamically, keep their values
only for so long as the scope is being executed. They may be var or val. They may
have initializer expressions: var i:Long = 1; introduces a variable i and initializes
it to 1. If the variable is immutable (val) the type may be omitted and inferred from
the initializer type (§4.12).

The variable declaration val x:T=e; confirms that e’s value is of type T, and then
introduces the variable xwith type T. For example, consider a class Tubwith a property
p.

class Tub(p:Long){

def this(pp:Long):Tub{self.p==pp} {property(pp);}

def example() {

val t : Tub = new Tub(3);

}

}

produces a variable t of type Tub, even though the expression new Tub(3) produces
a value of type Tub{self.p==3} – that is, a Tub whose p field is 3. This can be
inconvenient when the constraint information is required.

Including type information in variable declarations is generally good programming
practice: it explains to both the compiler and human readers something of the intent of
the variable. However, including types in val t:T=e can obliterate helpful informa-
tion. So, X10 allows a documentation type declaration, written

val t <: T = e

This has the same effect as val t = e, giving t the full type inferred from e; but it
also confirms statically that that type is at least T.

Example: The following gives t the type Tub{self.p==3} as desired. However, a
similar declaration with an inappropriate type will fail to compile.

val t <: Tub = new Tub(3);

// ERROR: val u <: Long = new Tub(3);

5.6. FIELDS 69

5.6 Fields

FieldDeclrs ::= FieldDeclr (20.70)
| FieldDeclrs , FieldDeclr

FieldDecln ::= Mods? VarKeyword FieldDeclrs ; (20.68)
| Mods? FieldDeclrs ;

FieldDeclr ::= Id HasResultType (20.69)
| Id HasResultType? = VariableInitializer

HasResultType ::= ResultType (20.86)
| <: Type

Mod ::= abstract (20.121)
| Annotation
| atomic

| final

| native

| private

| protected

| public

| static

| transient

| clocked

Like most other kinds of variables in X10, the fields of an object can be either val or
var. val fields can be static (§8.2). Field declarations may have optional initializer
expressions, as for local variables, §5.5. var fields without an initializer are initialized
with the default value of their type. val fields without an initializer must be initialized
by each constructor.

For val fields, as for val local variables, the type may be omitted and inferred from
the initializer type (§4.12). var fields, like var local variables, must be declared with
a type.

6 Names and packages

6.1 Names

An X10 program consists largely of giving names to entities, and then manipulating
the entities by their names. The entities involved may be compile-time constructs,
like packages, types and classes, or run-time constructs, like numbers and strings and
objects.

X10 names can be simple names, which look like identifiers: vj, x10, AndSoOn. Or,
they can be qualified names, which are sequences of two or more identifiers sepa-
rated by dots: x10.lang.String, somePack.someType, a.b.c.d.e.f. Some enti-
ties have only simple names; some have both simple and qualified names.

Every declaration that introduces a name has a scope: the region of the program in
which the named entity can be referred to by a simple name. In some cases, entities
may be referred to by qualified names outside of their scope. E.g., a public class C
defined in package p can be referred to by the simple name C inside of p, or by the
qualified name p.C from anywhere.

Many sorts of entities have members. Packages have classes, structs, and interfaces as
members. Those, in turn, have fields, methods, types, and so forth as members. The
member x of an entity named E (as a simple or qualified name) has the name E.x; it
may also have other names.

6.1.1 Shadowing

One declaration d may shadow another declaration d′ in part of the scope of d′, if d
and d′ declare variables with the same simple name n. When d shadows d′, a use of n
might refer to d’s n (unless some d′′ in turn shadows d), but will never refer to d′’s n.

X10 has four namespaces:

• Types: for classes, interfaces, structs, and defined types.

• Values: for val- and var-bound variables; fields; and formal parameters of all
sorts.

70

6.1. NAMES 71

• Methods: for methods of classes, interfaces, and structs.

• Packages: for packages.

A declaration d in one namespace, binding a name n to an entity e, shadows all other
declarations of that name n in scope at the point where d is declared. This shadowing is
in effect for the entire scope of d. Declarations in different namespaces do not shadow
each other. Thus, a local variable declaration may shadow a field declaration, but not a
class declaration.

Declarations which only introduce qualified names — in X10, this is only package
declarations — cannot shadow anything.

The rules for shadowing of imported names are given in §6.4.

6.1.2 Hiding

Shadowing is ubiquituous in X10. Another, and considerably rarer, way that one defini-
tion of a given simple name can render another definition of the same name unavailable
is hiding. If a class Super defines a field named x, and a subclass Sub of Super also
defines a field named x, and b:Sub, then b.x is Sub’s x field, not Super’s. In this case,
Super’s x is said to be hidden.

Hiding is technically different from shadowing, because hiding applies in more cir-
cumstances: a use of class Sub, such as sub.x, may involve hiding of name x, though
it could not involve shadowing of x because x need not be declared as a name at that
point.

6.1.3 Obscuring

The third way in which a definition of a simple name may become unavailable is ob-
scuring. This well-named concept says that, if n can be interpreted as two or more
of: a variable, a type, and a package, then it will be interpreted as a variable if that is
possible, or a type if it cannot be interpreted as a variable. In this case, the unavailable
interpretations are obscured.

Example: In the example method of the following code, both a struct and a local
variable are named eg. Following the obscuring rules, the call eg.ow() in the first
assert uses the variable rather than the struct. As the second assert demonstrates,
the struct can be accessed through its fully-qualified name. Note that none of this would
have happened if the coder had followed the convention that structs have capitalized
names, Eg, and variables have lower-case ones, eg.

package obscuring;

struct eg {

static def ow()= 1;

static struct Bite {

72 CHAPTER 6. NAMES AND PACKAGES

def ow() = 2;

}

def example() {

val eg = Bite();

assert eg.ow() == 2;

assert obscuring.eg.ow() == 1;

}

}

Due to obscuring, it may be impossible to refer to a type or a package via a simple
name in some circumstances. Obscuring does not block qualified names.

6.1.4 Ambiguity and Disambiguation

Neither simple nor qualified names are necessarily unique. There can be, in general,
many entities that have the same name. This is perfectly ordinary, and, when done well,
considered good programming practice. Various forms of disambiguation are used to
tell which entity is meant by a given name; e.g., methods with the same name may be
disambiguated by the types of their arguments (§8.12).

Example: In the following example, there are three static methods with qualified
name DisambEx.Example.m; they can be disambiguated by their different arguments.
Inside the body of the third, the simple name i refers to both the Long formal of m, and
to the static method DisambEx.Example.i.

package DisambEx;

class Example {

static def m() = 1;

static def m(Boolean) = 2;

static def i() = 3;

static def m(i:Long) {

if (i > 10) {

return i() + 1;

}

return i;

}

static def example() {

assert m() == 1;

assert m(true) == 2;

assert m(3) == 3;

assert m(20) == 4;

}

}

6.2. ACCESS CONTROL 73

6.2 Access Control

X10 allows programmers access control, that is, the ability to determine statically
where identifiers of most sorts are visible. In particular, X10 allows information hiding,
wherein certain data can be accessed from only limited parts of the program.

There are four access control modes: public , protected, private and uninflected
package-specific scopes, much like those of Java. Most things can be public or private;
a few things (e.g., class members) can also be protected or package-scoped.

Accessibility of one X10 entity (package, container, member, etc.) from within a pack-
age or container is defined as follows:

• Packages are always accessible.

• If a container C is public, and, if it is inside of another container D, container D is
accessible, then C is accessible.

• A member m of a container C is accessible from within another container E if C
is accessible, and:

– m is declared public; or

– C is an interface; or

– m is declared protected, and either the access is from within the same
package that C is defined in, or from within the body of a subclass of C (but
see §6.2.1 for some fine points); or

– m is declared private, and the access is from within the top-level class
which contains the definition of C — which may be C itself, or, if C is a
nested container, an outer class around C; or

– m has no explicit class declaration (hence using the implicit “package”-
level access control), and the access occurs from the same package that C
is declared in.

6.2.1 Details of protected

protected access has a few fine points. Within the body of a subclass D of the class C
containing the definition of a protected member m,

• An access e.fld to a field, or e.m(...) to a method, is permitted precisely
when the type of e is either D or a subtype of D. For example, the access to
that.f in the following code is acceptable, but the access to xhax.f is not.

class C {

protected var f : Long = 0;

}

class X extends C {}

74 CHAPTER 6. NAMES AND PACKAGES

class D extends C {

def usef(that:D, xhax:X) {

this.f += that.f;

// ERROR: this.f += xhax.f;

}

}

Limitation: The X10 compiler improperly allows access to xhax – as, indeed,
some Java compilers do, despite Java having the analogous rule. The compiler
allows you to do everything the spec says and a bit more.

• An access through a qualified name Q.N is permitted precisely when the type of
Q is D or a subtype of D.

Qualified access to a protected constructor is subtle. Let C be a class with a protected
constructor c, and let S be the innermost class containing a use u of c. There are three
cases for u:

• Superclass construction invocations, super(...) or E.super(...), are per-
mitted.

• Anonymous class instance creations, of the forms new C(...){...} and E.new
C(...){...}, are permitted.

• No other accesses are permitted.

6.3 Packages

A package is a named collection of top-level type declarations, viz., class, interface,
and struct declarations. Package names are sequences of identifiers, like x10.lang
and com.ibm.museum. The multiple names are simply a convenience, though there is
a tenuous relationship between packages a, a.b, and a.c. Packages can be accessed
by name from anywhere: a package may contain private elements, but may not itself
be private.

Packages and protection modifiers determine which top-level names can be used where.
Only the publicmembers of package pack.age can be accessed outside of pack.age
itself.

package pack.age;

class Deal {

public def make() {}

}

public class Stimulus {

private def taxCut() = true;

protected def benefits() = true;

6.4. IMPORT DECLARATIONS 75

public def jobCreation() = true;

/*package*/ def jumpstart() = true;

}

The class Stimulus can be referred to from anywhere outside of pack.age by its
full name of pack.age.Stimulus, or can be imported and referred to simply as
Stimulus. The public jobCreation() method of a Stimulus can be referred to
from anywhere as well; the other methods have smaller visibility. The non-public
class Deal cannot be used from outside of pack.age.

6.3.1 Name Collisions

It is a static error for a package to have two members with the same name. For example,
package pack.age cannot define two classes both named Crash, nor a class and an
interface with that name.

Furthermore, pack.age cannot define a member Crash if there is another package
named pack.age.Crash, nor vice-versa. (This prohibition is the only actual relation-
ship between the two packages.) This prevents the ambiguity of whether pack.age.Crash
refers to the class or the package. Note that the naming convention that package names
are lower-case and package members are capitalized prevents such collisions.

6.4 import Declarations

Any public member of a package can be referred to from anywhere through a fully-
qualified name: pack.age.Stimulus.

Often, this is too awkward. X10 has two ways to allow code outside of a class to refer
to the class by its short name (Stimulus): single-type imports and on-demand imports.

Imports of either kind appear at the start of the file, immediately after the package
directive if there is one; their scope is the whole file.

6.4.1 Single-Type Import

The declaration import TypeName ; imports a single type into the current names-
pace. The type it imports must be a fully-qualified name of an extant type, and it must
either be in the same package (in which case the import is redundant) or be declared
public.

Furthermore, when importing pack.age.T, there must not be another type named T at
that point: neither a T declared in pack.age, nor a inst.ant.T imported from some
other package.

The declaration import E.n;, appearing in file f of a package named P, shadows the
following types named n when they appear in f :

76 CHAPTER 6. NAMES AND PACKAGES

• Top-level types named n appearing in other files of P, and

• Types named n imported by automatic imports (§6.4.2) in f .

6.4.2 Automatic Import

The automatic import import pack.age.*;, loosely, imports all the public members
of pack.age. In fact, it does so somewhat carefully, avoiding certain errors that could
occur if it were done naively. Types defined in the current package, and those imported
by single-type imports, shadow those imported by automatic imports. If two automatic
imports provide the same short name n, it is an error to use n – but it is not an error
if no conflicting name is ever used. Names automatically imported never shadow any
other names.

6.4.3 Implicit Imports

The package x10.lang is automatically imported in all files without need for fur-
ther specification. Furthermore, the public static members of the class named _ in
x10.lang are imported everywhere as well. This provides a number of aliases, such
as Console and int for x10.io.Console and Int.

6.5 Conventions on Type Names

TypeName ::= Id (20.172)
| TypeName . Id

PackageName ::= Id (20.128)
| PackageName . Id

While not enforced by the compiler, classes and interfaces in the X10 library follow the
following naming conventions. Names of types—including classes, type parameters,
and types specified by type definitions—are in CamelCase and begin with an upper-
case letter. (Type variables are often single capital letters, such as T.) For backward
compatibility with languages such as C and Java, type definitions are provided to allow
primitive types such as int and boolean to be written in lowercase. Names of meth-
ods, fields, value properties, and packages are in camelCase and begin with a lowercase
letter. Names of static val fields are in all uppercase with words separated by _’s.

7 Interfaces

An interface specifies signatures for zero or more public methods, property methods,
static vals, classes, structs, interfaces, types and an invariant.

The following puny example illustrates all these features:

interface Pushable{prio() != 0} {

def push(): void;

static val MAX_PRIO = 100;

abstract class Pushedness{}

struct Pushy{}

interface Pushing{}

static type Shove = Long;

property text():String;

property prio():Long;

}

class MessageButton(text:String)

implements Pushable{self.prio()==Pushable.MAX_PRIO} {

public def push() {

x10.io.Console.OUT.println(text + " pushed");

}

public property text() = text;

public property prio() = Pushable.MAX_PRIO;

}

Pushable defines two property methods, one normal method, and a static value. It
also establishes an invariant, that prio() != 0. MessageButton implements a con-
strained version of Pushable, viz. one with maximum priority. It defines the push()
method given in the interface, as a public method—interface methods are implicitly
public.

Limitation: X10 may not always detect that type invariants of interfaces are satisfied,
even when they obviously are.

A container—a class or struct—can implement an interface, typically by having all the
methods and property methods that the interface requires, and by providing a suitable
implements clause in its definition.

77

78 CHAPTER 7. INTERFACES

A variable may be declared to be of interface type. Such a variable has all the property
and normal methods declared (directly or indirectly) by the interface; nothing else is
statically available. Values of any concrete type which implement the interface may be
stored in the variable.

Example: The following code puts two quite different objects into the variable star,
both of which satisfy the interface Star.

interface Star { def rise():void; }

class AlphaCentauri implements Star {

public def rise() {}

}

class ElvisPresley implements Star {

public def rise() {}

}

class Example {

static def example() {

var star : Star;

star = new AlphaCentauri();

star.rise();

star = new ElvisPresley();

star.rise();

}

}

An interface may extend several interfaces, giving X10 a large fraction of the power of
multiple inheritance at a tiny fraction of the cost.

Example:

interface Star{}

interface Dog{}

class Sirius implements Dog, Star{}

class Lassie implements Dog, Star{}

7.1. INTERFACE SYNTAX 79

7.1 Interface Syntax

InterfaceDecln ::= Mods? interface Id TypeParamsI? Properties? Guard?

ExtendsInterfaces? InterfaceBody
(20.99)

TypeParamsI ::= [TypeParamIList] (20.177)
Guard ::= DepParams (20.83)
ExtendsInterfaces ::= extends Type (20.66)

| ExtendsInterfaces , Type
InterfaceBody ::= { InterfaceMemberDeclns? } (20.98)
InterfaceMemberDecln ::= MethodDecln (20.100)

| PropMethodDecln
| FieldDecln
| TypeDecln

The invariant associated with an interface is the conjunction of the invariants associated
with its superinterfaces and the invariant defined at the interface.

A class C implements an interface I if I, or a subtype of I, appears in the implements
list of C. In this case, C implicitly gets all the methods and property methods of I,
as abstract public methods. If C does not declare them explicitly, then they are
abstract, and C must be abstract as well. If C does declare them all, C may be
concrete.

If C implements I, then the class invariant (§8.9) for C, inv(C), implies the class in-
variant for I, inv(I). That is, if the interface I specifies some requirement, then every
class C that implements it satisfies that requirement.

7.2 Access to Members

All interface members are public, whether or not they are declared public. There is
little purpose to non-public methods of an interface; they would specify that imple-
menting classes and structs have methods that cannot be seen.

7.3 Member Specification

An interface can specify that all containers implementing it must have certain instance
methods. It cannot require constructors or static methods, though.

Example: The Stat interface requires that its implementers provide an ick method.
It can’t insist that implementations provide a static method like meth, or a nullary
constructor.

interface Stat {

def ick():void;

80 CHAPTER 7. INTERFACES

// ERROR: static def meth():Long;

// ERROR: static def this();

}

class Example implements Stat {

public def ick() {}

def example() {

this.ick();

}

}

7.4 Property Methods

An interface may declare property methods. All non-abstract containers imple-
menting such an interface must provide all the property methods specified.

7.5 Field Definitions

An interface may declare a val field, with a value. This field is implicitly public
static val. In particular, it is not an instance field.

interface KnowsPi {

PI = 3.14159265358;

}

Classes and structs implementing such an interface get the interface’s fields as public
static fields. Unlike methods, there is no need for the implementing class to declare
them.

class Circle implements KnowsPi {

static def area(r:Double) = PI * r * r;

}

class UsesPi {

def circumf(r:Double) = 2 * r * KnowsPi.PI;

}

7.5.1 Fine Points of Fields

If two parent interfaces give different static fields of the same name, those fields must
be referred to by qualified names.

interface E1 {static val a = 1;}

interface E2 {static val a = 2;}

interface E3 extends E1, E2{}

7.6. GENERIC INTERFACES 81

class Example implements E3 {

def example() = E1.a + E2.a;

}

If the same field a is inherited through many paths, there is no need to disambiguate it:

interface I1 { static val a = 1;}

interface I2 extends I1 {}

interface I3 extends I1 {}

interface I4 extends I2,I3 {}

class Example implements I4 {

def example() = a;

}

The initializer of a field in an interface may be any expression. It is evaluated under the
same rules as a static field of a class.

Example: In this example, a class TheOne is defined, with an inner interface
WelshOrFrench, whose field UN (named in either Welsh or French) has value 1. Note
that WelshOrFrench does not define any methods, so it can be trivially added to the
implements clause of any class, as it is for Onesome. This allows the body of Onesome
to use UN through an unqualified name, as is done in example().

class TheOne {

static val ONE = 1;

interface WelshOrFrench {

val UN = 1;

}

static class Onesome implements WelshOrFrench {

static def example() {

assert UN == ONE;

}

}

}

7.6 Generic Interfaces

Interfaces, like classes and structs, can have type parameters. The discussion of gener-
ics in §4.3 applies to interfaces, without modification.

Example:

interface ListOfFuns[T,U] extends x10.util.List[(T)=>U] {}

82 CHAPTER 7. INTERFACES

7.7 Interface Inheritance

The direct superinterfaces of a non-generic interface I are the interfaces (if any) men-
tioned in the extends clause of I’s definition. If I is generic, the direct superinterfaces
are of an instantiation of I are the corresponding instantiations of those interfaces. A
superinterface of I is either I itself, or a direct superinterface of a superinterface of I,
and similarly for generic interfaces.

I inherits the members of all of its superinterfaces. Any class or struct that has I in its
implements clause also implements all of I’s superinterfaces.

Classes and structs may be declared to implement multiple interfaces. Semantically,
the interface type is the set of all objects that are instances of classes or structs that
implement the interface. A class or struct implements an interface if it is declared to
and if it concretely or abstractly implements all the methods and properties defined in
the interface. For example, Kim implements Person, and hence Named and Mobile.
It would be a static error if Kim had no name method, unless Kim were also declared
abstract.

class Kim implements Person {

var pos : Long = 0;

public def name() = "Kim (" + pos + ")";

public def move(dPos:Long) { pos += dPos; }

}

7.8 Members of an Interface

The members of an interface I are the union of the following sets:

1. All of the members appearing in I’s declaration;

2. All the members of its direct super-interfaces, except those which are hidden
(§6.1.2) by I

3. The members of Any.

Overriding for instances is defined as for classes, §8.4.8

8 Classes

8.1 Principles of X10 Objects

8.1.1 Basic Design

Objects are instances of classes: the most common and most powerful sort of value in
X10. The other kinds of values, structs and functions, are more specialized.

Classes are structured in a forest of single-inheritance code hierarchies. Like C++, but
unlike Java, there is no single root class (e.g. java.lang.Object) that all classes
inherit from. Classes may have any or all of these features:

• Implementing any number of interfaces;

• Static and instance val fields;

• Instance var fields;

• Static and instance methods;

• Constructors;

• Properties;

• Static and instance nested containers.

• Static type definitions

X10 objects (unlike Java objects) do not have locks associated with them. Programmers
may use atomic blocks (§14.7) for mutual exclusion and clocks (§15) for sequencing
multiple parallel operations.

An object exists in a single location: the place that it was created. One place cannot use
or even directly refer to an object in a different place. A special type, GlobalRef[T],
allows explicit cross-place references.

The basic operations on objects are:

83

84 CHAPTER 8. CLASSES

• Construction (§8.11). Objects are created, their var and val fields initialized,
and other invariants established.

• Field access (§11.4). The static, instance, and property fields of an object can be
retrieved; var fields can be set.

• Method invocation (§11.6). Static, instance, and property methods of an object
can be invoked.

• Casting (§11.22) and instance testing with instanceof (§11.24) Objects can be
cast or type-tested.

• The equality operators == and !=. Objects can be compared for equality with
the == operation. This checks object identity: two objects are == iff they are the
same object.

8.1.2 Class Declaration Syntax

The class declaration has a list of type parameters, a list of properties, a constraint (the
class invariant), zero or one superclass, zero or more interfaces that it implements, and
a class body containing the the definition of fields, properties, methods, and member
types. Each such declaration introduces a class type (§4.2).

ClassDecln ::= Mods? class Id TypeParamsI? Properties? Guard? Super? Interfaces?

ClassBody
(20.34)

TypeParamsI ::= [TypeParamIList] (20.177)
TypeParamIList ::= TypeParam (20.174)

| TypeParamIList , TypeParam
| TypeParamIList ,

Properties ::= (PropList) (20.142)
PropList ::= Prop (20.140)

| PropList , Prop
Prop ::= Annotations? Id ResultType (20.139)
Guard ::= DepParams (20.83)
Super ::= extends ClassType (20.156)
Interfaces ::= implements InterfaceTypeList (20.103)
InterfaceTypeList ::= Type (20.102)

| InterfaceTypeList , Type
ClassBody ::= { ClassMemberDeclns? } (20.33)
ClassMemberDeclns ::= ClassMemberDecln (20.36)

| ClassMemberDeclns ClassMemberDecln
ClassMemberDecln ::= InterfaceMemberDecln (20.35)

| CtorDecln

8.2. FIELDS 85

8.2 Fields

Objects may have instance fields, or simply fields (called “instance variables” in C++
and Smalltalk, and “slots” in CLOS): places to store data that is pertinent to the object.
Fields, like variables, may be mutable (var) or immutable (val).

A class may have static fields, which store data pertinent to the entire class of objects.
See §8.6 for more information. Because of its emphasis on safe concurrency, X10
requires static fields to be immutable (val).

No two fields of the same class may have the same name. A field may have the same
name as a method, although for fields of functional type there is a subtlety (§8.12.4).

8.2.1 Field Initialization

Fields may be given values via field initialization expressions: val f1 = E; and var
f2 : Long = F;. Other fields of thismay be referenced, but only those that precede
the field being initialized.

Example: The following is correct, but would not be if the fields were reversed:

class Fld{

val a = 1;

val b = 2+a;

}

8.2.2 Field hiding

A subclass that defines a field f hides any field f declared in a superclass, regardless of
their types. The superclass field f may be accessed within the body of the subclass via
the reference super.f.

With inner classes, it is occasionally necessary to write Cls.super.f to get at a hidden
field f of an outer class Cls.

Example: The f field in Sub hides the f field in Super The superf method provides
access to the f field in Super.

class Super{

public val f = 1;

}

class Sub extends Super {

val f = true;

def superf() : Long = super.f; // 1

}

Example: Hidden fields of outer classes can be accessed by suitable forms:

86 CHAPTER 8. CLASSES

class A {

val f = 3;

}

class B extends A {

val f = 4;

class C extends B {

// C is both a subclass and inner class of B

val f = 5;

def example() {

assert f == 5 : "field of C";

assert super.f == 4 : "field of superclass";

assert B.this.f == 4 : "field of outer instance";

assert B.super.f == 3 : "super.f of outer instance";

}

}

}

8.2.3 Field qualifiers

The behavior of a field may be changed by a field qualifier, such as static or transient.

static qualifier

A val field may be declared to be static, as described in §8.2.

transient Qualifier

A field may be declared to be transient. Transient fields are excluded from the deep
copying that happens when information is sent from place to place in an at statement.
The value of a transient field of a copied object is the default value of its type, regardless
of the value of the field in the original. If the type of a field has no default value, it
cannot be marked transient.

class Trans {

val copied = "copied";

transient var transy : String = "a very long string";

def example() {

at (here) { // causes copying of ’this’

assert(this.copied.equals("copied"));

assert(this.transy == null);

}

}

}

8.3. PROPERTIES 87

8.3 Properties

The properties of an object (or struct) are a restricted form of public val fields.1 For
example, every array has a rank telling how many subscripts it takes. User-defined
classes can have whatever properties are desired.

Properties differ from public val fields in a few ways:

1. Property references are allowed on self in constraints: self.prop. Field ref-
erences are not.

2. Properties are in scope for all instance initialization expressions. val fields are
not.

3. The graph of values reachable from a given object by following only property
links is acyclic. Conversely, it is possible (and routine) for two objects to point
to each other with val fields.

4. Properties are declared in the class header; val fields are defined in the class
body.

5. Properties are set in constructors by a property statement. val fields are set by
assignment.

Properties are defined in parentheses, after the name of the class. They are given values
by the property command in constructors.

Example: Proper has a single property, t. new Proper(4) creates a Proper
object with t==4.

class Proper(t:Long) {

def this(t:Long) {property(t);}

}

It is a static error for a class defining a property x: T to have a subclass class that
defines a property or a field with the name x.

A property x:T induces a field with the same name and type, as if defined with:

public val x : T;

Properties are initialized in a constructor by the invocation of a special property state-
ment. The requirement to use the property statement means that all properties must
be given values at the same time: a container either has its properties or it does not.

property(e1,..., en);

1In many cases, a val field can be upgraded to a property, which entails no compile-time or runtime
cost. Some cannot be, e.g., in cases where cyclic structures of val fields are required.

88 CHAPTER 8. CLASSES

The number and types of arguments to the property statement must match the number
and types of the properties in the class declaration, in order. Every constructor of a class
with properties must invoke property(...) precisely once; it is a static error if X10
cannot prove that this holds.

By construction, the graph whose nodes are values and whose edges are properties is
acyclic. E.g., there cannot be values a and b with properties c and d such that a.c ==
b and b.d == a.

Example:

class Proper(a:Long, b:String) {

def this(a:Long, b:String) {

property(a, b);

}

def this(z:Long) {

val theA = z+5;

val theB = "X"+z;

property(theA, theB);

}

static def example() {

val p = new Proper(1, "one");

assert p.a == 1 && p.b.equals("one");

val q = new Proper(10);

assert q.a == 15 && q.b.equals("X10");

}

}

8.3.1 Properties and Field Initialization

Fields with explicit initializers are evaluated immediately after the property com-
mand, and all properties are in scope when initializers are evaluated.

Example: Class Init initializes the field a to be a rail of n elements, where n is
a property. When new Init(4) is executed, the constructor first sets n to 4 via the
property statement, and then initializes a to a 4-element rail.

However, Outit uses a field rather than a property for n. If the ERROR line were
present, it would not compile. n has not been definitely assigned (§19) at this point,
and n has not been given its value, so a cannot be computed. (If one insisted that
n be a property, a would have to be initialized in the constructor, rather than by an
initialization expression.)

class Init(n:Long) {

val a = new Rail[String](n, "");

def this(n:Long) { property(n); }

}

class Outit {

8.4. METHODS 89

val n : Long;

//ERROR: val a = new Rail[String](n, "");

def this(m:Long) { this.n = m; }

}

8.3.2 Properties and Fields

A container with a property named p, or a nullary property method named p(), cannot
have a field named p— either defined in that container, or inherited from a superclass.

8.3.3 Acyclicity of Properties

X10 has certain restrictions that, ultimately, require that properties are simpler than
their containers. For example, class A(a:A){} is not allowed. Formally, this re-
quirement is that there is a total order � on all classes and structs such that, if A
extends B, then A ≺ B, and if A has a property of type B, then A ≺ B, where A ≺ B
means A � B and A 6= B. For example, the preceding class A is ruled out because we
would need A≺A, which violates the definition of ≺. The programmer need not (and
cannot) specify �, and rarely need worry about its existence.

Similarly, the type of a property may not simply be a type parameter. For example,
class A[X](x:X){} is illegal.

8.4 Methods

As is common in object-oriented languages, objects can have methods, of two sorts.
Static methods are functions, conceptually associated with a class and defined in its
namespace. Instance methods are parameterized code bodies associated with an in-
stance of the class, which execute with convenient access to that instance’s fields.

Each method has a signature, telling what arguments it accepts, what type it returns,
and what precondition it requires. Method definitions may be overridden by subclasses;
the overriding definition may have a declared return type that is a subtype of the re-
turn type of the definition being overridden. Multiple methods with the same name
but different signatures may be provided on a class (called “overloading” or “ad hoc
polymorphism”). Methods may be declared public, private, protected, or given
default package-level access rights.

90 CHAPTER 8. CLASSES

MethMods ::= Mods? (20.115)
| MethMods property
| MethMods Mod

MethodDecln ::= MethMods def Id TypeParams? Formals Guard? Throws?

HasResultType? MethodBody
(20.117)

| BinOpDecln
| PrefixOpDecln
| ApplyOpDecln
| SetOpDecln
| ConversionOpDecln
| KeywordOpDecln

TypeParams ::= [TypeParamList] (20.176)
Formals ::= (FormalList?) (20.80)
FormalList ::= Formal (20.79)

| FormalList , Formal
Throws ::= throws ThrowList (20.84)
ThrowsList ::= Type (20.85)

| ThrowsList , Type
HasResultType ::= ResultType (20.86)

| <: Type
MethodBody ::= = LastExp ; (20.116)

| Annotations? Block
| ;

BinOpDecln ::= MethMods operator TypeParams? (Formal) BinOp (Formal)
Guard? HasResultType? MethodBody

(20.24)

| MethMods operator TypeParams? this BinOp (Formal) Guard?

HasResultType? MethodBody
| MethMods operator TypeParams? (Formal) BinOp this Guard?

HasResultType? MethodBody
PrefixOpDecln ::= MethMods operator TypeParams? PrefixOp (Formal) Guard?

HasResultType? MethodBody
(20.137)

| MethMods operator TypeParams? PrefixOp this Guard?

HasResultType? MethodBody
ApplyOpDecln ::= MethMods operator this TypeParams? Formals Guard?

HasResultType? MethodBody
(20.7)

ConversionOpDecln ::= ExplConvOpDecln (20.51)
| ImplConvOpDecln

A formal parameter may have a val or var modifier; val is the default. The body of
the method is executed in an environment in which each formal parameter corresponds
to a local variable (var iff the formal parameter is var) and is initialized with the value
of the actual parameter.

8.4. METHODS 91

8.4.1 Forms of Method Definition

There are several syntactic forms for definining methods. The forms that include a
block, such as def m(){S}, allow an arbitrary block. These forms can define a void
method, which does not return a value.

The forms that include an expression, such as def m()=E, require a syntactically and
semantically valid expression. These forms cannot define a void method, because
expressions cannot be void.

There are no other semantic differences between the two forms.

8.4.2 Method Return Types

A method with an explicit return type returns values of that type. A method without
an explicit return type is given a return type by type inference. A call to a method has
type given by substituting information about the actual val parameters for the formals.

Example:

In the example below, met1 has an explicit return type Ret{n==a}. met2 does not, so
its return type is computed, also to be Ret{n==a}, because that’s what the implicitly-
defined constructor returns.

use3 requires that its argument have n==3. example shows that both met1 and
met2 can be used to produce such an object. In both cases, the actual argument 3
is substituted for the formal argument a in the return type expression for the method
Ret{n==a}, giving the type Ret{n==3} as required by use3.

class Ret(n:Long) {

static def met1(a:Long) : Ret{n==a} = new Ret(a);

static def met2(a:Long) = new Ret(a);

static def use3(Ret{n==3}) {}

static def example() {

use3(met1(3));

use3(met2(3));

}

}

8.4.3 Throws Clause

The throws clause indicates what checked exceptions may be raised during the ex-
ecution of the method and are not handled by catch blocks within the method. If a
checked exception may escape from the method, then it must be by a subtype of one
of the types listed in the throws clause of the method. Checked exceptions are defined
to be any subclass of x10.lang.CheckedThrowable that are not also subclasses of
either x10.lang.Exception or x10.lang.Error.

92 CHAPTER 8. CLASSES

If a method is implementing an interface or overriding a superclass method the set of
types represented by its throws clause must by a (potentially improper) subset of the
types of the throws clause of the method it is overriding.

8.4.4 Final Methods

An instance method may be given the final qualifier. final methods may not be
overridden.

8.4.5 Generic Instance Methods

Limitation: In X10, an instance method may be generic:

class Example {

def example[T](t:T) = "I like " + t;

}

However, the C++ back end does not currently support generic virtual instance methods
like example. It does allow generic instance methods which are final or private,
and it does allow generic static methods.

8.4.6 Method Guards

Often, a method will only make sense to invoke under certain statically-determinable
conditions. These conditions may be expressed as a guard on the method.

Example: For example, example(x) is only well-defined when x != null, as
null.toString() throws a null pointer exception, and returns nothing:

class Example {

var f : String = "";

def setF(x:Any){x != null} : void {

this.f = x.toString();

}

}

(We could have used a constrained type Any{self!=null} for x instead; in most
cases it is a matter of personal preference or convenience of expression which one to
use.)

The requirement of having a method guard is that callers must demonstrate to the X10
compiler and/or runtime that the guard is satisfied. With the STATIC_CHECKS compiler
option in force (§C.1.3), this is checked at compile time, and there is no runtime cost.
Indeed, this code can be more efficient than usual, as it is statically provable that x
!= null.

8.4. METHODS 93

When STATIC_CHECKS is not in force, dynamic checks are generated as needed; method
guards are checked at runtime. This is potentially more expensive, but may be more
convenient.

Example: The following code fragment contains a line which will not compile
with STATIC_CHECKS on (assuming the guarded example method above). (X10’s
type system does not attempt to propagate information from ifs.) It will compile with
STATIC_CHECKS off, but it may insert an extra null-test for x.

def exam(e:Example, x:Any) {

if (x != null)

e.example(x as Any{x != null});

// If STATIC_CHECKS is in force:

// ERROR: if (x != null) e.example(x);

}

The guard {c} in a guarded method def m(){c} = E; specifies a constraint c on the
properties of the class C on which the method is being defined. The method, in effect,
only exists for those instances of C which satisfy c. It is illegal for code to invoke the
method on objects whose static type is not a subtype of C{c}.

Specifically: the compiler checks that every method invocation o.m(e1, . . ., en) is
type correct. Each argument ei must have a static type Si that is a subtype of the de-
clared type Ti for the ith argument of the method, and the conjunction of the constraints
on the static types of the arguments must entail the guard in the parameter list of the
method.

The compiler checks that in every method invocation o.m(e1, . . ., en) the static
type of o, S, is a subtype of C{c}, where the method is defined in class C and the guard
for m is equivalent to c.

Finally, if the declared return type of the method is D{d}, the return type computed for
the call is D{a: S; x1: S1; . . .; xn: Sn; d[a/this]}, where a is a new variable
that does not occur in d, S, S1, . . ., Sn, and x1, . . ., xn are the formal parame-
ters of the method.

Limitation: Using a reference to an outer class, Outer.this, in a constraint, is not
supported.

8.4.7 Property methods

PropMethodDecln ::= Mods? property Id TypeParams? Formals Guard? Throws?

HasResultType? MethodBody
(20.141)

| Mods? property Id Guard? HasResultType? MethodBody

Property methods are methods that can be evaluated in constraints, as properties can.
They provide a means of abstraction over properties; e.g., interfaces can specify prop-
erty methods that implementing containers must provide, but, just as they cannot spec-
ify ordinary fields, they cannot specify property fields. Property methods are very

94 CHAPTER 8. CLASSES

limited in computing power: they must obey the same restrictions as constraint expres-
sions. In particular, they cannot have side effects, or even much code in their bodies.

Example: The eq() method below tells if the x and y properties are equal; the
is(z) method tells if they are both equal to z. The eq and is property methods are
used in types in the example method.

class Example(x:Long, y:Long) {

def this(x:Long, y:Long) { property(x,y); }

property eq() = (x==y);

property is(z:Long) = x==z && y==z;

def example(a : Example{eq()}, b : Example{is(3)}) {}

}

A property method declared in a class must have a body and must not be void. The
body of the method must consist of only a single return statement with an expression,
or a single expression. It is a static error if the expression cannot be represented in the
constraint system. Property methods may be abstract in abstract classes, and may
be specified in interfaces, but are implicitly final in non-abstract classes.

The expression may contain invocations of other property methods. The compiler en-
sures that there are no circularities in property methods, so property method evaluations
always terminate.

Property methods in classes are implicitly final; they cannot be overridden. It is a
static error if a superclass has a property method with a given signature, and a subclass
has a method or property method with the same signature. It is a static error if a
superclass has a property with some name p, and a subclass has a nullary method of
any kind (instance, static, or property) also named p.

A nullary property method definition may omit the def keyword. That is, the following
are equivalent:

property def rail(): Boolean =

rect && onePlace == here && zeroBased;

and

property rail(): Boolean =

rect && onePlace == here && zeroBased;

Similarly, nullary property methods can be inspected in constraints without (). If ob’s
type has a property p, then ob.p is that property. Otherwise, if it has a nullary property
method p(), ob.p is equivalent to ob.p(). As a consequence, if the type provides
both a property p and a nullary method p(), then the property can be accessed as ob.p
and the method as ob.p().2

2This only applies to nullary property methods, not nullary instance methods. Nullary property methods
perform limited computations, have no side effects, and always return the same value, since they have to be
expressed in the constraint sublanguage. In this sense, a nullary property method does not behave hugely
different from a property. Indeed, a compilation scheme which cached the value of the property method
would all but erase the distinction. Other methods may have more behavior, e.g., side effects, so we keep the
() to make it clear that a method call is potentially complex.

8.4. METHODS 95

w.rail, with either definition above, is equivalent to w.rail()

Limitation of Property Methods

Limitation: Currently, X10 forbids the use of property methods which have all the
following features:

• they are abstract, and

• they have one or more arguments, and

• they appear as subterms in constraints.

Any two of these features may be combined, but the three together may not be.

Example: The constraint in example1 is concrete, not abstract. The constraint in
example2 is nullary, and has no arguments. The constraint in example3 appears at
the top level, rather than as a subterm (cf. the equality expressions A==B in the other
examples). However, example4 combines all three features, and is not allowed.

class Cls {

property concrete(a:Long) = 7;

}

interface Inf {

property nullary(): Long;

property topLevel(z:Long):Boolean;

property allThree(z:Long):Long;

}

class Example{

def example1(Cls{self.concrete(3)==7}) = 1;

def example2(Inf{self.nullary()==7}) = 2;

def example3(Inf{self.topLevel(3)}) = 3;

//ERROR: def example4(Inf{self.allThree(3)==7}) = "fails";

}

8.4.8 Method overloading, overriding, hiding, shadowing and ob-
scuring

The definitions of method overloading, overriding, hiding, shadowing and obscuring
in X10 are familiar from languages such as Java, modulo the following considerations
motivated by type parameters and dependent types.

Two or more methods of a class or interface may have the same name if they have
a different number of type parameters, or they have formal parameters of different
constraint-erased types (in some instantiation of the generic parameters).

Example: The following overloading of m is unproblematic.

96 CHAPTER 8. CLASSES

class Mful{

def m() = 1;

def m[T]() = 2;

def m(x:Long) = 3;

def m[T](x:Long) = 4;

}

A class definition may include methods which are ambiguous in some generic instanti-
ation. (It is a compile-time error if the methods are ambiguous in every generic instan-
tiation, but excluding class definitions which are are ambiguous in some instantiation
would exclude useful cases.) It is a compile-time error to use an ambiguous method
call.

Example: The following class definition is acceptable. However, the marked method
calls are ambiguous, and hence not acceptable.

class Two[T,U]{

def m(x:T)=1;

def m(x:Long)=2;

def m[X](x:X)=3;

def m(x:U)=4;

static def example() {

val t12 = new Two[Long, Any]();

// ERROR: t12.m(2);

val t13 = new Two[String, Any]();

t13.m("ferret");

val t14 = new Two[Boolean,Boolean]();

// ERROR: t14.m(true);

}

}

The call t12.m(2) could refer to either the 1 or 2 definition of m, so it is not allowed.
The call t14.m(true) could refer to either the 1 or 4 definition, so it, too, is not
allowed.

The call t13.m("ferret") refers only to the 1 definition. If the 1 definition were
absent, type argument inference would make it refer to the 3 definition. However, X10
will choose a fully-specified call if there is one, before trying type inference, so this call
unambiguously refers to 1.

X10 v2.4 does not permit overloading based on constraints. That is, the following is
not legal, although either method definition individually is legal:

def n(x:Long){x==1} = "one";

def n(x:Long){x!=1} = "not";

The definition of a method declaration m1 “having the same signature as” a method
declaration m2 involves identity of types.

8.4. METHODS 97

The constraint erasure of a type T, ce(T), is obtained by removing all the constraints
outside of functions in T, specificially:

ce(T) = T if T is a container or interface (8.1)
ce(T{c}) = ce(T) (8.2)

ce(T[S1, . . . , Sn]) = ce(T)[ce(S1), . . . ,ce(Sn)] (8.3)
ce((S1, . . . , Sn) => T) = (ce(S1), . . . ,ce(Sn)) =>ce(T) (8.4)

Two methods are said to have erasure equivalent signatures if (a) they have the same
number of type parameters, (b) they have the same number of formal (value) param-
eters, and (c) for each formal parameter the constraint erasure of its types are erasure
equivalent. It is a compile-time error for there to be two methods with the same name
and erasure equivalent signatures in a class (either defined in that class or in a super-
class), unless the signatures are identical (without erasures) and one of the methods is
defined in a superclass (in which case the superclass’s method is overridden by the sub-
class’s, and the subclass’s method’s return type must be a subtype of the superclass’s
method’s return type).

In addition, the guard of an overridden method must entail the guard of the overriding
method. This ensures that any virtual call to the method satisfies the guard of the callee.

Example: In the following example, the call to s.recip(3) in example() will
invoke Sub.recip(n). The call is legitimate because Super.recip’s guard, n != 0,
is satisfied by 3. The guard on Sub.recip(n) is simply true, which is also satisfied.
However, if we had used the ERROR line’s definition, the guard on Sub.recip(n)
would be n != 0, n != 3, which is not satisfied by 3, so – despite the call statically
type-checking – at runtime the call would violate its guard and (in this case) throw an
exception.

class Super {

def recip(n:Long){n != 0} = 1.0/n;

}

class Sub extends Super{

//ERROR: def recip(n:Long){n != 0, n != 3} = 1.0/(n * (n-3));

def recip(m:Long){true} = 1.0/m;

}

class Example{

static def example() {

val s : Super = new Sub();

s.recip(3);

}

}

If a class C overrides a method of a class or interface B, the guard of the method in B
must entail the guard of the method in C.

A class C inherits from its direct superclass and superinterfaces all their methods visible
according to the access modifiers of the superclass/superinterfaces that are not hidden

98 CHAPTER 8. CLASSES

or overridden. A method M1 in a class C overrides a method M2 in a superclass D if
M1 and M2 have erasedly equivalent signatures. Methods are overriden on a signature-
by-signature basis. It is a compile-time error if an instance method overrides a static
method. (But is it permitted for an instance field to hide a static field; that’s hiding
(§8.2.2), not overriding, and hence totally different.)

8.5 Constructors

Instances of classes are created by the new expression:
ObCreationExp ::= new TypeName TypeArgs? (ArgumentList?) ClassBody? (20.126)

| Primary . new Id TypeArgs? (ArgumentList?) ClassBody?

| FullyQualifiedName . new Id TypeArgs? (ArgumentList?) ClassBody?

This constructs a new object, and calls some code, called a constructor, to initialize the
newly-created object properly.

Constructors are defined like methods, except that they must be named this and or-
dinary methods may not be. The content of a constructor body has certain capabilities
(e.g., val fields of the object may be initialized) and certain restrictions (e.g., most
methods cannot be called); see §8.11 for the details.

Example:

The following class provides two constructors. The unary constructor def this(b :
Long) allows initialization of the a field to an arbitrary value. The nullary constructor
def this() gives it a default value of 10. The example method illustrates both of
these calls.

class C {

public val a : Long;

def this(b : Long) { a = b; }

def this() { a = 10; }

static def example() {

val two = new C(2);

assert two.a == 2;

val ten = new C();

assert ten.a == 10;

}

}

8.5.1 Automatic Generation of Constructors

Classes that have no constructors written in the class declaration are automatically
given a constructor which sets the class properties and does nothing else. If this
automatically-generated constructor is not valid (e.g., if the class has val fields that

8.5. CONSTRUCTORS 99

need to be initialized in a constructor), the class has no constructor, which is a static
error.

Example: The following class has no explicit constructor. Its implicit constructor is
def this(x:Long){property(x);} This implicit constructor is valid, and so is the
class.

class C(x:Long) {

static def example() {

val c : C = new C(4);

assert c.x == 4;

}

}

The following class has the same default constructor. However, that constructor does
not initialize d, and thus is invalid. This class does not compile; it needs an explicit
constructor.

// THIS CODE DOES NOT COMPILE

class Cfail(x:Long) {

val d: Long;

static def example() {

val wrong = new Cfail(40);

}

}

8.5.2 Calling Other Constructors

The first statement of a constructor body may be a call of the form this(a,b,c) or
super(a,b,c). The former will execute the body of the matching constructor of the
current class; the latter, of the superclass. This allows a measure of abstraction in
constructor definitions; one may be defined in terms of another.

Example: The following class has two constructors. new Ctors(123) constructs a
new Ctors object with parameter 123. new Ctors() constructs one whose parameter
has a default value of 100:

class Ctors {

public val a : Long;

def this(a:Long) { this.a = a; }

def this() { this(100); }

}

In the case of a class which implements operator ()— or any other constructor and
application with the same signature — this can be ambiguous. If this() appears as
the first statement of a constructor body, it could, in principle, mean either a construc-
tor call or an operator evaluation. This ambiguity is resolved so that this() always

100 CHAPTER 8. CLASSES

means the constructor invocation. If, for some reason, it is necessary to invoke an ap-
plication operator as the first meaningful statement of a constructor, write the target of
the application as (this), e.g., (this)(a,b);.

8.5.3 Return Type of Constructor

A constructor for class C may have a return type C{c}. The return type specifies a
constraint on the kind of object returned. It cannot change its class — a constructor for
class C always returns an instance of class C. If no explicit return type is specified, the
constructor’s return type is inferred.

Example: The constructor (A) below, having no explicit return type, has its return
type inferred. n is set by the property statement to 1, so the return type is inferred as
Ret{self.n==1}. The constructor (B) has Ret{n==self.n} as an explicit return
type. The example() code shows both of these in action.

class Ret(n:Long) {

def this() { property(1); } // (A)

def this(n:Long) : Ret{n==self.n} { // (B)

property(n);

}

static def typeIs[T](x:T){}

static def example() {

typeIs[Ret{self.n==1}](new Ret()); // uses (A)

typeIs[Ret{self.n==3}](new Ret(3)); // uses (B)

}

}

8.6 Static initialization

Static fields in X10 are immutable and are guaranteed to be initialized before they are
accessed. Static fields are initialized on a per-Place basis; thus an activity that reads a
static field in two different Places may read different values for the content of the field
in each Place. Static fields are not eagerly initialized, thus if a particular static field is
not accessed in a given Place then the initializer expression for that field may not be
evaluated in that Place.

When an activity running in a Place P attempts to read a static field F that has not yet
been initialized in P, then the activity will evaluate the initializer expression for F and
store the resulting value in F. It is guaranteed that at most one activity in each Place
will attempt to evaluate the initializer expression for a given static field. If a second
activity attempts to read F while the first activity is still executing the initializer expres-
sion the second activity will be suspended until the first activity finishes evaluating the
initializer and stores the resulting value in F.

8.6. STATIC INITIALIZATION 101

The initializer expression may directly or indirectly read other static fields in the pro-
gram. If there is a cycle in the field initialization dependency graph for a set of static
fields, then any activities accessing those fields may deadlock, which in turn may result
in the program deadlocking.3.

If an exception is raised during the evaluation of a static field’s initializer expression,
then the field is deemed uninitializable in that Place and any subsequent attempt to
access the static field’s value by another activity in the Place will also result in an
exception being raised.4. Failure to initialize a field in one Place does not impact the
initialization status of the field in other Places.

8.6.1 Compatability with Prior Versions of X10

Previous versions of X10 eagerly initialized all static fields in the program at Place 0
and serialized the resulting values to all other Places before beginning execution of the
user main function. It is possible to simulate these serialization semantics for specific
static fields under the lazy per-Place initialization semantics by using the idiom below:

// Pre X10 2.3 code

// expr evaluated once in Place 0 and resulting value

// serialized to all other places

public static val x:T = expr;

// X10 2.3 code when T haszero is false

private static val x_holder:Cell[T] =

(here == Place.FIRST_PLACE) ? new Cell[T](expr): null;

public static val x:T = at (Place.FIRST_PLACE) x_holder();

// simpler X10 2.3 code when T haszero is true

private static val x_holder:T =

(here == Place.FIRST_PLACE) ? expr : Zero.get[T]();

public static val x:T = at (Place.FIRST_PLACE) x_holder;

A slightly more complex variant of the above idiom in which the initializer expression
for the public field conditionally does the at only when not executed at Place.FIRST_PLACE
can be used to obtain exactly the same serialization behavior as the pre X10 v2.3 se-
mantics. When necessary, eager initialization for specific static fields can be simulated
by reading the static fields in main before executing the rest of the program.

3The current X10 runtime does not dynamically detect this situation. Future versions of X10 may be able
to detect this and convert such a deadlock into the throwing of an ExceptionInInitializer exception.

4The implementation will make a best effort attempt to present stack trace information about the original
cause of the exception in all subsequent raised exceptions

102 CHAPTER 8. CLASSES

8.7 User-Defined Operators

MethodDecln ::= MethMods def Id TypeParams? Formals Guard? Throws?

HasResultType? MethodBody
(20.117)

| BinOpDecln
| PrefixOpDecln
| ApplyOpDecln
| SetOpDecln
| ConversionOpDecln
| KeywordOpDecln

It is often convenient to have methods named by symbols rather than words. For ex-
ample, suppose that we wish to define a Poly class of polynomials – for the sake of
illustration, single-variable polynomials with Long coefficients. It would be very nice
to be able to manipulate these polynomials by the usual operations: + to add, * to mul-
tiply, - to subtract, and p(x) to compute the value of the polynomial at argument x.
We would like to write code thus:

public static def main(Rail[String]):void {

val X = new Poly([0L,1L]);

val t <: Poly = 7 * X + 6 * X * X * X;

val u <: Poly = 3 + 5*X - 7*X*X;

val v <: Poly = t * u - 1;

for(i in -3 .. 3) {

x10.io.Console.OUT.println(

"" + i + " X:" + X(i) + " t:" + t(i)

+ " u:" + u(i) + " v:" + v(i)

);

}

}

Writing the same code with method calls, while possible, is far less elegant:

public static def uglymain() {

val X = new UglyPoly([0L,1L]);

val t <: UglyPoly

= X.mult(7).plus(

X.mult(X).mult(X).mult(6));

val u <: UglyPoly

= const(3).plus(

X.mult(5)).minus(X.mult(X).mult(7));

val v <: UglyPoly = t.mult(u).minus(1);

for(i in -3 .. 3) {

x10.io.Console.OUT.println(

"" + i + " X:" + X.apply(i) + " t:" + t.apply(i)

+ " u:" + u.apply(i) + " v:" + v.apply(i)

8.7. USER-DEFINED OPERATORS 103

);

}

}

The operator-using code can be written in X10, though a few variations are necessary
to handle such exotic cases as 1+X.

Most X10 operators can be given definitions.5 (However, && and || are only short-
circuiting for Boolean expressions; user-defined versions of these operators have no
special execution behavior.)

The user-definable operations are (in order of precedence):
implicit type coercions
postfix ()
as T

these unary operators: - + ! ˜ | & / ˆ * %
..

* / % **

+ -

<< >> >>> -> <- >- -< !

> >= < <= ˜ !˜

&

ˆ

|

&&

||

Several of these operators have no standard meaning on any library type, and are in-
cluded purely for programmer convenience.

Many operators may be defined either in static or instance forms. Those defined in
instance form are dynamically dispatched, just like an instance method. Those defined
in static form are statically dispatched, just like a static method. Operators are scoped
like methods; static operators are scoped like static methods.

Example:

static class Trace(n:Long){

public static operator !(f:Trace)

= new Trace(10 * f.n + 1);

public operator -this = new Trace (10 * this.n + 2);

}

5Indeed, even for the standard types, these operators are defined in the library. Not even as basic an
operation as integer addition is built into the language. Conversely, if you define a full-featured numeric
type, it will have most of the privileges that the standard ones enjoy. The missing priveleges are (1) literals;
(2) * won’t track ranks, as it does for Regions; (3) && and || won’t short-circuit, as they do for Booleans,
(4) the built-in notion of equality a==b will only coincide with the programmible notion a.equals(b), as
they do for most library types, if coded that way; and (5) it is impossible to define an operation like String.+
which converts both its left and right arguments from any type. For example, a Polar type might have many
representations for the origin, as radius 0 and any angle; these will be equals(), but will not be ==; whereas
for the standard Complex type, the two equalities are the same.

104 CHAPTER 8. CLASSES

static class Brace extends Trace{

def this(n:Long) { super(n); }

public operator -this = new Brace (10 * this.n + 3);

static def example() {

val t = new Trace(1);

assert (!t).n == 11;

assert (-t).n == 12 && (-t instanceof Trace);

val b = new Brace(1);

assert (!b).n == 11;

assert (-b).n == 13 && (-b instanceof Brace);

}

}

8.7.1 Binary Operators

Binary operators, illustrated by +, may be defined statically in a container A as:

static operator (b:B) + (c:C) = ...;

Or, it may be defined as as an instance operator by one of the forms:

operator this + (b:B) = ...;

operator (b:B) + this = ...;

Example:

Defining the sum P+Q of two polynomials looks much like a method definition. It uses
the operator keyword instead of def, and this appears in the definition in the place
that a Poly would appear in a use of the operator. So, operator this + (p:Poly)
explains how to add this to a Poly value.

class Poly {

public val coeff : Rail[Long];

public def this(coeff: Rail[Long]) {

this.coeff = coeff;}

public def degree() = coeff.size-1;

public def a(i:Long)

= (i<0 || i>this.degree()) ? 0L : coeff(i);

public operator this + (p:Poly) = new Poly(

new Rail[Long](

Math.max(this.coeff.size, p.coeff.size),

(i:Long) => this.a(i) + p.a(i)

));

// ...

The sum of a polynomial and an integer, P+3, looks like an overloaded method defini-
tion.

8.7. USER-DEFINED OPERATORS 105

public operator this + (n : Long)

= new Poly([n as Long]) + this;

However, we want to allow the sum of an integer and a polynomial as well: 3+P. It
would be quite inconvenient to have to define this as a method on Long; changing Long
is far outside of normal coding. So, we allow it as a method on Poly as well.

public operator (n : Long) + this

= new Poly([n as Long]) + this;

Furthermore, it is sometimes convenient to express a binary operation as a static
method on a class. The definition for the sum of two Polys could have been written:

public static operator (p:Poly) + (q:Poly) = new Poly(

new Rail[Long](

Math.max(q.coeff.size, p.coeff.size),

(i:Long) => q.a(i) + p.a(i)

));

When X10 attempts to typecheck a binary operator expression like P+Q, it first type-
checks P and Q. Then, it looks for operator declarations for + in the types of P and Q.
If there are none, it is a static error. If there is precisely one, that one will be used.
If there are several, X10 looks for a best-matching operation, viz. one which does not
require the operands to be converted to another type. For example, operator this
+ (n:Long) and operator this + (n:Int) both apply to p+1n, because 1n can
be converted from an Int to a Long. However, the Int version will be chosen because
it does not require a conversion. If even the best-matching operation is not uniquely
determined, the compiler will report a static error.

8.7.2 Unary Operators

Unary operators, illustrated by !, may be defined statically in container A as

static operator !(x:A) = ...;

or as instance operators by:

operator !this = ...;

The rules for typechecking a unary operation are the same as for methods; the com-
plexities of binary operations are not needed.

Example: The operator to negate a polynomial is:

public operator - this = new Poly(

new Rail[Long](coeff.size, (i:Long) => -coeff(i))

);

106 CHAPTER 8. CLASSES

8.7.3 Type Conversions

Explicit type conversions, e as A, can be defined as operators on class A, or on the
container type of e. These must be static operators.

To define an operator in class A (or struct A) converting values of type B into type
A, use the syntax:

static operator (x:B) as ? {c} = ...

The ? indicates the containing type A. The guard clause {c} may be omitted.

Example:

class Poly {

public val coeff : Rail[Long];

public def this(coeff: Rail[Long]) { this.coeff = coeff;}

public static operator (a:Long) as ? = new Poly([a as Long]);

public static def main(Rail[String]):void {

val three : Poly = 3L as Poly;

}

}

The ? may be given a bound, such as as ? <: Caster, if desired.

There is little difference between an explicit conversion e as T and a method call
e.asT(). The explicit conversion does say undeniably what the result type will be.
However, as described in §11.22.3, sometimes the built-in meaning of as as a cast
overrides the user-defined explicit conversion.

Explicit casts are most suitable for cases which resemble the use of explicit casts among
the arithmetic types, where, for example, 1.0 as Int is a way to turn a floating-point
number into the corresponding integer. While there is nothing in X10 which requires
it, e as T has the connotation that it gives a good approximation of e in type T, just as
1 is a good (indeed, perfect) approximation of 1.0 in type Int.

8.7.4 Implicit Type Coercions

An implicit type conversion from U to T may be specified in container T. The syntax
for it is:

static operator (u:U) : T = e;

Implicit coercions are used automatically by the compiler on method calls (§8.12) and
assignments (§11.7). Implicit coercions may be used when a value of type T appears
in a context expecting a value of type U. If T <: U, no implicit coercion is needed;
e.g., a method m expecting an Long argument may be called as m(3), with an argument
of type Long{self==3}, which is a subtype of m’s argument type Long. However, if
it is not the case that T <: U, but there is an implicit coercion from T to U defined in
container U, then this implicit coercion will be applied.

8.7. USER-DEFINED OPERATORS 107

Example: We can define an implicit coercion from Long to Poly, and avoid having to
define the sum of an integer and a polynomial as many special cases. In the following
example, we only define + on two polynomials. The calculation 1+x coerces 1 to a
polynomial and uses polynomial addition to add it to x.

public static operator (c : Long) : Poly

= new Poly([c as Long]);

public static operator (p:Poly) + (q:Poly) = new Poly(

new Rail[Long](

Math.max(p.coeff.size, q.coeff.size),

(i:Long) => p.a(i) + q.a(i)

));

public static def main(Rail[String]):void {

val x = new Poly([0L,1L]);

x10.io.Console.OUT.println("1+x=" + (1L+x));

}

8.7.5 Assignment and Application Operators

X10 allows types to implement the subscripting / function application operator, and
indexed assignment. The Array-like classes take advantage of both of these in a(i)
= a(i) + 1.

a(b,c,d) is an operator call, to an operator defined with public operator this(b:B,
c:C, d:D). It may be overloaded. For example, an ordered dictionary structure
could allow subscripting by numbers with public operator this(i:Long), and
by strings with public operator this(s:String).

a(i,j)=b is an operator as well, with zero or more indices i,j. It may also be
overloaded.

The update operations a(i) += b (for all binary operators in place of +) are defined
to be the same as the corresponding a(i) = a(i) + b. This applies for all arities
of arguments, and all types, and all binary operations. Of course to use this, the +,
application and assignment operators must be defined.

Example:

The Oddvec class of somewhat peculiar vectors illustrates this.

a() returns a string representation of the oddvec, which ordinarily would 0be done by
toString() instead. a(i) sensibly picks out one of the three coordinates of a. a()=b
sets all the coordinates of a to b. a(i)=b assigns to one of the coordinates. a(i,j)=b
assigns different values to a(i) and a(j).

class Oddvec {

var v : Rail[Long] = new Rail[Long](3);

108 CHAPTER 8. CLASSES

public operator this () =

"(" + v(0) + "," + v(1) + "," + v(2) + ")";

public operator this () = (newval: Long) {

for(p in v.range) v(p) = newval;

}

public operator this(i:Long) = v(i);

public operator this(i:Long, j:Long) = [v(i),v(j)];

public operator this(i:Long) = (newval:Long)

{v(i) = newval;}

public operator this(i:Long, j:Long) = (newval:Long)

{ v(i) = newval; v(j) = newval+1;}

public def example() {

this(1) = 6; assert this(1) == 6;

this(1) += 7; assert this(1) == 13;

}

8.8 User-Defined Control Structures

KeywordOpDecln ::= MethMods operator keywordOp TypeParams? Formals Guard?

Throws? HasResultType? MethodBody
(20.105)

KeywordOp ::= for (20.104)
| if

| try

| throw

| async

| atomic

| when

| finish

| at

| continue

| break

| ateach

| while

| do

Similarly to user-defined operators (Section 8.7), it is possible to redefine the behavior
of some control structures. For example, suppose that we want to define a if state-
ment that randomly chooses which branch to execute. In a class RandomIf, we define
a method named if (introduced with the keyword operator) that implements this
behavior:

class RandomIf {

val random = new Random();

public operator if(then: ()=>void, else_: ()=>void) {

8.8. USER-DEFINED CONTROL STRUCTURES 109

if (random.nextBoolean()) {

then();

} else {

else_();

}

}

}

Then, we can call this method using the syntax of the if statement by prefixing the if
keyword by an object that implements this method:

val random = new RandomIf();

random.if () {

Console.OUT.println("true");

} else {

Console.OUT.println("false");

}

The blocks that represent the then and the else branches of the if are automatically
turned into closures and are given as argument to the RandomIf.if method.

To distinguish the use of a user-defined control structure from the use of a built-in one,
the first keyword of the control structure must be prefixed with the object that redefines
its behavior. The scoping and dispatching rules of user-defined control structures are
exactly the same as the rules for methods.

User-defined control structures can also be called as standard methods using the key-
word operator as prefix (as for user-defined operators). For example, the previous
code is equivalent to:

val random = new RandomIf();

random.operator if (() => { Console.OUT.println("true"); },

() => { Console.OUT.println("false"); });

The correspondence between the two invocation syntaxes is formally specified in Fig-
ure 8.1 for all the control structures we support. It uses the following conventions: o is
either a class path or an object; T is a list of types; x:t is a list of variable declaration
with their types; e is a list of expressions; b is a closure body: a list of statements be-
tween curly braces that can optionally end with an expression (a return value); ()? is
an optional group.

Let’s consider the rule for if:

o.if[T]?(e) b1 (else b2)
? ≡

o.operator if[T]?(e, ()=> b1(, ()=> b2)
?);

Compared to the builtin if control structure, the user-defined one accepts type argu-
ments and replaces one condition expression with a list of expressions, possibly empty.
The branches of the user-defined if statement are lifted to no-arg closures and passed
to the user-defined if method as arguments. The else branch is optional.

110 CHAPTER 8. CLASSES

o.if[T]?(e) b1 (else b2)
? ≡

o.operator if[T]?(e, ()=> b1(, ()=> b2)
?);

o.for[T]?((x:t in)? e) b ≡
o.operator for[T]?(e, (x:t

?
) => b);

o.try[T]?(e)? b1 catch (x:t) b2 (finally b3)
? ≡

o.operator try[T]?((e,)? ()=> b1, (x:t) => b2(, ()=> b3)
?);

o.throw[T]? e?; ≡ o.operator throw[T]?(e?);

o.async[T]?(e1)
? (clocked (e2))

? b ≡
o.operator async[T]?((e1,)

? (e2,)
? ()=> b);

o.atomic[T]?(e)? b ≡ o.operator atomic[T]?((e,)? ()=> b);

o.when[T]?(e) b ≡ o.operator when[T]?(e, ()=> b);

o.finish[T]?(e)? b ≡ o.operator finish[T]?((e,)? ()=> b);

o.at[T]?(e) b ≡ o.operator at[T]?(e, ()=> b);

o.continue[T]? e?; ≡ o.operator continue[T]?(e?);

o.break[T]? e?; ≡ o.operator break[T]?(e?);

o.ateach[T]?((x:t in)? e) b ≡
o.operator ateach[T]?(e, (x:t

?
) => b);

o.while[T]?(e) b ≡ o.operator while[T]?(e, ()=> b);

o.do[T]? b while (e); ≡ o.operator do[T]?(()=> b, e);

Figure 8.1: Correspondence between control structure and method call notations.

The correspondence is purely syntactic. In other words, the control structure syntax
is simply rewritten into the regular method invocation syntax with no consideration of
types or method lookup.

8.8.1 User-Defined for

o.for[T]?((x:t in)? e) b ≡
o.operator for[T]?(e, (x:t

?
) => b);

A for loop over a collection may be defined in a container A as:

operator for[T](c: Iterable[T], body: (T)=>void) = ...

The use of such a user-defined for loop would have the following form:

A.for (x: T in c) { ... }

and would correspond to the following method call:

A.operator for (c, (x: Long) => { ... });

8.8. USER-DEFINED CONTROL STRUCTURES 111

The body of the for is automatically translated into a closure that takes the iteration
variable as parameter. Since there is no type inference for closure parameters, the type
of the iteration variable must be given explicitly.

The second argument of a for method can be a closure without argument:

operator for[T](c: Iterable[T], body: ()=>void) = ...

In this case, the method is called using the syntax of a for loop without iteration
variable:

A.for (c) { ... }

Example: A naive implementation of a parallel loop can be:

class Parallel {

public static operator for[T](c: Iterable[T], body: (T)=>void) {

finish {

for(x in c) {

async { body(x); }

}

}

}

public static def main(Rail[String]) {

val cpt = new Cell[Long](0);

Parallel.for(i:Long in 1..10) {

atomic { cpt() = cpt() + i; }

}

Console.OUT.println(cpt());

}

}

Example: We can also use the user-defined for loops to define iterations over a two
dimensional space. Let us define a loop that creates an activity for each element of the
first dimension.

class Parallel2 {

public static operator for (space: DenseIterationSpace_2,

body: (i:Long, j:Long)=>void) {

finish {

for (i in space.min0 .. space.max0) {

async for (j in space.min1 .. space.max1) {

body(i, j);

}

}

}

}

}

112 CHAPTER 8. CLASSES

and it can be used as follows:

Parallel2.for (i:Long, j:Long in 1..10 * 1..10) { ... }

The list of variables before the in keyword becomes the parameters of the closure
whose body is the body of the loop.

8.8.2 User-Defined if

o.if[T]?(e) b1 (else b2)
? ≡

o.operator if[T]?(e, ()=> b1(, ()=> b2)
?);

When we use a user-defined if statement, the condition is evaluated before calling
the if method, but the then and else branches are implicitly lifted to closures without
argument.

Note that the condition of a user-defined if statement can take an arbitrary number of
arguments. This is why we were able to define the Random.if that does not take a
condition.

8.8.3 User-Defined try

o.try[T]?(e)? b1 catch (x:t) b2 (finally b3)
? ≡

o.operator try[T]?((e,)? ()=> b1, (x:t) => b2(, ()=> b3)
?);

When we use a user-defined try statement, the body of the try is lifted to a closure
without argument and handler is lifted to a closure that has the parameter of the catch
as parameter. The finally block is also lifted to a closure without argument.

Example: The user-defined try construct can be used to provide a control structure
that automatically removes the nesting of MultipleExceptions:

class Flatten {

public static operator try(body:()=>void,

handler:(MultipleExceptions)=>void) {

try { body(); }

catch (me: MultipleExceptions) {

val exns = new GrowableRail[CheckedThrowable]();

flatten(me, exns);

handler (new MultipleExceptions(exns));

}

}

private static def flatten(me:MultipleExceptions,

acc:GrowableRail[CheckedThrowable]) {

for (e in me.exceptions) {

8.8. USER-DEFINED CONTROL STRUCTURES 113

if (e instanceof MultipleExceptions) {

flatten(e as MultipleExceptions, acc);

} else {

acc.add(e);

}

}

}

}

Used in the following example, the MultipleExceptions me contains the exceptions
Exception("Exn 1"), Exception("Exn 2"), and Exception("Exn 3") instead
of the exception Exception("Exn 1") and another MultipleExceptions.

public static def main(Rail[String]) {

Flatten.try {

finish {

async { throw new Exception("Exn 1"); }

async finish {

async { throw new Exception("Exn 2"); }

async { throw new Exception("Exn 3"); }

}

}

} catch (me: MultipleExceptions) {

Console.OUT.println(me.exceptions);

}

}

8.8.4 User-Defined throw

o.throw[T]? e?; ≡ o.operator throw[T]?(e?);

The argument of a user-defined throw is evaluated before calling the throw method.

8.8.5 User-Defined async

o.async[T]?(e1)
? (clocked (e2))

? b ≡
o.operator async[T]?((e1,)

? (e2,)
? ()=> b);

The body of a user-defined async is lifted to a closure without argument. The clock
arguments are evaluated before the call to the async method.

Example: An async that does not execute in the scope in which it is written. The task
is created in the scope where the object that defines the async method is instantiated.

114 CHAPTER 8. CLASSES

class Escape {

private var task: ()=>void = null;

private var stop: Boolean = false;

public def this() {

async {

while (!stop) {

val t: () => void;

when (task != null || stop) {

t = task;

task = null;

}

if (t != null) {

async { t(); }

}

}

}

}

public operator async (body: () => void) {

when (task == null) {

task = body;

}

}

public def stop() {

atomic { stop = true; }

}

}

In the following example, the message "OK" is printed even if the created task never
terminates because the task is executed outside of the scope of the finish.

public static def main(Rail[String]) {

val toplevel = new Escape();

finish {

toplevel.async { when (false){} }

}

Console.OUT.println("OK");

}

8.8.6 User-Defined atomic

o.atomic[T]?(e)? b ≡ o.operator atomic[T]?((e,)? ()=> b);

The body of a user-defined atomic statement is lifted to a closure without argument.

8.8. USER-DEFINED CONTROL STRUCTURES 115

8.8.7 User-Defined when

o.when[T]?(e) b ≡ o.operator when[T]?(e, ()=> b);

The arguments of a user-defined when statements are evaluated before the call of the
when method and the body is lifted to a closure without argument. It means that if the
argument of a user-defined when is of type Boolean, the condition is evaluated once
and cannot be changed. To be able to update the condition, it can be an object with
mutable field as in the following example or a closure.

Example: We can provide a when statement whose execution can be canceled while
it is waiting:

class CancelableWhen {

private var stop : Boolean = false;

public operator when(condition:Cell[Boolean], body:()=>void) {

when (condition() || stop) {

if (!stop) { body(); }

}

}

public def cancel() {

atomic { stop = true; }

}

}

The following example will not print the message "KO" but will terminate even if the
condition b of the when remains false:

public static def main(Rail[String]) {

val c = new CancelableWhen();

val b = new Cell[Boolean](false);

finish {

async {

c.when(b) { Console.OUT.println("KO"); }

}

c.cancel();

}

}

8.8.8 User-Defined finish

o.finish[T]?(e)? b ≡ o.operator finish[T]?((e,)? ()=> b);

The body of a user-defined finish is lifted to a closure.

Example: We define a finish that provide the ability to some parallel task to wait
for its termination:

116 CHAPTER 8. CLASSES

class SignalingFinish {

private var terminated : Boolean = false;

public operator finish(body: ()=>void) {

finish {

body();

}

atomic { terminated = true; }

}

public def join() {

when (terminated) {}

}

}

The following example will always print the message "before" before the message
"after".

public static def main(Rail[String]) {

val t = new SignalingFinish();

async {

t.join();

Console.OUT.println("after");

}

t.finish {

Console.OUT.println("before");

}

}

8.8.9 User-Defined at

o.at[T]?(e) b ≡ o.operator at[T]?(e, ()=> b);

The arguments of the user-defined at statement are evaluated before the call of the at
method and the body of the statement is lifted to a closure without argument.

Example: We define a class Ring implementing an at statement without argument.
Each call to this user-defined at statement moves the activity to the next place in the
place group given when the object is instantiated.

class Ring {

val places: PlaceGroup;

public def this (places: PlaceGroup) {

this.places = places;

}

public operator at(body: ()=>void) {

8.8. USER-DEFINED CONTROL STRUCTURES 117

at(places.next(here)) { body(); }

}

}

public static def main(Rail[String]) {

val r = new Ring(Place.places());

r.at() {

Console.OUT.println("Hello from "+here+"!");

r.at() {

Console.OUT.println("Hello from "+here+"!");

}

}

}

8.8.10 User-Defined ateach

o.ateach[T]?((x:t in)? e) b ≡
o.operator ateach[T]?(e, (x:t

?
) => b);

The arguments of the user-defined ateach statement are evaluated before the call of the
ateach method and the body of the statement is lifted to a closure without argument.

Example: An ateach control structure that has the same behavior as the built-in
ateach, except that the activities are executed in sequence instead of being executed
in parallel.

class Sequential {

public static operator ateach (d: Dist, body:(Point)=>void) {

for (place in d.places()) {

at(place) {

for (p in d|here) { body(p); }

}

}

}

}

8.8.11 User-Defined while and do

o.while[T]?(e) b ≡ o.operator while[T]?(e, ()=> b);

o.do[T]? b while (e); ≡ o.operator do[T]?(()=> b, e);

The arguments of the user-defined while (resp. do) are evaluated before the call of
the while (resp. do) method and the body of the loop is lifted to a closure without
argument. Note that compared to usual loop, the condition is evaluated once before the
call of the method that implements the behavior of the loop.

Example: A loop that iterates during at least a given number of milliseconds:

118 CHAPTER 8. CLASSES

class Timeout {

public static operator while(ms: Long, body: ()=>void) {

val deadline = System.currentTimeMillis() + ms;

while (System.currentTimeMillis() < deadline) {

body();

}

}

}

Here, we increment a counter during a period of at least 10 milliseconds:

public static def main(Rail[String]) {

val cpt = new Cell[Long](0);

Timeout.while(10) {

atomic { cpt() = cpt() + 1; }

}

Console.OUT.println(cpt());

}

8.8.12 User-Defined continue

o.continue[T]? e?; ≡ o.operator continue[T]?(e?);

The argument of a user-defined continue is evaluated before calling the corresponding
method.

Example: The following code provides a parallel for loop with a continue state-
ment that allows skipping an iteration.

class Par {

private static class Continue extends Exception {}

public static operator continue () {

throw new Continue();

}

public static operator for[T](c: Iterable[T], body:(T)=>void) {

finish {

for(x in c) async {

try {

body(x);

} catch (Continue) {}

}

}

}

}

8.8. USER-DEFINED CONTROL STRUCTURES 119

The following example skips every iteration where the loop index is even.

public static def main(Rail[String]) {

val cpt = new Cell[Long](0);

Par.for(i:Long in 1..10) {

if (i%2 == 0) { Par.continue; }

atomic { cpt() = cpt() + 1; }

}

Console.OUT.println(cpt());

}

8.8.13 User-Defined break

o.break[T]? e?; ≡ o.operator break[T]?(e?);

The argument of a user-defined break is evaluated before calling the corresponding
method.

Example: To break out of a user-defined loop, it is necessary to also define the break
statement:

class Infinite {

private static class Break extends Exception {}

public static operator break () {

throw new Break();

}

public static operator while (body:()=>void) {

try {

while(true) {

body();

}

} catch (Break) {}

}

public static def main(Rail[String]) {

Infinite.while() {

Infinite.break;

}

Console.OUT.println("OK");

}

}

120 CHAPTER 8. CLASSES

8.9 Class Guards and Invariants

Classes (and structs and interfaces) may specify a class guard, a constraint which must
hold on all values of the class. In the following example, a Line is defined by two
distinct Pts6

class Pt(x:Long, y:Long){}

class Line(a:Pt, b:Pt){a != b} {}

In most cases the class guard could be phrased as a type constraint on a property of
the class instead, if preferred. Arguably, a symmetric constraint like two points being
different is better expressed as a class guard, rather than asymmetrically as a constraint
on one type:

class Line(a:Pt, b:Pt{a != b}) {}

With every container or interface T we associate a type invariant inv(T), which de-
scribes the guarantees on the properties of values of type T.

Every value of T satisfies inv(T) at all times. This is somewhat stronger than the
concept of type invariant in most languages (which only requires that the invariant
holds when no method calls are active). X10 invariants only concern properties, which
are immutable; thus, once established, they cannot be falsified.

The type invariant associated with x10.lang.Any is true.

The type invariant associated with any interface or struct I that extends interfaces I1,
. . ., Ik and defines properties x1: P1, . . ., xn: Pn and specifies a guard c is given
by:

inv(I1) && . . . && inv(Ik) &&
self.x1 instanceof P1 && . . . && self.xn instanceof Pn
&& c

Similarly the type invariant associated with any class C that implements interfaces I1,
. . ., Ik, extends class D and defines properties x1: P1, . . ., xn: Pn and specifies a
guard c is given by the same thing with the invariant of the superclass D conjoined:

inv(I1) && . . . && inv(Ik)
&& self.x1 instanceof P1 && . . . && self.xn instanceof Pn
&& c

&& inv(D)

Note that the type invariant associated with a class entails the type invariants of each
interface that it implements (directly or indirectly), and the type invariant of each ances-
tor class. It is guaranteed that for any variable v of type T{c} (where T is an interface
name or a class name) the only objects o that may be stored in v are such that o satisfies
inv(T[o/this]) ∧ c[o/self].

6We use Pt to avoid any possible confusion with the built-in class Point.

8.9. CLASS GUARDS AND INVARIANTS 121

8.9.1 Invariants for implements and extends clauses

Consider a class definition

ClassModifiers?

class C(x1: P1, . . ., xn: Pn){c} extends D{d}
implements I1{c1}, . . ., Ik{ck}

ClassBody

These two rules must be satisfied:

• The type invariant inv(C) of Cmust entail ci[this/self] for each i in {1, . . . , k}

• The return type c of each constructor in a class C must entail the invariant inv
(C).

8.9.2 Timing of Invariant Checks

The invariants for a container are checked immediately after the property statement
in the container’s constructor. This is the earliest that the invariant could possibly be
checked. Recall that an invariant can mention the properties of the container (which are
set, forever, at that point in the code), but cannot mention the val or var fields (which
might not be set at that point), or this (which might not have been fully initialized).

If X10 can prove that the invariant always holds given the property statement and
other known information, it may omit the actual check.

8.9.3 Invariants and constructor definitions

A constructor for a class C is guaranteed to return an object of the class on success-
ful termination. This object must satisfy inv(C), the class invariant associated with
C (§8.9). However, often the objects returned by a constructor may satisfy stronger
properties than the class invariant. X10’s dependent type system permits these extra
properties to be asserted with the constructor in the form of a constrained type (the
“return type” of the constructor):

CtorDecln ::= Mods? def this TypeParams? Formals Guard? HasResultType? Ctor-
Body

(20.54)

The parameter list for the constructor may specify a guard that is to be satisfied by the
parameters to the list.

Example: Here is another example, constructed as a simplified version of x10.regionarray.Region.
The mockUnion method has the type, though not the value, that a true union method
would have.

122 CHAPTER 8. CLASSES

class MyRegion(rank:Long) {

static type MyRegion(n:Long)=MyRegion{rank==n};

def this(r:Long):MyRegion(r) {

property(r);

}

def this(diag:Rail[Long]):MyRegion(diag.size){

property(diag.size);

}

def mockUnion(r:MyRegion(rank)):MyRegion(rank) = this;

def example() {

val R1 : MyRegion(3L) = new MyRegion([4,4,4 as Long]);

val R2 : MyRegion(3L) = new MyRegion([5,4,1]);

val R3 = R1.mockUnion(R2); // inferred type MyRegion(3)

}

}

The first constructor returns the empty region of rank r. The second constructor takes a
Rail[Long] of arbitrary length n and returns a MyRegion(n) (intended to represent
the set of points in the rectangular parallelopiped between the origin and the diag.)

The code in example typechecks, and R3’s type is inferred as MyRegion(3).

Let C be a class with properties p1: P1, . . ., pn: Pn, and invariant c extending the
constrained type D{d} (where D is the name of a class).

For every constructor in C the compiler checks that the call to super invokes a construc-
tor for D whose return type is strong enough to entail d. Specifically, if the call to super
is of the form super(e1, . . ., ek) and the static type of each expression ei is Si, and
the invocation is statically resolved to a constructor def this(x1: T1, . . ., xk:
Tk){c}: D{d1} then it must be the case that

x1: S1, . . ., xi: Si entails xi: Ti (for i ∈ {1, . . . , k})
x1: S1, . . ., xk: Sk entails c
d1[a/self], x1: S1, ..., xk: Sk entails d[a/self]

where a is a constant that does not appear in x1: S1 ∧ ... ∧ xk: Sk.

The compiler checks that every constructor for C ensures that the properties p1,...,
pn are initialized with values which satisfy inv(T), and its own return type c’ as fol-
lows. In each constructor, the compiler checks that the static types Ti of the expressions
ei assigned to pi are such that the following is true:

p1: T1, . . ., pn: Tn entails inv(T) ∧ c’

(Note that for the assignment of ei to pi to be type-correct it must be the case that
pi: Ti ∧ pi: Pi.)
The compiler must check that every invocation C(e1, . . ., en) to a constructor is
type correct: each argument ei must have a static type that is a subtype of the declared
type Ti for the ith argument of the constructor, and the conjunction of static types of
the argument must entail the constraint in the parameter list of the constructor.

8.10. GENERIC CLASSES 123

8.10 Generic Classes

Classes, like other units, can be generic. They can be parameterized by types. The
parameter types are used just like ordinary types inside the body of the generic class –
with a few exceptions.

Example: A Colorized[T] holds a thing of type T, and a string which is intended
to represent its color. Any type can be used for T; the example method shows Long
and Boolean. The thing() method retrieves the thing; note that its return type is
the generic type variable T. X10 is aware that colLong.thing() is an Long and
colTrue.thing() is a Boolean, and uses those typings in example.

class Colorized[T] {

private var thing:T;

private var color:String;

def this(thing:T, color:String) {

this.thing = thing;

this.color = color;

}

public def thing():T = thing;

public def color():String = color;

public static def example() {

val colLong : Colorized[Long]

= new Colorized[Long](3, "green");

assert colLong.thing() == 3

&& colLong.color().equals("green");

val colTrue : Colorized[Boolean]

= new Colorized[Boolean](true, "blue");

assert colTrue.thing()

&& colTrue.color().equals("blue");

}

}

8.10.1 Use of Generics

An unconstrained type variable X can be instantiated by any type. All the operations of
Any are available on a variable of type X. Additionally, variables of type Xmay be used
with ==, !=, in instanceof, and casts.

If a type variable is constrained, the operations implied by its constraint are available
as well.

Example: The interface Named describes entities which know their own name. The
class NameMap[T] is a specialized map which stores and retrieves Named entities by
name. The call t.name() in put() is only valid because the constraint {T <:
Named} implies that T is a subtype of Named, and hence provides all the operations
of Named.

124 CHAPTER 8. CLASSES

interface Named { def name():String; }

class NameMap[T]{T <: Named, T haszero} {

val m = new HashMap[String, T]();

def put(t:T) { m.put(t.name(), t); }

def get(s:String):T = m.getOrThrow(s);

}

8.11 Object Initialization

X10 does object initialization safely. It avoids certain bad things which trouble some
other languages:

1. Use of a field before the field has been initialized.

2. A program reading two different values from a val field of a container.

3. this escaping from a constructor, which can cause problems as noted below.

It should be unsurprising that fields must not be used before they are initialized. At
best, it is uncertain what value will be in them, as in x below. Worse, the value might
not even be an allowable value; y, declared to be nonzero in the following example,
might be zero before it is initialized.

// Not correct X10

class ThisIsWrong {

val x : Long;

val y : Long{y != 0};

def this() {

x10.io.Console.OUT.println("x=" + x + "; y=" + y);

x = 1; y = 2;

}

}

One particularly insidious way to read uninitialized fields is to allow this to escape
from a constructor. For example, the constructor could put this into a data structure
before initializing it, and another activity could read it from the data structure and look
at its fields:

class Wrong {

val shouldBe8 : Long;

static Cell[Wrong] wrongCell = new Cell[Wrong]();

static def doItWrong() {

finish {

async { new Wrong(); } // (A)

assert(wrongCell().shouldBe8 == 8); // (B)

}

8.11. OBJECT INITIALIZATION 125

}

def this() {

wrongCell.set(this); // (C) - ILLEGAL

this.shouldBe8 = 8; // (D)

}

}

In this example, the underconstructed Wrong object is leaked into a storage cell at line
(C), and then initialized. The doItWrong method constructs a new Wrong object, and
looks at the Wrong object in the storage cell to check on its shouldBe8 field. One
possible order of events is the following:

1. doItWrong() is called.

2. (A) is started. Space for a new Wrong object is allocated. Its shouldBe8 field,
not yet initialized, contains some garbage value.

3. (C) is executed, as part of the process of constructing a new Wrong object. The
new, uninitialized object is stored in wrongCell.

4. Now, the initialization activity is paused, and execution of the main activity pro-
ceeds from (B).

5. The value in wrongCell is retrieved, and is shouldBe8 field is read. This field
contains garbage, and the assertion fails.

6. Now let the initialization activity proceed with (D), initializing shouldBe8—
too late.

The at statement (§13.3) introduces the potential for escape as well. The following
class prints an uninitialized value:

// This code violates this chapter’s constraints

// and thus will not compile in X10.

class Example {

val a: Long;

def this() {

at(here.next()) {

// Recall that ’this’ is a copy of ’this’ outside ’at’.

Console.OUT.println("this.a = " + this.a);

}

this.a = 1;

}

}

X10 must protect against such possibilities. The rules explaining how constructors can
be written are somewhat intricate; they are designed to allow as much programming
as possible without leading to potential problems. Ultimately, they simply are elabo-
rations of the fundamental principles that uninitialized fields must never be read, and
this must never be leaked.

126 CHAPTER 8. CLASSES

8.11.1 Constructors and Non-Escaping Methods

In general, constructors must not be allowed to call methods with this as an argument
or receiver. Such calls could leak references to this, either directly from a call to
cell.set(this), or indirectly because toString leaks this, and the concatenation
‘”Escaper = ”+this‘ calls toString.7

// This code violates this chapter’s constraints

// and thus will not compile in X10.

class Escaper {

static val Cell[Escaper] cell = new Cell[Escaper]();

def toString() {

cell.set(this);

return "Evil!";

}

def this() {

cell.set(this);

x10.io.Console.OUT.println("Escaper = " + this);

}

}

However, it is convenient to be able to call methods from constructors; e.g., a class
might have eleven constructors whose common behavior is best described by three
methods. Under certain stringent conditions, it is safe to call a method: the method
called must not leak references to this, and must not read vals or vars which might
not have been assigned.

So, X10 performs a static dataflow analysis, sufficient to guarantee that method calls
in constructors are safe. This analysis requires having access to or guarantees about all
the code that could possibly be called. This can be accomplished in two ways:

1. Ensuring that only code from the class itself can be called, by forbidding over-
riding of methods called from the constructor: they can be marked final or
private, or the whole class can be final.

2. Marking the methods called from the constructor by @NonEscaping or @NoThisAccess

Non-Escaping Methods

A method may be annotated with @NonEscaping. This imposes several restrictions
on the method body, and on all methods overriding it. However, it is the only way
that a method can be called from constructors. The @NonEscaping annotation makes
explicit all the X10 compiler’s needs for constructor-safety.

A method can, however, be safe to call from constructors without being marked @NonEscaping.
We call such methods implicitly non-escaping. Implicitly non-escaping methods need

7This is abominable behavior for toString, but it cannot be prevented – save by a scheme such as we
present in this section.

8.11. OBJECT INITIALIZATION 127

to obey the same constraints on this, super, and variable usage as @NonEscaping
methods. An implicitly non-escaping method could be marked as @NonEscaping; the
compiler, in effect, infers the annotation. In addition, all non-escaping methods must
be private or final or members of a final class; this corresponds to the hered-
itary nature of @NonEscaping (by forbidding inheritance of implicitly non-escaping
methods).

We say that a method is non-escaping if it is either implicitly non-escaping, or anno-
tated @NonEscaping.

The first requirement on non-escaping methods is that they do not allow this to es-
cape. Inside of their bodies, this and super may only be used for field access and
assignment, and as the receiver of non-escaping methods.

The following example uses the possible variations. aplomb() explicitly forbids read-
ing any field but a. boric() is called after a and b are set, but c is not. The
@NonEscaping annotation on boric() is optional, but the compiler will print a warn-
ing if it is left out. cajoled() is only called after all fields are set, so it can read
anything; its annotation, too, is not required. SeeAlso is able to override aplomb(),
because aplomb() is @NonEscaping; it cannot override the final method boric() or
the private one cajoled().

import x10.compiler.*;

final class C2 {

protected val a:Long; protected val b:Long; protected val c:Long;

protected var x:Long; protected var y:Long; protected var z:Long;

def this() {

a = 1;

this.aplomb();

b = 2;

this.boric();

c = 3;

this.cajoled();

}

@NonEscaping def aplomb() {

x = a;

// this.boric(); // not allowed; boric reads b.

// z = b; // not allowed -- only ’a’ can be read here

}

@NonEscaping final def boric() {

y = b;

this.aplomb(); // allowed;

// a is definitely set before boric is called

// z = c; // not allowed; c is not definitely written

}

@NonEscaping private def cajoled() {

z = c;

128 CHAPTER 8. CLASSES

}

}

NoThisAccess Methods

A method may be annotated @NoThisAccess. @NoThisAccess methods may be
called from constructors, and they may be overridden in subclasses. However, they
may not refer to this in any way – in particular, they cannot refer to fields of this,
nor to super.

Example:

The class IDed has an Float-valued id field. The method count() is used to initialize
the id. For IDed objects, the id is the count of IDeds created with the same parity of
its kind. Note that count() does not refer to this, though it does refer to a static
field counts.

The subclass SubIDed has ids that depend on kind%3 as well as the parity of kind. It
overrides the count() method. The body of count() still cannot refer to this. Nor
can it refer to super (which is self under another name). This precludes the use of a
super call. This is why we have separated the body of count out as the static method
kind2count – without that, we would have had to duplicate its body, as we could not
call super.count(kind) in a NoThisAccess method, as is shown by the ERROR line
(A).

Note that NoThisAccess is in x10.compiler and must be imported, and that the
overriding method SubIDed.count must be declared @NoThisAccess as well as the
overridden method. Line (B) is not allowed because code is a field of this, and
field accesses are forbidden. Line (C) references this directly, which, of course, is
forbidden by @NoThisAccess.

import x10.compiler.*;

class UseNoThisAccess {

static class IDed {

protected static val counts = [0 as Long,0];

protected var code : Long;

val id: Float;

public def this(kind:Long) {

code = kind;

this.id = this.count(kind);

}

protected static def kind2count(kind:Long) = ++counts(kind % 2);

@NoThisAccess def count(kind:Long) : Float = kind2count(kind);

}

static class SubIDed extends IDed {

protected static val subcounts = [0 as Long, 0, 0];

public static val all = new x10.util.ArrayList[SubIDed]();

public def this(kind:Long) {

8.11. OBJECT INITIALIZATION 129

super(kind);

}

@NoThisAccess

def count(kind:Long) : Float {

val subcount <: Long = ++subcounts(kind % 3);

val supercount <: Float = kind2count(kind);

//ERROR: val badSuperCount = super.count(kind); //(A)

//ERROR: code = kind; //(B)

//ERROR: all.add(this); //(C)

return supercount + 1.0f / subcount;

}

}

}

8.11.2 Fine Structure of Constructors

The code of a constructor consists of four segments, three of them optional and one of
them implicit.

1. The first segment is an optional call to this(...) or super(...). If this is
supplied, it must be the first statement of the constructor. If it is not supplied, the
compiler treats it as a nullary super-call super();

2. If the class or struct has properties, there must be a single property(...) com-
mand in the constructor, or a this(...) constructor call. Every execution path
through the constructor must go through this property(...) command pre-
cisely once. The second segment of the constructor is the code following the
first segment, up to and including the property() statement.

If the class or struct has no properties, the property() call must be omitted. If
it is present, the second segment is defined as before. If it is absent, the second
segment is empty.

3. The third segment is automatically generated. Fields with initializers are initial-
ized immediately after the property statement. In the following example, b is
initialized to y*9000 in segment three. The initialization makes sense and does
the right thing; b will be y*9000 for every Overdone object. (This would not be
possible if field initializers were processed earlier, before properties were set.)

4. The fourth segment is the remainder of the constructor body.

The segments in the following code are shown in the comments.

class Overlord(x:Long) {

def this(x:Long) { property(x); }

}//Overlord

class Overdone(y:Long) extends Overlord {

130 CHAPTER 8. CLASSES

val a : Long;

val b = y * 9000;

def this(r:Long) {

super(r); // (1)

x10.io.Console.OUT.println(r); // (2)

val rp1 = r+1;

property(rp1); // (2)

// field initializations here // (3)

a = r + 2 + b; // (4)

}

def this() {

this(10); // (1), (2), (3)

val x = a + b; // (4)

}

}//Overdone

The rules of what is allowed in the three segments are different, though unsurprising.
For example, properties of the current class can only be read in segment 3 or 4—
naturally, because they are set at the end of segment 2.

Initialization and Inner Classses

Constructors of inner classes are tantamount to method calls on this. For example,
the constructor for Inner is acceptable. It does not leak this. It leaks Outer.this,
which is an utterly different object. So, the call to this.new Inner() in the Outer
constructor is illegal. It would leak this. There is no special rule in effect preventing
this; a constructor call of an inner class is no different from a method as far as leaking
is concerned.

class Outer {

static val leak : Cell[Outer] = new Cell[Outer](null);

class Inner {

def this() {Outer.leak.set(Outer.this);}

}

def /*Outer*/this() {

//ERROR: val inner = this.new Inner();

}

}

Initialization and Closures

Closures in constructors may not refer to this. They may not even refer to fields of
this that have been initialized. For example, the closure bad1 is not allowed because
it refers to this; bad2 is not allowed because it mentions a — which is, of course,
identical to this.a.

8.11. OBJECT INITIALIZATION 131

class C {

val a:Long;

def this() {

this.a = 1;

//ERROR: val bad1 = () => this;

//ERROR: val bad2 = () => a*10;

}

}

8.11.3 Definite Initialization in Constructors

An instance field var x:T, when T has a default value, need not be explicitly initial-
ized. In this case, x will be initialized to the default value of type T. For example, a
Score object will have its currently field initialized to zero, below:

class Score {

public var currently : Long;

}

All other sorts of instance fields do need to be initialized before they can be used. val
fields must be initialized in the constructor, even if their type has a default value. It
would be silly to have a field val z : Long that was always given default value of
0 and, since it is val, can never be changed. var fields whose type has no default
value must be initialized as well, such as var y : Long{y != 0}, since it cannot be
assigned a sensible initial value.

The fundamental principles are:

1. val fields must be assigned precisely once in each constructor on every possible
execution path.

2. var fields of defaultless type must be assigned at least once on every possible
execution path, but may be assigned more than once.

3. No variable may be read before it is guaranteed to have been assigned.

4. Initialization may be by field initialization expressions (val x : Long = y+z),
or by uninitialized fields val x : Long; plus an initializing assignment x =
y+z. Recall that field initialization expressions are performed after the property
statement, in segment 3 in the terminology of §8.11.2.

8.11.4 Summary of Restrictions on Classes and Constructors

The following table tells whether a given feature is (yes), is not (no) or is with some
conditions (note) allowed in a given context. For example, a property method is allowed

132 CHAPTER 8. CLASSES

with the type of another property, as long as it only mentions the preceding properties.
The first column of the table gives examples, by line of the following code body.

Example Prop. self==this(1) Prop.Meth. this fields
Type of property (A) yes (2) no no no no
Class Invariant (B) yes yes yes yes no
Supertype (3) (C), (D) yes yes yes no no
Property Method Body (E) yes yes yes yes no
Static field (4) (F) (G) no no no no no
Instance field (5) (H), (I) yes yes yes yes yes
Constructor arg. type (J) no no no no no
Constructor guard (K) no no no no no
Constructor ret. type (L) yes yes yes yes yes
Constructor segment 1 (M) no yes no no no
Constructor segment 2 (N) no yes no no no
Constructor segment 4 (O) yes yes yes yes yes
Methods (P) yes yes yes yes yes

Details:

• (1) Top-level self only.

• (2) The type of the ith property may only mention properties 1 through i.

• (3) Super-interfaces follow the same rules as supertypes.

• (4) The same rules apply to types and initializers.

The example indices refer to the following code:

class Example (

prop : Long,

proq : Long{prop != proq}, // (A)

pror : Long

)

{prop != 0} // (B)

extends Supertype[Long{self != prop}] // (C)

implements SuperInterface[Long{self != prop}] // (D)

{

property def propmeth() = (prop == pror); // (E)

static staticField

: Cell[Long{self != 0}] // (F)

= new Cell[Long{self != 0}](1); // (G)

var instanceField

: Long {self != prop} // (H)

= (prop + 1) as Long{self != prop}; // (I)

def this(

a : Long{a != 0},

8.12. METHOD RESOLUTION 133

b : Long{b != a} // (J)

)

{a != b} // (K)

: Example{self.prop == a && self.proq==b} // (L)

{

super(); // (M)

property(a,b,a); // (N)

// fields initialized here

instanceField = b as Long{self != prop}; // (O)

}

def someMethod() =

prop + staticField() + instanceField; // (P)

}

8.12 Method Resolution

Method resolution is the problem of determining, statically, which method (or con-
structor or operator) should be invoked, when there are several choices that could be
invoked. For example, the following class has two overloaded zap methods, one tak-
ing an Any, and the other a Resolve. Method resolution will figure out that the call
zap(1..4) should call zap(Any), and zap(new Resolve()) should call zap(Resolve).

Example:

class Res {

public static interface Surface {}

public static interface Deface {}

public static class Ace implements Surface {

public static operator (Boolean) : Ace = new Ace();

public static operator (Place) : Ace = new Ace();

}

public static class Face implements Surface, Deface{}

public static class A {}

public static class B extends A {}

public static class C extends B {}

def m(x:A) = 0;

def m(x:Long) = 1;

def m(x:Boolean) = 2;

def m(x:Surface) = 3;

def m(x:Deface) = 4;

134 CHAPTER 8. CLASSES

def example() {

assert m(100) == 1 : "Long";

assert m(new C()) == 0 : "C";

// An Ace is a Surface, unambiguous best choice

assert m(new Ace()) == 3 : "Ace";

// ERROR: m(new Face());

// The match must be exact.

// ERROR: assert m(here) == 3 : "Place";

// Boolean could be handled directly, or by

// implicit coercion Boolean -> Ace.

// Direct matches always win.

assert m(true) == 2 : "Boolean";

}

In the "Long" line, there is a very close match. 100 is an Long. In fact, 100 is
an Long{self==100}, so even in this case the type of the actual parameter is not
precisely equal to the type of the method.

In the "C" line of the example, new C() is an instance of C, which is a subtype of A, so
the A method applies. No other method does, and so the A method will be invoked.

Similarly, in the "Ace" line, the Ace class implements Surface, and so new Ace()
matches the Surface method.

However, a Face is both a Surface and a Deface, so there is no unique best match for
the invocation m(new Face()). This invocation would be forbidden, and a compile-
time error issued.

The match must be exact. There is an implicit coercion from Place to Ace, and Ace
implements Surface, so the code

val ace : Ace = here;

assert m(ace) == 3;

works, by using the Surface form of m. But doing it in one step requires a deeper
search than X10 performs8, and is not allowed.

For m(true), both the Boolean and, with the implicit coercion, Ace methods could
apply. Since the Boolean method applies directly, and the Ace method requires an
implicit coercion, this call resolves to the Boolean method, without an error.

The basic concept of method resolution is:

1. List all the methods that could possibly be used, inferring generic types but not
performing implicit coercions.

2. If one possible method is more specific than all the others, that one is the desired
method.

8In general this search is unbounded, so X10 can’t perform it.

8.12. METHOD RESOLUTION 135

3. If there are two or more methods neither of which is more specific than the others,
then the method invocation is ambiguous. Method resolution fails and reports an
error.

4. Otherwise, no possible methods were found without implicit coercions. Try the
preceding steps again, but with coercions allowed: zero or one implicit coercion
for each argument. If a single most specific method is found with coercions,
it is the desired method. If there are several, the invocation is ambiguous and
erronious.

5. If no methods were found even with coercions, then the method invocation is
undetermined. Method resolution fails and reports an error.

After method resolution is done, there is a validation phase that checks the legality
of the call, based on the STATIC_CHECKS compiler flag. With STATIC_CHECKS, the
method’s constraints must be satisfied; that is, they must be entailed (§4.5.2) by the
information in force at the point of the call. With DYNAMIC_CHECKS, if the constraint
is not entailed at that point, a dynamic check is inserted to make sure that it is true at
runtime.

In the presence of X10’s highly-detailed type system, some subtleties arise. One point,
at least, is not subtle. The same procedure is used, mutatis mutandis for method, con-
structor, and operator resolution.

8.12.1 Space of Methods

X10 allows some constructs, particularly operators, to be defined in a number of
ways, and invoked in a number of ways. This section specifies which forms of defini-
tion could correspond to a given definiendum.

Method invocations a.m(b), where a is an expression, can be either of the following
forms. There may be any number of arguments.

• An instance method on a, of the form def m(B).

• A static method on a’s class, of the form static def m(B).

The meaning of an invocation of the form m(b), with any number of arguments, de-
pends slightly on its context. Inside of a constraint, it might mean self.m(b). Outside
of a constraint, there is no self defined, so it can’t mean that. The first of these that
applies will be chosen.

1. Invoke a method on this, viz. this.m(b). Inside a constraint, it may also
invoke a property method on self, viz.. self.m(b). It is an error if both
this.m(b) and self.m(b) are possible.

2. Invoke a function named m in a local or field.

136 CHAPTER 8. CLASSES

3. Construct a structure named m.

Static method invocations, A.m(b), where A is a container name, can only be static.
There may be any number of arguments.

• A static method on A, of the form static def m(B).

Constructor invocations, new A(b), must invoke constructors. There may be any num-
ber of arguments.

• A constructor on A, of the form def this(B).

A unary operator ? a may be defined as:

• An instance operator on A, defined as operator ? this().

• A static operator on A, defined as operator ?(a:A).

A binary operator a ? b may be defined as:

• An instance operator on A, defined as operator this ?(b:B); or

• A right-hand operator on B, defined as operator (a:A) ? this; or

• A static operator on A, defined as operator (a:A) ? (b:B), ; or

• A static operator on B, if A and B are different classes, defined as operator
(a:A) ? (b:B)

If none of those resolve to a method, then either operand may be implicitly coerced to
the other. If one of the following two situations obtains, it will be done; if both, the
expression causes a static error.

• An implicit coercion from A to B, and an operator B ? B can be used, by coercing
a to be of type B, and then using B’s ?.

• An implicit coercion from B to A, and an operator A ? A can be used, coercing
b to be of type A, and then using A’s ?.

An application a(b), for any number of arguments, can come from a number of things.

• an application operator on a, defined as operator this(b:B);

• If a is an identifier, a(b) can also be a method invocation equivalent to this.a(b),
which invokes a as either an instance or static method on this

• If a is a qualified identifier, a(b) can also be an invocation of a struct constructor.

8.12. METHOD RESOLUTION 137

An indexed assignment, a(b)=c, for any number of b’s, can only come from an indexed
assignment definition:

• operator this(b:B)=(c:C) {...}

An implicit coercion, in which a value a:A is used in a context which requires a value
of some other non-subtype B, can only come from implicit coercion operation defined
on B:

• an implicit coercion in B: static operator (a:A):B;

An explicit conversion a as B can come from an explicit conversion operator, or an
implicit coercion operator. X10 tries two things, in order, only checking 2 if 1 fails:

1. An as operator in B: static operator (a:A) as ?;

2. or, failing that, an implicit coercion in B: static operator (a:A):B.

8.12.2 Possible Methods

This section describes what it means for a method to be a possible resolution of a
method invocation.

Generics introduce several subtleties, especially with the inference of generic types.
For the purposes of method resolution, all that matters about a method, constructor, or
operator M — we use the word “method” to include all three choices for this section
— is its signature, plus which method it is. So, a typical M might look like def
m[G1,. . ., Gg](x1:T1,. . ., xf:Tf){c} =.... The code body ... is irrelevant for
the purpose of whether a given method call means M or not, so we ignore it for this
section.

All that matters about a method definition, for the purposes of method resolution, is:

1. The method name m;

2. The generic type parameters of the method m, G1,. . ., Gg . If there are no generic
type parameters, g = 0.

3. The types x1:T1,. . ., xf:Tf of the formal parameters. If there are no formal
parameters, f = 0. In the case of an instance method, the receiver will be the
first formal parameter.9

4. A unique identifier id, sufficient to tell the compiler which method body is in-
tended. A file name and position in that file would suffice. The details of the
identifier are not relevant.

9The variable names are relevant because one formal can be mentioned in a later type, or even a constraint:
def f(a:Long, b:Point{rank==a})=....

138 CHAPTER 8. CLASSES

For the purposes of understanding method resolution, we assume that all the actual
parameters of an invocation are simply variables: x1.meth(x2,x3). This is done
routinely by the compiler in any case; the code tbl(i).meth(true, a+1) would be
treated roughly as

val x1 = tbl(i);

val x2 = true;

val x3 = a+1;

x1.meth(x2,x3);

All that matters about an invocation I is:

1. The method name m′;

2. The generic type parameters G′1,. . ., G
′
g . If there are no generic type parameters,

g = 0.

3. The names and types x1:T′1,. . ., xf:T
′
f of the actual parameters. If there are

no actual parameters, f = 0. In the case of an instance method, the receiver is
the first actual parameter.

The signature of the method resolution procedure is: resolve(invo : Invocation,
context: Set[Method]) : MethodID. Given a particular invocation and the set
context of all methods which could be called at that point of code, method resolution
either returns the unique identifier of the method that should be called, or (conceptu-
ally) throws an exception if the call cannot be resolved.

The procedure for computing resolve(invo, context) is:

1. Eliminate from context those methods which are not acceptable; viz., those
whose name, type parameters, and formal parameters do not suitably match
invo. In more detail:

• The method name m must simply equal the invocation name m′;

• X10 infers type parameters, by an algorithm given in §4.12.3.

• The method’s type parameters are bound to the invocation’s for the remain-
der of the acceptability test.

• The actual parameter types must be subtypes of the formal parameter types,
or be coercible to such subtypes. Parameter i is a subtype if T′i <: Ti. It
is implicitly coercible to a subtype if either it is a subtype, or if there is an
implicit coercion operator defined from T′i to some type U, and U <: Ti.
. If coercions are used to resolve the method, they will be called on the
arguments before the method is invoked.

2. Eliminate from context those methods which are not available; viz., those
which cannot be called due to visibility constraints, such as methods from other
classes marked private. The remaining methods are both acceptable and avail-
able; they might be the one that is intended.

8.12. METHOD RESOLUTION 139

3. If the method invocation is a super invocation appearing in class Cl, methods
of Cl and its subclasses are considered unavailable as well.

4. From the remaining methods, find the unique ms which is more specific than all
the others, viz., for which specific(ms,mo) = true for all other methods mo.
The specificity test specific is given next.

• If there is a unique such ms, then resolve(invo,context) returns the id
of ms.

• If there is not a unique such ms, then resolve reports an error.

The subsidiary procedure specific(m1, m2) determines whether method m1 is equally
or more specific than m2. specific is not a total order: is is possible for each one to
be considered more specific than the other, or either to be more specific. specific is
computed as:

1. Construct an invocation invo1 based on m1:

• invo1’s method name is m1’s method name;

• invo1’s generic parameters are those of m1— simply some type variables.

• invo1’s parameters are those of m1.

2. If m2 is acceptable for the invocation invo1, specific(m1,m2) returns true;

3. Construct an invocation invo2p, which is invo1 with the generic parameters
erased. Let invo2 be invo2p with generic parameters as inferred by X10’s type
inference algorithm. If type inference fails, specific(m1,m2) returns false.

4. If m2 is acceptable for the invocation invo2, specific(m1,m2) returns true;

5. Otherwise, specific(m1,m2) returns false.

8.12.3 Field Resolution

An identifier p can refer to a number of things. The rules are somewhat different inside
and outside of a constraint.

Outside of a constraint, the compiler chooses the first one from the following list which
applies:

1. A local variable named p.

2. A field of this, viz. this.p.

3. A nullary property method, this.p()

4. A member type named p.

140 CHAPTER 8. CLASSES

5. A package named p.

Inside of a constraint, the rules are slightly different, because self is available, and
packages cannot be used per se.

1. A local variable named p.

2. A property of this or of self, viz. this.p or self.p. If both are available,
report an error.

3. A nullary property method, this.p()

4. A member type named p.

8.12.4 Other Disambiguations

It is possible to have a field of the same name as a method. Indeed, it is a common
pattern to have private field and a public method of the same name to access it: Ex-
ample:

class Xhaver {

private var x: Long = 0;

public def x() = x;

public def bumpX() { x ++; }

}

Example: However, this can lead to syntactic ambiguity in the case where the field
f of object a is a function, rail, array, list, or the like, and where a has a method also
named f. The term a.f(b) could either mean “call method f of a upon b”, or “apply
the function a.f to argument b”.

class Ambig {

public val f : (Long)=>Long = (x:Long) => x*x;

public def f(y:int) = y+1;

public def example() {

val v = this.f(10);

// is v 100, or 11?

}

}

In the case where a syntactic form E.m(F1, . . ., Fn) could be resolved as either a
method call, or the application of a field E.m to some arguments, it will be treated as
a method call. The application of E.m to some arguments can be specified by adding
parentheses: (E.m)(F1, . . ., Fn).

Example:

8.13. STATIC NESTED CLASSES 141

class Disambig {

public val f : (Long)=>Long = (x:Long) => x*x;

public def f(y:int) = y+1;

public def example() {

assert(this.f(10) == 11);

assert((this.f)(10) == 100);

}

}

Similarly, it is possible to have a method with the same name as a struct, say ambig,
giving an ambiguity as to whether ambig() is a struct constructor invocation or a
method invocation. This ambiguity is resolved by treating it as a method invocation.
If the constructor invocation is desired, it can be achieved by including the optional
new. That is, new ambig() is struct constructor invocation; ambig() is a method
invocation.

8.13 Static Nested Classes

One class (or struct or interface) may be nested within another. The simplest way to
do this is as a static nested class, written by putting one class definition at top level
inside another, with the inner one having a static modifier. For most purposes, a
static nested class behaves like a top-level class. However, a static nested class has
access to private static fields and methods of its containing class.

Nested interfaces and static structs are permitted as well.

class Outer {

private static val priv = 1;

private static def special(n:Long) = n*n;

public static class StaticNested {

static def reveal(n:Long) = special(n) + priv;

}

}

8.14 Inner Classes

Non-static nested classes are called inner classes. An inner class instance can be
thought of as a very elaborate member of an object — one with a full class struc-
ture of its own. The crucial characteristic of an inner class instance is that it has an
implicit reference to an instance of its containing class.

Example: This feature is particularly useful when an instance of the inner class
makes no sense without reference to an instance of the outer, and is closely tied to it.
For example, consider a range class, describing a span of integers m to n, and an

142 CHAPTER 8. CLASSES

iterator over the range. The iterator might as well have access to the range object, and
there is little point to discussing iterators-over-ranges without discussing ranges as
well. In the following example, the inner class RangeIter iterates over the enclosing
Range.

It has its own private cursor field n, telling where it is in the iteration; different itera-
tions over the same Range can exist, and will each have their own cursor. It is perhaps
unwise to use the name n for a field of the inner class, since it is also a field of the outer
class, but it is legal. (It can happen by accident as well – e.g., if a programmer were to
add a field n to a superclass of the outer class, the inner class would still work.) It does
not even interfere with the inner class’s ability to refer to the outer class’s n field: the
cursor initialization refers to the Range’s lower bound through a fully qualified name
Range.this.n. The initialization of its n field refers to the outer class’s m field, which
is not shadowed and can be referred to directly, as m.

class Range(m:Long, n:Long) implements Iterable[Long]{

public def iterator () = new RangeIter();

private class RangeIter implements Iterator[Long] {

private var n : Long = m;

public def hasNext() = n <= Range.this.n;

public def next() = n++;

}

public static def main(argv:Rail[String]) {

val r = new Range(3,5);

for(i in r) Console.OUT.println("i=" + i);

}

}

An inner class has full access to the members of its enclosing class, both static and
instance. In particular, it can access private information, just as methods of the
enclosing class can.

An inner class can have its own members. Inside instance methods of an inner class,
this refers to the instance of the inner class. The instance of the outer class can be
accessed as Outer.this (where Outer is the name of the outer class). If, for some dire
reason, it is necessary to have an inner class within an inner class, the innermost class
can refer to the this of either outer class by using its name.

An inner class can inherit from any class in scope, with no special restrictions. super
inside an inner class refers to the inner class’s superclass. If it is necessary to refer to
the outer classes’s superclass, use a qualified name of the form Outer.super.

The members of inner classes must be instance members. They cannot be static mem-
bers. Classes, interfaces, static methods, static fields, and typedefs are not allowed as
members of inner classes. The same restriction applies to local classes (§8.15).

Consider an inner class IC1 of some outer class OC1, being extended by another class
IC2. However, since an IC1 only exists as a dependent of an OC1, each IC2 must be
associated with an OC1 — or a subtype thereof — as well. So, IC2 must be an inner
class of either OC1 or some subclass OC2 <: OC1.

8.14. INNER CLASSES 143

Example: For example, one often extends an inner class when one extends its outer
class:

class OC1 {

class IC1 {}

}

class OC2 extends OC1 {

class IC2 extends IC1 {}

}

The hiding of method names has one fine point. If an inner class defines a method
named doit, then all methods named doit from the outer class are hidden — even
if they have different argument types than the one defined in the inner class. They are
still accessible via Outer.this.doit(), but not simply via doit(). The following
code is correct, but would not be correct if the ERROR line were uncommented.

class Outer {

def doit() {}

def doit(String) {}

class Inner {

def doit(Boolean, Outer) {}

def example() {

doit(true, Outer.this);

Outer.this.doit();

//ERROR: doit("fails");

}

}

}

8.14.1 Constructors and Inner Classes

If IC is an inner class of OC, then instance code in the body of OC can create instances
of IC simply by calling a constructor new IC(...):

class OC {

class IC {}

def method(){

val ic = new IC();

}

}

Instances of IC can be constructed from elsewhere as well. Since every instance of IC
is associated with an instance of OC, an OC must be supplied to the IC constructor. The
syntax for doing so is: oc.new IC(). For example:

class OC {

class IC {}

144 CHAPTER 8. CLASSES

static val oc1 = new OC();

static val oc2 = new OC();

static val ic1 = oc1.new IC();

static val ic2 = oc2.new IC();

}

class Elsewhere{

def method(oc : OC) {

val ic = oc.new IC();

}

}

8.15 Local Classes

Classes can be defined and instantiated in the middle of methods and other code blocks.
A local class in a static method is a static class; a local class in an instance method is
an inner class. Local classes are local to the block in which they are defined. They
have access to almost everything defined at that point in the method; the one exception
is that they cannot use var variables. Local classes cannot be public, protected,
or private, because they are only visible from within the block of declaration. They
cannot be static.

Example: The following example illustrates the use of a local class Local, defined
inside the body of method m().

class Outer {

val a = 1;

def m() {

val a = -2;

val b = 2;

class Local {

val a = 3;

def m() = 100*Outer.this.a + 10*b + a;

}

val l : Local = new Local();

assert l.m() == 123;

}//end of m()

}

Note that the middle a, whose value is -2, is not accessible inside of Local; it is shad-
owed by Local’s a field. Outer’s a is also shadowed, but the notation Outer.this
gives a reference to the enclosing Outer object. There is no corresponding notation
to access shadowed local variables from the enclosing block; if you need to get them,
rename the fields of Local.

The members of inner classes must be instance members. They cannot be static mem-
bers. Classes, interfaces, static methods, static fields, and typedefs are not allowed as
members of local classes. The same restriction applies to inner classes (§8.14).

8.16. ANONYMOUS CLASSES 145

8.16 Anonymous Classes

It is possible to define a new local class and instantiate it as part of an expression. The
new class can extend an existing class or interface. Its body can include all of the usual
members of a local class. It can refer to any identifiers available at that point in the
expression — except for var variables. An anonymous class in a static context is a
static inner class.

Anonymous classes are useful when you want to package several pieces of behavior
together (a single piece of behavior can often be expressed as a function, which is
syntactically lighter-weight), or if you want to extend and vary an extant class without
going through the trouble of actually defining a whole new class.

The syntax for an anonymous class is a constructor call followed immediately by a
braced class body: new C(1){def foo()=2;}.

Example: In the following minimalist example, the abstract class Choice encapsu-
lates a decision. A Choice has a yes() and a no() method. The choose(b) method
will invoke one of the two. Choices also have names.

The main() method creates a specific Choice. c is not a immediate instance of
Choice— as an abstract class, Choice has no immediate instances. c is an instance of
an anonymous class which inherits from Choice, but supplies yes() and no() meth-
ods. These methods modify the contents of the Cell[Long] n. (Note that, as n is a
local variable, it would take a few lines more coding to extract c’s class, name it, and
make it an inner class.) The call to c.choose(true) will call c.yes(), incrementing
n(), in a rather roundabout manner.

abstract class Choice(name: String) {

def this(name:String) {property(name);}

def choose(b:Boolean) {

if (b) this.yes(); else this.no(); }

abstract def yes():void;

abstract def no():void;

}

class Example {

static def main(Rail[String]) {

val n = new Cell[Long](0);

val c = new Choice("Inc Or Dec") {

def yes() { n() += 1; }

def no() { n() -= 1; }

};

c.choose(true);

Console.OUT.println("n=" + n());

}

}

146 CHAPTER 8. CLASSES

Anonymous classes have many of the features of classes in general. A few features are
unavailable because they don’t make sense.

• Anonymous classes don’t have constructors. Since they don’t have names, there’s
no way a constructor could get called in the ordinary way. Instead, the new
C(...) expression must match a constructor of the parent class C, which will be
called to initialize the newly-created object of the anonymous class.

• The public, private, and protected modifiers don’t make sense for anony-
mous classes: Anonymous classes, being anonymous, cannot be referenced at
all, so references to them can’t be public, private, or protected.

• Anonymous classes cannot be abstract. Since they only exist in combination
with a constructor call, they must be constructable. The parent class of the anony-
mous class may be abstract, or may be an interface; in this case, the anonymous
class must provide all the methods that the parent demands.

• Anonymous classes cannot have explicit extends or implements clauses; there’s
no place in the syntax for them. They have a single parent and that is that.

9 Structs

X10 objects are a powerful general-purpose programming tool. However, the power
must be paid for in space and time. In space, a typical object implementation requires
some extra memory for run-time class information, as well as a pointer for each refer-
ence to the object. In time, a typical object requires an extra indirection to read or write
data, and some run-time computation to figure out which method body to call.

For high-performance computing, this overhead may not be acceptable for all objects.
X10 provides structs, which are stripped-down objects. They are less powerful than
objects; in particular they lack inheritance and mutable fields. Without inheritance,
method calls do not need to do any lookup; they can be implemented directly. Ac-
cordingly, structs can be implemented and used more cheaply than objects, potentially
avoiding the space and time overhead. (Currently, the C++ back end avoids the over-
head, but the Java back end implements structs as Java objects and does not avoid it.)

Structs and classes are interoperable. Both can implement interfaces; in particular,
like all X10 values they implement Any. Subroutines whose arguments are defined by
interfaces can take both structs and classes. (Some caution is necessary here: referring
to a struct through an interface requires overhead similar to that required for an object.)

In many cases structs can be converted to classes or classes to structs, within the con-
straints of structs. If you start off defining a struct and decide you need a class instead,
the code change required is simply changing the keyword struct to class. If you
have a class that does not use inheritance or mutable fields, it can be converted to a
struct by changing its keyword. Client code using the struct that was a class will need
certain changes: e.g., the new keyword must be added in constructor calls, and structs
(unlike classes) cannot be null.

147

148 CHAPTER 9. STRUCTS

9.1 Struct declaration

StructDecln ::= Mods? struct Id TypeParamsI? Properties? Guard? Interfaces? Class-
Body

(20.154)

TypeParamsI ::= [TypeParamIList] (20.177)
Properties ::= (PropList) (20.142)
Guard ::= DepParams (20.83)
Interfaces ::= implements InterfaceTypeList (20.103)
ClassBody ::= { ClassMemberDeclns? } (20.33)

All fields of a struct must be val.

A struct S cannot contain a field of type S, or a field of struct type T which, recursively,
contains a field of type S. This restriction is necessary to permit S to be implemented
as a contiguous block of memory of size equal to the sum of the sizes of its fields.

Values of a struct C type can be created by invoking a constructor defined in C. Unlike
for classes, the new keyword is optional for struct constructors.

Example: Leaving out new can improve readability in some cases:

struct Polar(r:Double, theta:Double){

def this(r:Double, theta:Double) {property(r,theta);}

static val Origin = Polar(0,0);

static val x0y1 = Polar(1, 3.14159/2);

static val x1y0 = new Polar(1, 0);

}

When a struct and a method have the same name (often in violation of the X10 capital-
ization convention), new may be used to resolve to the struct’s constructor.

struct Ambig(x:Long) {

static def Ambig(x:Long) = "ambiguity please";

static def example() {

val useMethod = Ambig(1);

val useConstructor = new Ambig(2);

}

}

Structs support the same notions of generics, properties, and constrained types that
classes do.

Example:

struct Exam[T](nQuestions:Long){T <: Question} {

public static interface Question {}

// ...

}

9.2. BOXING OF STRUCTS 149

9.2 Boxing of structs

If a struct S implements an interface I (e.g., Any), a value v of type S can be assigned
to a variable of type I. The implementation creates an object o that is an instance of an
anonymous class implementing I and containing v. The result of invoking a method of
I on o is the same as invoking it on v. This operation is termed auto-boxing. It allows
full interoperability of structs and objects—at the cost of losing the extra efficiency of
the structs when they are boxed.

In a generic class or struct obtained by instantiating a type parameter T with a struct
S, variables declared at type T in the body of the class are not boxed. They are imple-
mented as if they were declared at type S.

Example: The rail aa in the following example is a Rail[Any]. It initially holds two
objects. Then, its elements are replaced by two structs, both of which are auto-boxed.
Note that no fussing is required to put an integer into a Rail[Any]. However, a rail of
structs, such as ah, holds unboxed structs and does not incur boxing overhead.

struct Horse(x:Long){

static def example(){

val aa : Rail[Any] = ["a String" as Any, "another one"];

aa(0) = Horse(8);

aa(1) = 13;

val ah : Rail[Horse] = [Horse(7), Horse(13)];

}

}

9.3 Optional Implementation of Any methods

Two structs are equal (==) if and only if their corresponding fields are equal (==).

All structs implement x10.lang.Any. Structs are required to implement the follow-
ing methods from Any. Programmers need not provide them; X10 will produce them
automatically if the program does not include them.

public def equals(Any):Boolean;

public def hashCode():Int;

public def typeName():String;

public def toString():String;

A programmer who provides an explicit implementation of equals(Any) for a struct S
should also consider supplying a definition for equals(S):Boolean. This will often
yield better performance since the cost of an upcast to Any and then a downcast to S
can be avoided.

150 CHAPTER 9. STRUCTS

9.4 Primitive Types

Certain types that might be built in to other languages are in fact implemented as structs
in package x10.lang in X10. Their methods and operations are often provided with
@Native (§18) rather than X10 code, however. These types are:

Boolean, Char, Byte, Short, Int, Long

Float, Double, UByte, UShort, UInt, ULong

9.4.1 Signed and Unsigned Integers

X10 has an unsigned integer type corresponding to each integer type: UInt is an un-
signed Int, and so on. These types can be used for binary programming, or when an
extra bit of precision for counters or other non-negative numbers is needed in integer
arithmetic. However, X10 does not otherwise encourage the use of unsigned arithmetic.

9.5 Example structs

x10.lang.Complex provides a detailed example of a practical struct, suitable for use
in a library. For a shorter example, we define the Pair struct. A Pair packages two
values of possibly unrelated type together in a single value, e.g., to return two values
from a function.

divmod computes the quotient and remainder of a ÷ b (naively). It returns both,
packaged as a Pair[UInt, UInt]. Note that the constructor uses type inference, and
that the quotient and remainder are accessed through the first and second fields.

struct Pair[T,U] {

public val first:T;

public val second:U;

public def this(first:T, second:U):Pair[T,U] {

this.first = first;

this.second = second;

}

public def toString()

= "(" + first + ", " + second + ")";

}

class Example {

static def divmod(var a:UInt, b:UInt): Pair[UInt, UInt] {

assert b > 0u;

var q : UInt = 0un;

while (a > b) {q += 1un; a -= b;}

return Pair(q, a);

}

9.6. NESTED STRUCTS 151

static def example() {

val qr = divmod(22un, 7un);

assert qr.first == 3un && qr.second == 1un;

}

}

9.6 Nested Structs

Static nested structs may be defined, essentially as static nested classes except for mak-
ing them structs (§8.13). Inner structs may be defined, essentially as inner classes
except making them structs (§8.14). Limitation: Nested structs must be currently be
declared static.

9.7 Default Values of Structs

If all fields of a struct have default values, then the struct has a default value, viz., the
struct whose fields are all set to their default values. If some field does not have a
default value, neither does the struct.

Example:
In the following code, the Example struct has a default value whose i field is 0. If
an Example is ever constructed by the constructor, its i field will be 1. This program
does a slightly subtle dance to get ahold of a default Example, by having an instance
var (which, unlike most kinds of variables, does not need to get initialized before use
(though that exemption only applies if its type has a default value)). As the assert
confirms, the default Example does indeed have an i field of 0.

class StructDefault {

static struct Example {

val i : Long;

def this() { i = 1; }

}

var ex : Example;

static def example() {

val ex = (new StructDefault()).ex;

assert ex.i == 0;

}

9.8 Converting Between Classes And Structs

Code written using structs can be modified to use classes, or vice versa. Caution must
be used in certain places.

152 CHAPTER 9. STRUCTS

Class and struct definitions are syntactically nearly identical: change the class key-
word to struct or vice versa. Of course, certain important class features can’t be used
with structs, such as inheritance and var fields.

Converting code that uses the class or struct requires a certain amount of caution. Sup-
pose, in particular, that we want to convert the class Class2Struct to a struct, and
Struct2Class to a class.

class Class2Struct {

val a : Long;

def this(a:Long) { this.a = a; }

def m() = a;

}

struct Struct2Class {

val a : Long;

def this(a:Long) { this.a = a; }

def m() = a;

}

1. Class constructors require the new keyword; struct constructors allow it but
do not require it. Struct2Class(3) to will need to be converted to new
Struct2Class(3).

2. Objects and structs have different notions of ==. For objects, == means “same
object”; for structs, it means “same contents”. Before conversion, both asserts
in the following program succeed. After converting and fixing constructors, both
of them fail.

val a = new Class2Struct(2);

val b = new Class2Struct(2);

assert a != b;

val c = Struct2Class(3);

val d = Struct2Class(3);

assert c==d;

3. Objects can be set to null. Structs cannot.

4. The rules for default values are quite different. The default value of an object
type (if it exists) is null, which behaves quite differently from an ordinary object
of that type; e.g., you cannot call methods on null, whereas you can on an
ordinary object. The default value for a struct type (if it exists) is a struct like
any other of its type, and you can call methods on it as for any other.

10 Functions

10.1 Overview

Functions, the last of the three kinds of values in X10, encapsulate pieces of code
which can be applied to a vector of arguments to produce a value. Functions, when
applied, can do nearly anything that any other code could do: fail to terminate, throw
an exception, modify variables, spawn activities, execute in several places, and so on.
X10 functions are not mathematical functions: the f(1) may return true on one call
and false on an immediately following call.

A function literal (x1:T1,..,xn:Tn){c}:T=>e creates a function of type
(x1:T1,...,xn:Tn){c}=>T (§4.6). For example, (x:Long):Long => x*x is a func-
tion literal describing the squaring function on integers. Every function type also posses
the (default) value null.

Limitation: X10 functions cannot have type arguments or constraints.

Function application is written f(a,b,c), following common mathematical usage.

The function body may be a block. To compute integer squares by repeated addition
(inefficiently), one may write:

val sq: (Long) => Long

= (n:Long) => {

var s : Long = 0;

val abs_n = n < 0 ? -n : n;

for (i in 1..abs_n) s += abs_n;

s

};

A function literal evaluates to a function entity f . When f is applied to a suitable list
of actual parameters a1 through an, it evaluates e with the formal parameters bound
to the actual parameters. So, the following are equivalent, where e is an expression
involving x1 and x2

var result:T;

{

val f = (x1:T1,x2:T2){true}:T => e;

153

154 CHAPTER 10. FUNCTIONS

val a1 : T1 = arg1();

val a2 : T2 = arg2();

result = f(a1,a2);

}

and

var result:T;

{

val a1 : T1 = arg1();

val a2 : T2 = arg2();

{

val x1 : T1 = a1;

val x2 : T2 = a2;

result = e;

}

}

This equivalence does not hold if the body is a statement rather than an expression. A
few language features are forbidden (break or continue of a loop that surrounds the
function literal) or mean something different (return inside a function returns from
the function, not the surrounding block).

Function types may be used in implements clauses of class definitions. Suitable
operator definitions must be supplied, with public operator this(x1:T1, . . .,
xn:Tn) declarations. Instances of such classes may be used as functions of the given
type. Indeed, an object may behave like any (fixed) number of functions, since the class
it is an instance of may implement any (fixed) number of function types. e.g. Instances
of the Funny class behave like two functions: a constant function on Booleans, and a
linear function on pairs of Longs.

class Funny implements (Boolean) => Long,

(Long, Long) => Long

{

public operator this(Boolean) = 1;

public operator this(x:Long, y:Long) = 10*x+y;

static def example() {

val f <: Funny = new Funny();

assert f(true) == 1; // (Boolean)=>Long behavior

assert f(1,2) == 12; // (Long,Long)=>Long behavior

}

}

10.2 Function Application

The basic operation on functions is function application. (Since, e.g., array lookup has
the same type as function application, these rules are used for array lookup as well, and

10.3. FUNCTION LITERALS 155

so on.)

A function with type (x1:T1, . . ., xn:Tn){c} => T can be applied to a sequence
of expressions e1, . . ., en if:

• e1 is of type T1[e1/x1],

• . . .,

• en is of type Tn[e1/x1, . . ., en/xn],

• X10 can prove that c[e1/x1, . . ., en/xn] holds.

In this case, if the application terminates normally, it returns a value of type T[y1/x1,
. . ., yn/xn] where y1,. . .,yn may be thought of as new variables defined as if by:

val y1=e1;

...

val yn=en;

Example: Consider

f : (a:Long{a!=0}, b:Long{b!=a}){b!=0} => Long{self != a}

Then the call f(3,4) is allowed, because:

• 3 is of type Long{a!=0} with a replaced by 3, viz. Long{3 != 0};

• 4 is of type Long{b!=a} with a replaced by 3 and b replaced by 4, viz. Long{3
!= 4}.

• The guard b!=0, with a replaced by 3 and b replaced by 4, is 4!=0, which is
true.

So, f(3,4) will return a value of type Long{self != a} with a replaced by 3 and b
replaced by 4, which is to say, Long{self!=3}.

10.3 Function Literals

X10 provides first-class, typed functions, often called closures.

ClosureExp ::= Formals Guard? HasResultType? => ClosureBody (20.42)
Formals ::= (FormalList?) (20.80)
Guard ::= DepParams (20.83)
HasResultType ::= ResultType (20.86)

| <: Type
ClosureBody ::= Exp (20.40)

| ClosureBodyBlock
ClosureBodyBlock ::= Annotations? { BlockStmts? LastExp } (20.41)

| Annotations? Block

156 CHAPTER 10. FUNCTIONS

Functions have zero or more formal parameters and an optional return type. The body
has the same syntax as a method body; it may be either an expression, a block of
statements, or a block terminated by an expression to return. Return statements may be
used in the body of the function to return a value (§12.13).

The type of a function is a function type as described in §4.6. In some cases the return
type T of the function can be omittted and defaults to the type of the body. If a formal
xi does not occur in any Tj, c, T or e, the declaration xi:Ti may be replaced by just
Ti. E.g., (Long)=>7 is the integer function returning 7 for all inputs.

As with methods, a function may declare a guard to constrain the actual parameters
with which it may be invoked. The guard may refer to the type parameters, formal
parameters, and any vals in scope at the function expression.

Example:

val n = 3;

val f : (x:Long){x != n} => Long

= (x:Long){x != n} => (12/(n-x));

Console.OUT.println("f(5)=" + f(5));

The body of the function is evaluated when the function is invoked by a call expression
(§11.6), not at the function’s place in the program text.

As with methods, a function with return type void cannot have a terminating expres-
sion. If the return type is omitted, it is inferred, as described in §4.12. It is a static error
if the return type cannot be inferred. E.g., (Long)=>null is not well-specified; X10
does not know which type of null is intended. But (Long):Rail[Double] => null
is legal.

Example: The following method takes a function parameter and uses it to test each
element of the list, returning the first matching element. It returns no if no element
matches.

def find[T](f: (T) => Boolean, xs: List[T], no:T): T {

for (x: T in xs)

if (f(x)) return x;

return no;

}

The method may be invoked thus, to find a positive element of xs, or return 0 if there is
no positive element.

xs: List[Long] = new ArrayList[Long]();

x: Long = find((x: Long) => x>0, xs, 0);

10.3.1 Outer variable access

In a function (x1: T1, . . ., xn: Tn){c} => { s } the types Ti, the guard c and
the body s may access the following variables from outer scopes:

10.4. FUNCTIONS AS OBJECTS OF TYPE ANY 157

• All fields of the enclosing object(s) and class(es);

• All type parameters;

• All val variables;

var variables cannot be accessed.

The function body may refer to instances of enclosing classes using the syntax C.this,
where C is the name of the enclosing class. this refers to the instance of the immedi-
ately enclosing class, as usual.

e.g. The following is legal. Note that a is not a local var variable. It is a field of this.
A reference to a is simply short for this.a, which is a use of a val variable (this).

class Lambda {

var a : Long = 0;

val b = 0;

def m(var c : Long, val d : Long) {

var e : Long = 0;

val f : Long = 0;

val closure = (var i: Long, val j: Long) => {

// c and e are not usable here

a + b + d + f + i

+ j + this.a + Lambda.this.a

};

return closure;

}

}

10.4 Functions as objects of type Any

Two functions f and g are equal if both were obtained by the same evaluation of a
function literal.1 Further, it is guaranteed that if two functions are equal then they
refer to the same locations in the environment and represent the same code, so their
executions in an identical situation are indistinguishable. (Specifically, if f == g, then
f(1) can be substituted for g(1) and the result will be identical. However, there is
no guarantee that f(1)==g(1) will evaluate to true, since there is no guarantee that
f(1)==f(1) will evaluate to true either, as f might be a function which returns n on
its nth invocation. However, f(1)==f(1) and f(1)==g(1) are interchangeable.)

Every function type implements all the methods of Any. f.equals(g) is equivalent to
f==g. The behavior of hashCode, toString, and typeName is up to the implementa-
tion, but respect equals and the basic contracts of Any.

1A literal may occur in program text within a loop, and hence may be evaluated multiple times.

11 Expressions

X10 has a rich expression language. Evaluating an expression produces a value, or, in
a few cases, no value. Expression evaluation may have side effects, such as change of
the value of a var variable or a data structure, allocation of new values, or throwing an
exception.

11.1 Literals

Literals denote fixed values of built-in types. The syntax for literals is given in §3.5.

The type that X10 gives a literal often includes its value. E.g., 1 is of type Long{self==1},
and true is of type Boolean{self==true}.

11.2 this

Primary ::= this (20.138)
| ClassName . this

The expression this is a local val containing a reference to an instance of the lexi-
cally enclosing class. It may be used only within the body of an instance method, a
constructor, or in the initializer of a instance field – that is, the places where there is an
instance of the class under consideration.

Within an inner class, this may be qualified with the name of a lexically enclosing
class. In this case, it represents an instance of that enclosing class.

Example: Outer is a class containing Inner. Each instance of Inner has a refer-
ence Outer.this to the Outer involved in its creation. Inner has access to the fields
of Outer.this. Note that Inner has its own three field, which is different from and
not even the same type as Outer.this.three.

class Outer {

val three = 3;

class Inner {

158

11.3. LOCAL VARIABLES 159

val three = "THREE";

def example() {

assert Outer.this.three == 3;

assert three.equals("THREE");

assert this.three.equals("THREE");

}

}

}

The type of a this expression is the innermost enclosing class, or the qualifying class,
constrained by the class invariant and the method guard, if any.

The this expression may also be used within constraints in a class or interface header
(the class invariant and extends and implements clauses). Here, the type of this is
restricted so that only properties declared in the class header itself, and specifically not
any members declared in the class body or in supertypes, are accessible through this.

11.3 Local variables

Id ::= IDENTIFIER (20.90)

A local variable expression consists simply of the name of the local variable, a field of
this, a formal parameter in scope, etc. It evaluates to the value of the local variable.

Example: n in the second line below is a local variable expression. The n in the first
line is not; it is part of a local variable declaration.

val n = 22;

val m = n + 56;

11.4 Field access

FieldAccess ::= Primary . Id (20.67)
| super . Id
| ClassName . super . Id

A field of an object instance may be accessed with a field access expression.

The type of the access is the declared type of the field with the actual target substituted
for this in the type.

Example: The declaration of b below has a constraint involving this. The use of an
instance of it, f.b, has the same constraint involving f instead of this, as required.

160 CHAPTER 11. EXPRESSIONS

class Fielded {

public val a : Long = 1;

public val b : Long{this.a == b} = this.a;

static def example() {

val f : Fielded = new Fielded();

assert f.a == 1 && f.b == 1;

val fb : Long{fb == f.a} = f.b;

assert fb == 1;

}

}

The field accessed is selected from the fields and value properties of the static type of
the target and its superclasses.

If the field target is given by the keyword super, the target’s type is the superclass of
the enclosing class. This form is used to access fields of the parent class hidden by
same-named fields of the current class.

If the field target is Cls.super, then the target’s type is Cls, which must be an enclos-
ing class. This (admittedly obscure) form is used to access fields of an ancestor class
which are shadowed by same-named fields of some more recent ancestor.

Example: This illustrates all four cases of field access.

class Uncle {

public static val f = 1;

}

class Parent {

public val f = 2;

}

class Ego extends Parent {

public val f = 3;

class Child extends Ego {

public val f = 4;

def example() {

assert Uncle.f == 1;

assert Ego.super.f == 2;

assert super.f == 3;

assert this.f == 4;

assert f == 4;

}

}

}

If the field target is null, a NullPointerException is thrown. If the field target is a
class name, a static field is selected. It is illegal to access a field that is not visible from
the current context. It is illegal to access a non-static field through a static field access
expression. However, it is legal to access a static field through a non-static reference.

11.5. FUNCTION LITERALS 161

11.5 Function Literals

Function literals are described in §10.

11.6 Calls

MethodInvo ::= MethodName TypeArgs? (ArgumentList?) (20.118)
| Primary . Id TypeArgs? (ArgumentList?)
| super . Id TypeArgs? (ArgumentList?)
| ClassName . super . Id TypeArgs? (ArgumentList?)
| Primary TypeArgs? (ArgumentList?)

ArgumentList ::= Exp (20.8)
| ArgumentList , Exp

MethodName ::= Id (20.120)
| FullyQualifiedName . Id

A MethodInvocation may be to either a static method, an instance method, or a
closure.

The syntax for method invocations is ambiguous. ob.m() could either be the invoca-
tion of a method named m on object ob, or the application of a function held in a field
ob.m. If both are defined on the same class, X10 resolves ob.m() to the invocation of
the method. If the application of a function in a field is desired, use an alternate syntax
which makes the intent clear to X10, such as (ob.m)().

Example:

class Callsome {

static val closure : () => Long = () => 1;

static def method() = 2;

static def example() {

assert Callsome.closure() == 1;

assert Callsome.method() == 2;

}

}

However, adding a static method [mis]named closure makes Callsome.closure()
refer to the method, rather than the closure

static def closure () = 3;

static def example() {

assert Callsome.closure() == 3;

assert (Callsome.closure)() == 1;

}

The application form e(f,g), when e evaluates to an object or struct, invokes the
application operator, defined in the form

162 CHAPTER 11. EXPRESSIONS

public operator this(f:F, g:G) = "value";

Method selection rules are given in §8.12.

Guard satisfaction depends on the STATIC_CHECKS compiler flag. With the flag on,
it is a static error if a method’s Guard is not statically satisfied by the caller. With
STATIC_CHECKS off, the guard will be checked at runtime if necessary.

Example: In this example, a DivideBy object provides the service of dividing num-
bers by denom — so long as denom is not zero. X10’s strictness of checking this is
under control of the STATIC_CHECKS compiler option (§C.1.3).

With STATIC_CHECKS turned on, the example method will not compile. The call
this.div(100) is not allowed; there is no guarantee that denom != 0. Casting
this to a type whose constraint implies denom != 0 permits the method call.

With STATIC_CHECKS turned off, the call will compile. X10 will insert a dynamic check
that the denominator is non-zero, and will fail at runtime if it is zero.

class DivideBy(denom:Long) {

def div(numer:Long){denom != 0} = numer / denom;

def example() {

val thisCast = (this as DivideBy{self.denom != 0});

thisCast.div(100);

//ERROR (with STATIC_CHECKS): this.div(100);

}

}

11.6.1 super calls

The expression super.f(e1...en)may appear in an instance method definition. This
causes the method invocation to be a super invocation, as described in §8.12.

Informally, suppose the invocation appears in class Cl, which extends class Sup. An
invocation this.f() will call a nullary method named f that appears in class Cl itself,
if there is one. An invocation super.f() will call the nullary f method in Sup or an
ancestor thereof, but not one in Cl. Note that super.f() may be used to invoke an f
method in Sup which has been overridden by one appearing in Cl.

Note that there’s only one choice for which f is invoked by super.f() – viz. the
lowest one in the class hierarchy above Cl. So, super.f() performs static dispatch,
like a static method call. This is generally more efficient than a dynamic dispatch, like
an instance method call.

11.7. ASSIGNMENT 163

11.7 Assignment

Assignment ::= LeftHandSide AsstOp AsstExp (20.12)
| ExpName (ArgumentList?) AsstOp AsstExp
| Primary (ArgumentList?) AsstOp AsstExp

LeftHandSide ::= ExpName (20.108)
| FieldAccess

AsstOp ::= = (20.14)
| *=

| /=

| %=

| +=

| -=

| <<=

| >>=

| >>>=

| &=

| ˆ=

| |=

The assignment expression x = e assigns a value given by expression e to a variable
x. Most often, x is mutable, a var variable. The same syntax is used for delayed
initialization of a val, but vals can only be initialized once.

var x : Long;

val y : Long;

x = 1;

y = 2; // Correct; initializes y

x = 3;

// ERROR: y = 4;

There are three syntactic forms of assignment:

1. x = e;, assigning to a local variable, formal parameter, field of this, etc.

2. x.f = e;, assigning to a field of an object.

3. a(i1,. . .,in) = v;, where n ≥ 0, assigning to an element of an array or some
other such structure. This is an operator call (§8.7). For well-behaved classes it
works like array assignment, mutatis mutandis, but there is no actual guarantee,
and the compiler makes no assumptions about how this works for arbitrary a.
Naturally, it is a static error if no suitable assignment operator for a exists..

For a binary operator �, the �-assignment expression x �= e combines the current
value of x with the value of e by �, and stores the result back into x. i += 2, for
example, adds 2 to i. For variables and fields,

164 CHAPTER 11. EXPRESSIONS

x �= e

behaves just like

x = x � e.

The subscripting forms of a(i) �= b are slightly subtle. Subexpressions of a and
i are only evaluated once. However, a(i) and a(i)=c are each executed once—
in particular, there is one call to the application operator, and one to the assignment
operator. If subscripting is implemented strangely for the class of a, the behavior is
not necessarily updating a single storage location. Specifically, A()(I()) += B() is
tantamount to the following code, except for the unspecified order of evaluation of the
expressions:

{

// The order of these evaluations is not specified

val aa = A(); // Evaluate A() once

val ii = I(); // Evaluate I() once

val bb = B(); // Evaluate B() once

// But they happen before this:

val tmp = aa(ii) + bb; // read aa(ii)

aa(ii) = tmp; // write sum back to aa(ii)

}

11.8 Increment and decrement

The operators ++ and -- increment and decrement a variable, respectively. x++ and
++x both increment x, just as the statement x += (1 as T) would (where x:T), and
similarly for --.

The difference between the two is the return value. ++x and --x return the new value
of x, after incrementing or decrementing. x++ and x-- return the old value of x, before
incrementing or decrementing.

These operators work for any x for which 1 as T is defined, where T is the type of x.

11.9 Numeric Operations

Numeric types (Byte, Short, Int, Long, Float, Double, Complex, and unsigned
variants of fixed-point types) are normal X10 structs, though most of their methods are
implemented via native code. They obey the same general rules as other X10 structs.
For example, numeric operations, coercions, and conversions are defined by operator
definitions, the same way you could for any struct.

11.10. BITWISE COMPLEMENT 165

Promoting a numeric value to a longer numeric type results in either sign extension
or zero extension depending on whether the target type is signed or unsigned. For
example, (255 as UByte) as UInt is 255 while (255 as Byte) as Int is -1.

Most of these operations can be defined on user-defined types as well. While it is
good practice to keep such operations consistent with the numeric operations whenever
possible, the compiler neither enforces nor assumes any particular semantics of user-
defined operations.

11.9.1 Conversions and coercions

Specifically, each numeric type can be converted or coerced into each other numeric
type, perhaps with loss of accuracy.

Example:

val n : Byte = 123 as Byte; // explicit

val f : (Long)=>Boolean = (Long) => true;

val ok = f(n); // implicit

11.9.2 Unary plus and unary minus

The unary + operation on numbers is an identity function. The unary - operation
on signed numbers is a negation function. On unsigned numbers, these are two’s-
complement arithmetic; the unsigned number types are closed under unary -. For
example, -(0x0F as UByte) is (0xF1 as UByte).

11.10 Bitwise complement

The unary ˜ operator, only defined on integral types, complements each bit in its
operand.

11.11 Binary arithmetic operations

The binary arithmetic operators perform the familiar binary arithmetic operations: +
adds, - subtracts, * multiplies, / divides, and % computes remainder.

On integers, the operands are coerced to the longer of their two types, and then operated
upon. Floating point operations are determined by the IEEE 754 standard. The integer
/ and % throw an exception if the right operand is zero.

166 CHAPTER 11. EXPRESSIONS

11.12 Binary shift operations

When operands of the binary shift operations are of integral type, the expression per-
forms bitwise shifts. The type of the result is the type of the left operand. The right
operand, describing a number of bits, must be a Long: x << y.

If the promoted type of the left operand is Int, the right operand is masked with 0x1f
using the bitwise AND (&) operator, giving a number at most the number of bits in an
Int. If the promoted type of the left operand is Long, the right operand is masked with
0x3f using the bitwise AND (&) operator, giving a number at most the number of bits
in a Long.

The << operator left-shifts the left operand by the number of bits given by the right
operand. The >> operator right-shifts the left operand by the number of bits given by
the right operand. The result is sign extended; that is, if the right operand is k, the most
significant k bits of the result are set to the most significant bit of the operand.

The >>> operator right-shifts the left operand by the number of bits given by the right
operand. The result is not sign extended; that is, if the right operand is k, the most
significant k bits of the result are set to 0. This operation is deprecated, and may be
removed in a later version of the language.

11.13 Binary bitwise operations

The binary bitwise operations operate on integral types, which are promoted to the
longer of the two types. The & operator performs the bitwise AND of the promoted
operands. The | operator performs the bitwise inclusive OR of the promoted operands.
The ˆ operator performs the bitwise exclusive OR of the promoted operands.

11.14 String concatenation

The + operator is used for string concatenation as well as addition. If either operand
is of static type x10.lang.String, the other operand is converted to a String , if
needed, and the two strings are concatenated. String conversion of a non-null value is
performed by invoking the toString() method of the value. If the value is null, the
value is converted to "null".

The type of the result is String.

For example, "one " + 2 + true evaluates to one 2true.

11.15 Logical negation

The unary ! operator applied to type x10.lang.Boolean performs logical negation.
The type of the result is Boolean. If the value of the operand is true, the result is
false; if if the value of the operand is false, the result is true.

11.16. BOOLEAN LOGICAL OPERATIONS 167

11.16 Boolean logical operations

The binary operations & and | at type Boolean perform Boolean logical operations.

The & operator evaluates to true if both of its operands evaluate to true; otherwise,
the operator evaluates to false.

The | operator evaluates to false if both of its operands evaluate to false; otherwise,
the operator evaluates to true.

11.17 Boolean conditional operations

The binary && and || operations, on Boolean values, give conditional or short-circuiting
Boolean operations.

The && operator evaluates to true if both of its operands evaluate to true; otherwise,
the operator evaluates to false. Unlike the logical operator &, if the first operand is
false, the second operand is not evaluated.

The || operator evaluates to false if both of its operands evaluate to false; other-
wise, the operator evaluates to true. Unlike the logical operator ||, if the first operand
is true, the second operand is not evaluated.

11.18 Relational operations

The relational operations on numeric types compare numbers, producing Boolean re-
sults.

The < operator evaluates to true if the left operand is less than the right. The <=
operator evaluates to true if the left operand is less than or equal to the right. The >
operator evaluates to true if the left operand is greater than the right. The >= operator
evaluates to true if the left operand is greater than or equal to the right.

Floating point comparison is determined by the IEEE 754 standard. Thus, if either
operand is NaN, the result is false. Negative zero and positive zero are considered
to be equal. All finite values are less than positive infinity and greater than negative
infinity.

11.19 Conditional expressions

ConditionalExp ::= ConditionalOrExp ? Exp : ConditionalExp (20.45)

A conditional expression evaluates its first subexpression (the condition); if true the
second subexpression (the consequent) is evaluated; otherwise, the third subexpression
(the alternative) is evaluated.

168 CHAPTER 11. EXPRESSIONS

The type of the condition must be Boolean. The type of the conditional expression is
some common ancestor (as constrained by §4.10) of the types of the consequent and
the alternative.

Example: a == b ? 1 : 2 evaluates to 1 if a and b are the same, and 2 if they
are different. As the type of 1 is Long{self==1} and of 2 is Long{self==2}, the type
of the conditional expression has the form Long{c}, where self==1 and self==2
both imply c. For example, it might be Long{true} – or perhaps it might be a more
accurate type, like Long{self != 8}. Note that this term has no most accurate type
in the X10 type system.

The subexpression not selected is not evaluated.

Example: The following use of the conditional expression prevents division by zero.
If den==0, the division is not performed at all.

(den == 0) ? 0 : num/den

Similarly, the following code performs a method call if op is non-null, and avoids the
null pointer error if it is null. Defensive coding like this is quite common when working
with possibly-null objects.

(ob == null) ? null : ob.toString();

11.20 Stable equality

EqualityExp ::= RelationalExp (20.59)
| EqualityExp == RelationalExp
| EqualityExp != RelationalExp
| Type == Type

The == and != operators provide a fundamental, though non-abstract, notion of equal-
ity. a==b is true if the values of a and b are extremely identical.

• If a and b are values of object type, then a==b holds if a and b are the same
object.

• If one operand is null, then a==b holds iff the other is also null.

• The structs in x10.lang have unsurprising concepts of ==:

– In Boolean, true == true and false == false.

– In Char, c == d iff c.ord() == d.ord().

– Equality in Double and Float is IEEE floating-point equality.

– Two GlobalRefs are == if they refer to the same object.

11.20. STABLE EQUALITY 169

– The integral types, Byte, Short, Int, Long, and their unsigned versions,
use binary equality.

• If the operands both have struct type and are not in x10.lang, then they must be
structurally equal; that is, they must be instances of the same struct and all their
fields or components must be ==.

• The definition of equality for function types is specified in §10.4.

• No implicit coercions are performed by ==.

• It is a static error to have an expression a == b if the types of a and b are disjoint.

a != b is true iff a==b is false.

The predicates == and != may not be overridden by the programmer.

== provides a stable notion of equality. If two values are == at any time, they remain
== forevermore, regardless of what happens to the mutable state of the program.

Example: Regardless of the values and types of a and b, or the behavior of any_code_at_all
(which may, indeed, be any code at all—not just a method call), the value of a==b does
not change:

val a = something();

val b = something_else();

val eq1 = (a == b);

any_code_at_all();

val eq2 = (a == b);

assert eq1 == eq2;

11.20.1 No Implicit Coercions for ==

== is a primitive operation in X10 – one of very few. Most operations, like + and <=,
are defined as operators. == and != are not. As non-operators, they need not and
do not follow the general method resolution procedure of §8.12. In particular, while
operators perform implicit conversions on their arguments, == and != do not.

The advantage of this restriction is that ==’s behavior is as simple and efficient as
possible. It never runs user-defined code, and the compiler can analyze and understand
it in detail – and guarantee that it is efficient.

The disadvantage is that certain straightforward-looking idioms do not work. One may
not test that an Int variable is == to a long like 0:

//ERROR: for(var i : Int = 0n; i != 100; i++) {}

A Int like i can never == a Long like 100. Because == does not permit implicit
coercions, i stays a Int. The loop must be written with a comparison of two Intss:

for(var i : Int = 0n; i != 100n; i++) {}

170 CHAPTER 11. EXPRESSIONS

Because the operation <= is a regular operator, and thus uses coercions in its arguments,
it is legal (although not recommended) to write the loop as

for(var i : Int = 0n; i <= 100; i++) {}

In this formulation, i will be coerced to a Long on each loop iteration so it can be
compared using <= against 100.

Example: If numbers are cast to Any, they are compared as values of type Any, not
as numbers. For example, 1 as Any == 1ul as Any is not a static error (because it
is comparing two values of type Any), and returns false (because the two Any values
refer to different values — indeed, to values of different types, Int and ULong).

11.20.2 Non-Disjointness Requirement

It is, in many cases, a static error to have an expression a==b where a and b could not
possibly be equal, based on their types. (In one case it is a static error even though they
could be equal.) This is a practical codicil to §11.20.1. Consider the illegal code

// NOT ALLOWED

for(var i : Long = 0; i != 100; i++)

100 and 100L are different values; they are not ==. A coercion could make them equal,
but == does not allow coercions. So, if 100 == 100L were going to return anything, it
would have to return false. This would have the unfortunate effect of making the for
loop run forever.

Since this and related idioms are so common, and since so many programmers are used
to languages which are less precise about their numeric types, X10 avoids the mistake
by declaring it a static error in most cases. Specifically, a==b is not allowed if, by
inspection of the types, a and b could not possibly be equal.

Example: Nonetheless, it is possible to wind up comparing values of different nu-
meric types. Even though, say, 0n and 0L represent the same number, they are different
values and of different types, and hence, 0n != 0L. The expression 0n == 0L does
not compile. However, if you hide type information from X10, you can get a similar
expression to compile:

val a : Any = 0n;

val b : Any = 0L;

assert a != b;

• Numbers of different base types cannot be equal, and thus cannot compared for
equality. 100==100L is a static error. To compare numbers, explicitly cast them
to the same type: 100 as Long == 100L.

• Indeed, structs of different types cannot be equal, and so they cannot be com-
pared for equality.

11.21. ALLOCATION 171

• For objects, the story is different. Unconstrained object types can always be com-
pared for equality. Given objects of unrelated classes a:Person and b:Theory,
a==b could be true if a==null and b==null. Despite this, a==b is a static error,
because it is generally a programming mistake. a as Any == b as Any can
be used to express the equality, if it is necessary.

• Constraints are ignored in determining whether an equality is statically allowed.
For example, the following is allowed:

def m(a:Long{self==1}, b:Long{self==2}) = (a==b);

• Explicit casts erase type information. If you wanted to have a comparison a==b
for a:Person{self!=null} and b:Theory, you could write it as a as Any
== b as Any. It would, of course, return false, but it would not be a compiler
error.1 A struct and an object may both be cast to Any and compared for equality,
though they, too, will always be different.

11.21 Allocation

ObCreationExp ::= new TypeName TypeArgs? (ArgumentList?) ClassBody? (20.126)
| Primary . new Id TypeArgs? (ArgumentList?) ClassBody?

| FullyQualifiedName . new Id TypeArgs? (ArgumentList?) ClassBody?

An allocation expression creates a new instance of a class and invokes a constructor of
the class. The expression designates the class name and passes type and value argu-
ments to the constructor.

The allocation expression may have an optional class body. In this case, an anonymous
subclass of the given class is allocated. An anonymous class allocation may also spec-
ify a single super-interface rather than a superclass; such an anonymous class does not
have a superclass.

If the class is anonymous—that is, if a class body is provided—then the constructor is
selected from the superclass. The constructor to invoke is selected using the same rules
as for method invocation (§11.6).

The type of an allocation expression is the return type of the constructor invoked, with
appropriate substitutions of actual arguments for formal parameters, as specified in
§11.6.

§8.14.1 describes allocation expressions for inner classes.

It is illegal to allocate an instance of an abstract class. The usual visibility rules apply
to allocations: it is illegal to allocate an instance of a class or to invoke a constructor
that is not visible at the allocation expression.

Note that instantiating a struct type can use function application syntax; new is optional.
As structs do not have subclassing, there is no need or possibility of a ClassBody.

1Code generators often find this trick to be useful.

172 CHAPTER 11. EXPRESSIONS

11.22 Casts and Conversions

CastExp ::= Primary (20.30)
| ExpName
| CastExp as Type

The cast and conversion operation e as T may be used to force an expression into a
given type T, if is permissible at run time, and either a compile-time error or a runtime
exception (x10.lang.ClassCastException) if it is not.

The e as T operation comes in two forms. Which form applies depends on both the
source type (the type of e) and the target type T.

• Cast: A cast makes a value have a different type, without changing the value’s
identity. For example, "a String" as Any simply reconsiders the String
object as an Any. This cast does not need to do any run-time computation, since
every String is an Any; a cast in the reverse direction, from Any to String,
would need a run-time check that the Any was in fact a String. Casts are all
system-defined, following from the X10 type system.

• Conversions: A conversion takes a value of one type and produces one of a
different type which, conceptually, means the same thing. For example, 1 as
Float is a conversion. It performs some computation on 1 to come up with a
Float value. Conversions are all library- or user-defined.

11.22.1 Casts

A cast v as T2 re-imagines a value v of one type T1 as being a value of another type
T2. The value itself does not change, nor is a new value computed. The only run-time
computation that happens is to check that v is indeed a value of type T2 (which, in
many cases, is unnecessary), and auto-boxing (§9.2).

Casts to generic types can be unsound. The instantiations of the generic types have
constraints, but the runtime does not preserve the representation of these types. See
§4.5.5 for more details.

There are two forms of casts. Upcasts happen when T1 <: T2, that is, when a value is
being cast to a more general type. Upcasts often don’t require any runtime computation
at all, since, if T1 <: T2 and T2 isref, every value of type T1 is automatically one of
type T2. For example, "A String" as Any is a trivial upcast: every String can sim-
ply be used as a value of type Any because it is already represented as a heap-allocated
object. Upcasts from structs to interface types however do require auto-boxing, such
as 1 as Any.

Downcasts are casts which are not upcasts. Often they are recasting something from a
more general to a more specific type, though casts that cross the type hierarchy laterally
are also called downcasts.

11.22. CASTS AND CONVERSIONS 173

val ob : Any = "a String" as Any; // upcast

val st : String = ob as String; // downcast

assert st == ob;

Example:

In the following example, Snack and Crunchy are unrelated interfaces: neither inher-
its from the other. Some objects are both; some are one but not the other. Casting from
a Crunchy to a Snack requires confirming that the value being cast is indeed a Snack.

interface Snack {}

interface Crunchy {}

class Pretzel implements Snack, Crunchy{}

class Apricot implements Snack{}

class Gravel implements Crunchy{}

class Example{

def example(crunchy : Crunchy) {

if (crunchy instanceof Snack) {

val snack = crunchy as Snack;

} } }

An upcast v as T2 requires no computation. A downcast v as T2 requires testing
that v really is a value of type T2. In either case, the cast returns the value v; casts do
not change value identity.

When evaluating E as T{c}, first the value of E is converted to type T (which may
fail), and then the constraint {c} is checked (which may also fail).

• If T is a class, then the first half of the cast succeeds if the run-time value of E is
an instance of class T, or of a subclass.

• If T is an interface, then the first half of the cast succeeds if the run-time value of
E is an instance of a class or struct implementing T.

• If T is a struct type, then the first half of the cast succeeds if the run-time value
of E is an instance of T.

• If T is a function type, then the first half of the cast succeeds if the run-time value
of X is a function of that type, or an object or struct which implements it.

If the first half of the cast succeeds, the second half – the constraint {c} – must be
checked. In general this will be done at runtime, though in special cases it can be
checked at compile time. For example, n as Long{self != w} succeeds if n != w
— even if w is a value read from input, and thus not determined at compile time.

The compiler may forbid casts that it knows cannot possibly work. If there is no way
for the value of E to be of type T{c}, then E as T{c} can result in a static error,
rather than a runtime error. For example, 1 as Long{self==2} may fail to compile,

174 CHAPTER 11. EXPRESSIONS

because the compiler knows that 1, which has type Long{self==1}, cannot possibly
be of type Long{self==2}.

If, for some reason, you need to write one of these forbidden casts, cast to Any first.
(1 as Any) as Long{self==2} always returns false, but compiles.

11.22.2 Explicit Conversions

Explicit conversions are written with the same syntax as casts: v as T2. Explicit
conversions transform a value of one type T1 to an unrelated type T2. Unlike casts,
conversions do execute code, and may (and generally do) return new values.

Explicit conversions do not arise spontaneously, as casts do. They may be programmed
directly, using the operator syntax of §8.7.3. Implicit coercions can also be called
explicitly as conversions. (The reverse is not true – explicit conversions cannot be used
as implicit conversions.)

The numeric types in x10.lang have explicit conversions, as described in §11.23.1.
These conversions enable 1 as Float and the like.

Example: The following class has an explicit conversion from Long to Knot, and an
implicit one from String to Knot. a uses the explicit conversion, b uses the implicit
coercion, and c uses the implicit coercion explicitly.

class Knot(s:String){

public def is(t:String):Boolean = s.equals(t);

// explicit conversion

public static operator (n:Long) as Knot = new Knot("knot-" + n);

// implicit coercion

public static operator (s:String):Knot = new Knot(s);

// using them

public static def example() {

val a : Knot = 1 as Knot;

val b : Knot = "frayed";

val c : Knot = "three" as Knot;

assert a.is("knot-1") && b.is("frayed") && c.is("three");

}

}

11.22.3 Resolving Ambiguity

If v as T could either be a cast or an explicit coercion, X10 treats its as a cast. With
the VERBOSE compiler flag, this is flagged as a warning.

Example: The Person class provides an explicit conversion from its subclass Fop to
itself. However, since Fop is a subclass of Person, using the as operator invokes the
upcast, rather than the explicit conversion. This is visible in the example because the

11.23. COERCIONS AND CONVERSIONS 175

user-defined operator f as Person returns new Person() (just like the asPerson
method), while the upcast returns f itself.

class Person {

static operator (f:Fop) as Person = new Person();

static def asPerson(f:Fop) = new Person();

public static def example() {

val f = new Fop();

val cast = f as Person; // WARNING on this line

assert cast == f;

val meth = asPerson(f);

assert meth != f;

}

}

class Fop extends Person {}

The definition of an explicit conversion in this case is of little value, since any use of it
in the f as Person syntax will invoke the upcast.

11.23 Coercions and conversions

A coercion does not change object identity; a coerced object may be explicitly coerced
back to its original type through a cast. A conversion may change object identity if the
type being converted to is not the same as the type converted from. X10 permits both
user-defined coercions and conversions (§11.23.2).

11.23.1 Coercions

CastExp ::= Primary (20.30)
| ExpName
| CastExp as Type

Subsumption coercion. A value of a subtype may be implicitly coerced to any su-
pertype.

Example: If Child <: Person and val rhys:Child, then rhys may be used in
any context that expects a Person. For example,

class Example {

def greet(Person) = "Hi!";

def example(rhys: Child) {

greet(rhys);

}

}

176 CHAPTER 11. EXPRESSIONS

Similarly, 2 (whose innate type is Long{self==2}) is usable in a context requiring a
non-zero integer (Long{self != 0}).

Explicit Coercion (Casting with as) All classes and interfaces allow the use of the
as operator for explicit type coercion. Any class or interface may be cast to any inter-
face. Any interface may be cast to any class. Also, any interface can be cast to a struct
that implements (directly or indirectly) that interface.

Example: In the following code, a Person is cast to Childlike. There is nothing in
the class definition of Person that suggests that a Person can be Childlike. How-
ever, the Person in question, p, is actually a HappyChild— a subclass of Person—
and is, in fact, Childlike.

Similarly, the Childlike value cl is cast to Happy. Though these two interfaces are
unrelated, the value of cl is, in fact, Happy. And the Happy value hc is cast to the
class Child, though there is no relationship between the two, but the actual value is a
HappyChild, and thus the cast is correct at runtime.

Cyborg is a struct rather than a class. So, it cannot have substructs, and all the
interfaces of all Cyborgs are known: a Cyborg is Personable, but not Childlike
or Happy. So, it is correct and meaningful to cast r to Personable. There is no way
that a cast to Childlike could succeed, so r as Childlike is a static error.

interface Personable {}

class Person implements Personable {}

interface Childlike extends Personable {}

class Child extends Person implements Childlike {}

struct Cyborg implements Personable {}

interface Happy {}

class HappyChild extends Child implements Happy {}

class Example {

static def example() {

var p : Person = new HappyChild();

// class -> interface

val cl : Childlike = p as Childlike;

// interface -> interface

val hc : Happy = cl as Happy;

// interface -> class

val ch : Child = hc as Child;

var r : Cyborg = Cyborg();

val rl : Personable = r as Personable;

// ERROR: val no = r as Childlike;

}

}

If the value coerced is not an instance of the target type, and no coercion operators that
can convert it to that type are defined, a ClassCastException is thrown. Casting to
a constrained type may require a run-time check that the constraint is satisfied.

11.23. COERCIONS AND CONVERSIONS 177

It is a static error, rather than a ClassCastException, when the cast is statically
determinable to be impossible.

Effects of explicit numeric coercion Coercing a number of one type to another type
gives the best approximation of the number in the result type, or a suitable disaster
value if no approximation is good enough.

• Casting a number to a wider numeric type is safe and effective, and can be done
by an implicit conversion as well as an explicit coercion. For example, 4 as
Long produces the Long value of 4.

• Casting a floating-point value to an integer value truncates the digits after the
decimal point, thereby rounding the number towards zero. 54.321 as Int is
54n, and -54.321 as Int is -54n. If the floating-point value is too large to
represent as that kind of integer, the coercion returns the largest or smallest value
of that type instead: 1e110 as Int is Int.MAX_VALUE, viz. 2147483647.

• Casting a Double to a Float normally truncates binary digits:
0.12345678901234567890 as Float is approximately 0.12345679f. This
can turn a nonzero Double into 0.0f, the zero of type Float: 1e-100 as
Float is 0.0f. Since Doubles can be as large as about 1.79E308 and Floats
can only be as large as about 3.4E38f, a large Double will be converted to the
special Float value of Infinity: 1e100 as Float is Infinity.

• Integers are coerced to smaller integer types by truncating the high-order bits.
If the value of the large integer fits into the smaller integer’s range, this gives
the same number in the smaller type: 12 as Byte is the Byte-sized 12, -12
as Byte is -12. However, if the larger integer doesn’t fit in the smaller type,
the numeric value and even the sign can change: 254 as Byte is the Bytesized
-2y.

• Casting an unsigned integer type to a signed integer type of the same size (e.g.,
UInt to Int) preserves 2’s-complement bit pattern (e.g.,
UInt.MAX_VALUE as Int == -1n. Casting an unsigned integer type to a signed
integer type of a different size is equivalent to first casting to an unsigned integer
type of the target size, and then casting to a signed integer type.

• Casting a signed integer type to an unsigned one is similar.

User-defined Coercions

Users may define coercions from arbitrary types into the container type B, and coer-
cions from B to arbitrary types, by providing static operator definitions for the as
operator in the definition of B.

Example:

178 CHAPTER 11. EXPRESSIONS

class Bee {

public static operator (x:Bee) as Long = 1;

public static operator (x:Long) as Bee = new Bee();

def example() {

val b:Bee = 2 as Bee;

assert (b as Long) == 1;

}

}

11.23.2 Conversions

Widening numeric conversion. A numeric type may be implicitly converted to a
wider numeric type. In particular, an implicit conversion may be performed between a
numeric type and a type to its right, below:

Byte < Short < Int < Long < Float < Double

UByte < UShort < UInt < ULong

Furthermore, an unsigned integer value may be implicitly coerced to a signed type large
enough to hold any value of the type: UByte to Short, UShort to Int, UInt to Long.
There are no implicit conversions from signed to unsigned numbers, since they cannot
treat negatives properly.

There are no implicit conversions in cases when overflow is possible. For example,
there is no implicit conversion between Int and UInt. If it is necessary to convert
between these types, use n as Int or n as UInt, generally with a test to ensure that
the value will fit and code to handle the case in which it does not.

String conversion. Any value that is an operand of the binary + operator may be
converted to String if the other operand is a String. A conversion to String is
performed by invoking the toString() method.

User defined conversions. The user may define implicit conversion operators from
type A to a container type B by specifying an operator in B’s definition of the form:

public static operator (r: A): T = ...

The return type T should be a subtype of B. The return type need not be specified
explicitly; it will be computed in the usual fashion if it is not. However, it is good
practice for the programmer to specify the return type for such operators explicitly.
The return type can be more specific than simply B, for cases when there is more
information available.

Example: The code for x10.lang.Point contains a conversion from a Rails of
longs to Points of the same length:

11.24. INSTANCEOF 179

public operator (r: Rail[Long]): Point(r.size)

= make(r);

This conversion is used whenever a Rail of integers appears in a context that requires
a Point, such as subscripting. Note that a requires a Point of rank 2 as a subscript,
and that a two-element Rail (like [2,4]) is converted to a Point(2).

val a = new Array[String](Region.make(2..3, 4..5), "hi!");

a([2,4]) = "converted!";

11.24 instanceof

X10 permits types to be used in an in instanceof expression to determine whether an
object is an instance of the given type:

RelationalExp ::= ShiftExp (20.144)
| HasZeroConstraint
| SubtypeConstraint
| RelationalExp < ShiftExp
| RelationalExp > ShiftExp
| RelationalExp <= ShiftExp
| RelationalExp >= ShiftExp
| RelationalExp instanceof Type

In the above expression, Type is any type. At run time, the result of e instanceof T
is true if the value of e is an instance of type T. Otherwise the result is false. This
determination may involve checking that the constraint, if any, associated with the type
is true for the given expression.

For example, 3 instanceof Long{self==x} is an overly-complicated way of say-
ing 3==x.

However, it is a static error if e cannot possibly be an instance of C{c}; the compiler
will reject 1 instanceof Long{self == 2} because 1 can never satisfy Long{self
== 2}. Similarly, 1 instanceof String is a static error, rather than an expression
always returning false.

If x instanceof T returns true for some value x and type T, then x as T will eval-
uate normally.

Limitation: X10 does not currently handle instanceof of generics in the way you
might expect. For example, r instanceof Array[Long{self != 0}] does not test
that every element of r is non-zero; instead, the compiler gives an unsound cast warn-
ing.

180 CHAPTER 11. EXPRESSIONS

11.24.1 Nulls in Constraints in as and instanceof

Both as and instanceof expressions can throw NullPointerExceptions, if the
constraints involve selecting fields or properties of variables which are bound to null.

These operations give some guarantees for any type T, constraint c, and class SomeObj
with an a field:

1. null instanceof T always returns false. It never throws an exception. It
never returns true, not even in cases where null could be assigned to a variable
of type T.

2. null can be assigned to a variable of type SomeObj{self.a==b}, or, more
broadly, to a variable of a constrained object type whose constraint does not
explicitly exclude null. This is the case even though null.a==b would throw
a NullPointerException rather than evaluate to either true ‘ or false.

3. If x instanceof T returns true, then x as T is a cast rather than an explicit
conversion, and will succeed and have static type T.

4. If the static type of x is T, then x instanceof T and x as T will do one of
these:

• Succeed, with x instanceof T returning true, and x as T being a cast
and returning value of type T; or

• Throw a NullPointerException.

• If x==null, then x instanceof T will always return false, and x as T
will either return a null of type T, or, if T has a constraint which tries to
extract a field of x, will throw a NullPointerException.

5. If x instanceof SomeObj{self.a==b} is true, then x.a==b evaluates to
true (rather than a null pointer exception). Indeed, in general, if x instanceof
T{c} succeeds, then cc evaluates to true, where cc is cwith suitable occurrences
of self replaced by x.

11.25 Subtyping expressions

SubtypeConstraint ::= Type <: Type (20.155)
| Type :> Type

The subtyping expression T1 <: T2 evaluates to true if T1 is a subtype of T2.

The expression T1 :> T2 evaluates to true if T2 is a subtype of T1.

The expression T1 == T2 evaluates to true if T1 is a subtype of T2 and if T2 is a
subtype of T1.

11.26. RAIL CONSTRUCTORS 181

Example: Subtyping expressions are particularly useful in giving constraints on
generic types. x10.util.Ordered[T] is an interface whose values can be compared
with values of type T. In particular, T <: x10.util.Ordered[T] is true if values of
type T can be compared to other values of type T. So, if we wish to define a generic
class OrderedList[T], of lists whose elements are kept in the right order, we need
the elements to be ordered. This is phrased as a constraint on T:

class OrderedList[T]{T <: x10.util.Ordered[T]} {

// ...

}

11.26 Rail Constructors

Primary ::= [ArgumentList?]

X10 includes short syntactic forms for constructing Rails. Enclose some expressions
in brackets to put them in a Rail:

val ints <: Rail[Long] = [1,3,7,21];

The expression [e1, . . ., en] produces an n-element Rail[T], where T is the com-
puted common supertype (§4.10) of the types of of the expressions ei.

Example: The type of [0,1,2] is Rail[Long]. The type of [0] is Rail[Long{self==0}].

To make a Rail[Long] containing just a 0, use [0 as Long]. The as Long masks
more detailed type information, such as the fact that 0 is zero.

Example: Occasionally one does actually need Rail[Long{self==0}], or, say,
Rail[Eel{self != null}], a rail of non-null Eels. For these cases, cast one or
more of the elements of the rail to the desired type, and the rail constructor will do the
right thing.

val zero <: Rail[Long{self == 0}]

= [0];

val non1 <: Rail[Long{self != 1}]

= [0 as Long{self != 1}];

val eels <: Rail[Eel{self != null}]

= [new Eel() as Eel{self != null},

new Eel(), new Eel()];

11.27 Parenthesized Expressions

If E is any expression, (E) is an expression which, when evaluated, produces the same
result as E.

182 CHAPTER 11. EXPRESSIONS

Example: The main use of parentheses is to write complex expressions for which the
standard precedence order of operations is not appropriate: 1+2*3 is 7, but (1+2)*3
is 9.

Similarly, but perhaps less familiarly, parentheses can disambiguate other expressions.
In the following code, funny.f is a field-selection expression, and so (funny.f)()
means “select the f field from funny, and evaluate it”. However, funny.f() means
“evaluate the f method on object funny.”

class Funny {

def f () = 1;

val f = () => 2;

static def example() {

val funny = new Funny();

assert funny.f() == 1;

assert (funny.f)() == 2;

}

}

Note that this does not mean that E and (E) are identical in all respects; for example, if
i is an Long variable, i++ increments i, but (i)++ is not allowed. ++ is an assignment;
it operates on variables, not merely values, and (i) is simply an expression whose
value is the same as that of i.

12 Statements

This chapter describes the statements in the sequential core of X10. Statements involv-
ing concurrency and distribution are described in §14.

12.1 Empty statement

The empty statement ; does nothing.

Example: Sometimes, the syntax of X10 requires a statement in some position, but
you do not actually want to do any computation there. The following code searches
the rail a for the value v, assumed to appear somewhere in a, and returns the index at
which it was found. There is no computation to do in the loop body, so we use an empty
statement there.

static def search[T](a: Rail[T], v: T):Long {

var i : Long;

for(i = 0L; a(i) != v; i++)

;

return i;

}

183

184 CHAPTER 12. STATEMENTS

12.2 Local variable declaration

LocVarDecln ::= Mods? VarKeyword VariableDeclrs (20.110)
| Mods? VarDeclsWType
| Mods? VarKeyword FormalDeclrs

LocVarDeclnStmt ::= LocVarDecln ; (20.111)
VarDeclsWType ::= VarDeclWType (20.201)

| VarDeclsWType , VarDeclWType
VariableDeclrs ::= VariableDeclr (20.204)

| VariableDeclrs , VariableDeclr
VariableInitializer ::= Exp (20.205)
FormalDeclrs ::= FormalDeclr (20.78)

| FormalDeclrs , FormalDeclr

Short-lived variables are introduced by local variables declarations, as described in
§12.2. Local variables may be declared only within a block statement (§12.3). The
scope of a local variable declaration is the subsequent statements in the block.

if (a > 1) {

val b = a/2;

var c : Long = 0;

// b and c are defined here

}

// b and c are not defined here.

Variables declared in such statements shadow variables of the same name declared else-
where. A local variable of a given name, say x, cannot shadow another local variable
or parameter named x unless there is an intervening method, constructor, initializer, or
closure declaration.

Example: The following code illustrates both legal and illegal uses of shadowing.
Note that a shadowed field name x can still be accessed as this.x.

class Shadow{

var x : Long;

def this(x:Long) {

// Parameter can shadow field

this.x = x;

}

def example(y:Long) {

val x = "shadows a field";

// ERROR: val y = "shadows a param";

val z = "local";

for (a in [1,2,3]) {

// ERROR: val x = "can’t shadow local var";

}

async {

12.3. BLOCK STATEMENT 185

// ERROR: val x = "can’t shadow through async";

}

val f = () => {

val x = "can shadow through closure";

x

};

class Local {

val f = at(here) { val x = "can here"; x };

def this() { val x = "can here, too"; }

}

}

}

Example: Note that recursive definitions of local variables is not allowed. There are
few useful recursive declarations of objects and structs; x, in the following example,
has no meaningful definition. Recursive declarations of local functions is forbidden,
even though (like f below) there are meaningful uses of it.

val x : Long = x + 1; // ERROR: recursive local declaration

val f : (Long)=>Long

= (n:Long) => (n <= 2) ? 1 : f(n-1) + f(n-2);

// ERROR: recursive local declaration

12.3 Block statement

Block ::= { BlockStmts? } (20.25)
BlockStmts ::= BlockInteriorStmt (20.27)

| BlockStmts BlockInteriorStmt
BlockInteriorStmt ::= LocVarDeclnStmt (20.26)

| ClassDecln
| StructDecln
| TypeDefDecln
| Stmt

A block statement consists of a sequence of statements delimited by “{” and “}”. When
a block is evaluated, the statements inside of it are evaluated in order. Blocks are useful
for putting several statements in a place where X10 asks for a single one, such as the
consequent of an if, and for limiting the scope of local variables.

if (b) {

// This is a block

val v = 1;

S1(v);

S2(v);

}

186 CHAPTER 12. STATEMENTS

12.4 Expression statement

Any expression may be used as a statement.

ExpStmt ::= StmtExp ; (20.63)
StmtExp ::= Assignment (20.152)

| PreIncrementExp
| PreDecrementExp
| PostIncrementExp
| PostDecrementExp
| MethodInvo
| ObCreationExp

The expression statement evaluates an expression. The value of the expression is not
used. Side effects of the expression occur, and may produce results used by following
statements. Indeed, statement expressions which terminate without side effects cannot
have any visible effect on the results of the computation.

Example:

class StmtEx {

def this() {

x10.io.Console.OUT.println("New StmtEx made"); }

static def call() {

x10.io.Console.OUT.println("call!");}

def example() {

var a : Long = 0;

a = 1; // assignment

new StmtEx(); // allocation

call(); // call

}

}

12.5 Labeled statement

LabeledStatement ::= Id : Statement

Statements may be labeled. The label may be used to describe the target of a break
statement appearing within a substatement (which, when executed, ends the labeled
statement), or, in the case of a loop, a continue as well (which, when executed, pro-
ceeds to the next iteration of the loop). The scope of a label is the statement labeled.

Example: The label on the outer for statement allows continue and break state-
ments to continue or break it. Without the label, continue or break would only
continue or break the inner for loop.

12.6. BREAK STATEMENT 187

lbl : for (i in 1..10) {

for (j in i..10) {

if (a(i,j) == 0) break lbl;

if (a(i,j) == 1) continue lbl;

if (a(i,j) == a(j,i)) break lbl;

}

}

In particular, a block statement may be labeled: L:{S}. This allows the use of break
L within S to leave S, which can, if carefully used, avoid deeply-nested ifs.

Example:

multiphase: {

if (!exists(filename)) break multiphase;

phase1(filename);

if (!suitable_for_phase_2(filename)) break multiphase;

phase2(filename);

if (!suitable_for_phase_3(filename)) break multiphase;

phase3(filename);

}

// Now the file has been phased as much as possible

Limitation: Blocks cannot currently be labeled.

12.6 Break statement

BreakStmt ::= break Id? ; (20.29)

An unlabeled break statement exits the currently enclosing loop or switch statement. A
labeled break statement exits the enclosing statement with the given label. It is illegal
to break out of a statement not defined in the current method, constructor, initializer, or
closure. break is only allowed in sequential code.

Example: The following code searches for an element of a C-style two-dimensional
array and breaks out of the loop when it is found:

var found: Boolean = false;

outer: for (i in a.range)

for (j in a(i).range)

if (a(i)(j) == v) {

found = true;

break outer;

}

188 CHAPTER 12. STATEMENTS

12.7 Continue statement

ContinueStmt ::= continue Id? ; (20.50)

An unlabeled continue skips the rest of the current iteration of the innermost enclos-
ing loop, and proceeds on to the next. A labeled continue does the same to the
enclosing loop with that label. It is illegal to continue a loop not defined in the current
method, constructor, initializer, or closure. continue is only allowed in sequential
code.

12.8 If statement

IfThenStmt ::= if (Exp) Stmt (20.93)
IfThenElseStmt ::= if (Exp) Stmt else Stmt (20.92)

An if statement comes in two forms: with and without an else clause.

The if-then statement evaluates a condition expression, which must be of type Boolean.
If the condition is true, it evaluates the then-clause. If the condition is false, the if-
then statement completes normally.

The if-then-else statement evaluates a Boolean expression and evaluates the then-
clause if the condition is true; otherwise, the else-clause is evaluated.

As is traditional in languages derived from Algol, the if-statement is syntactically am-
biguous. That is,

if (B1) if (B2) S1 else S2

could be intended to mean either

if (B1) { if (B2) S1 else S2 }

or

if (B1) {if (B2) S1} else S2

X10, as is traditional, attaches an else clause to the most recent if that doesn’t have
one. This example is interpreted as if (B1) { if (B2) S1 else S2 }.

12.9. SWITCH STATEMENT 189

12.9 Switch statement

SwitchStmt ::= switch (Exp) SwitchBlock (20.162)
SwitchBlock ::= { SwitchBlockGroups? SwitchLabels? } (20.157)
SwitchBlockGroups ::= SwitchBlockGroup (20.159)

| SwitchBlockGroups SwitchBlockGroup
SwitchBlockGroup ::= SwitchLabels BlockStmts (20.158)
SwitchLabels ::= SwitchLabel (20.161)

| SwitchLabels SwitchLabel
SwitchLabel ::= case ConstantExp : (20.160)

| default :

A switch statement evaluates an index expression and then branches to a case whose
value is equal to the value of the index expression. If no such case exists, the switch
branches to the default case, if any.

Statements in each case branch are evaluated in sequence. At the end of the branch,
normal control-flow falls through to the next case, if any. To prevent fall-through, a
case branch may be exited using a break statement.

The index expression must be of type Int. Case labels must be of type Int, Byte, or
Short, and must be compile-time constants. Case labels cannot be duplicated within
the switch statement.

Example: In this switch, case 1 falls through to case 2. The other cases are
separated by breaks.

switch (i) {

case 1n: println("one, and ");

case 2n: println("two");

break;

case 3n: println("three");

break;

default: println("Something else");

break;

}

12.10 While statement

WhileStmt ::= while (Exp) Stmt (20.208)

A while statement evaluates a Boolean-valued condition and executes a loop body
if true. If the loop body completes normally (either by reaching the end or via a
continue statement with the loop header as target), the condition is reevaluated and
the loop repeats if true. If the condition is false, the loop exits.

190 CHAPTER 12. STATEMENTS

Example: A loop to execute the process in the Collatz conjecture (a.k.a. 3n+1 prob-
lem, Ulam conjecture, Kakutani’s problem, Thwaites conjecture, Hasse’s algorithm,
and Syracuse problem) can be written as follows:

while (n > 1) {

n = (n % 2 == 1) ? 3*n+1 : n/2;

}

12.11 Do–while statement

DoStmt ::= do Stmt while (Exp) ; (20.56)

A do-while statement executes the loop body, and then evaluates a Boolean-valued
condition expression. If true, the loop repeats. Otherwise, the loop exits.

12.12 For statement

ForStmt ::= BasicForStmt (20.74)
| EnhancedForStmt

BasicForStmt ::= for (ForInit? ; Exp? ; ForUpdate?) Stmt (20.22)
ForInit ::= StmtExpList (20.73)

| LocVarDecln
ForUpdate ::= StmtExpList (20.75)
StmtExpList ::= StmtExp (20.153)

| StmtExpList , StmtExp
EnhancedForStmt ::= for (LoopIndex in Exp) Stmt (20.58)

| for (Exp) Stmt

for statements provide bounded iteration, such as looping over a list. It has two forms:
a basic form allowing near-arbitrary iteration, a la C, and an enhanced form designed
to iterate over a collection.

A basic for statement provides for arbitrary iteration in a somewhat more organized
fashion than a while. The loop for(init; test; step)body is similar to:

{

init;

while(test) {

body;

step;

}

}

12.12. FOR STATEMENT 191

except that continue statements which continue the for loop will perform the step,
which, in the while loop, they will not do.

init is performed before the loop, and is traditionally used to declare and/or initialize
the loop variables. It may be a single variable binding statement, such as var i:Long
= 0 or var i:Long=0, j:Long=100. (Note that a single variable binding statement
may bind multiple variables.) Variables introduced by init may appear anywhere
in the for statement, but not outside of it. Or, it may be a sequence of expression
statements, such as i=0, j=100, operating on already-defined variables. If omitted,
init does nothing.

test is a Boolean-valued expression; an iteration of the loop will only proceed if test
is true at the beginning of the loop, after init on the first iteration or after step on
later ones. If omitted, test defaults to true, giving a loop that will run until stopped
by some other means such as break, return, or throw.

step is performed after the loop body, between one iteration and the next. It tradition-
ally updates the loop variables from one iteration to the next: e.g., i++ and i++,j--.
If omitted, step does nothing.

body is a statement, often a code block, which is performed whenever test is true. If
omitted, body does nothing.

An enhanced for statement is used to iterate over a collection, or other structure de-
signed to support iteration by implementing the interface Iterable[T]. The loop
variable must be of type T, or destructurable from a value of type T (§5). Each iteration
of the loop binds the iteration variable to another element of the collection. The loop
for(x in c)S behaves like:

val iterator: Iterator[T] = c.iterator();

while (iterator.hasNext()) {

val x : T = iterator.next();

S();

}

A number of library classes implement Iterable, and thus can be iterated over. For
example, iterating over a Rail iterates the elements stored in the rail.

The type of the loop variable may be supplied as x <: T. In this case the iterable c
must have type Iterable[U} for some U <: T, and x will be given the type U.

Example: This loop adds up the elements of a List[Long]. Note that iterating over
a list yields the elements of the list, as specified in the List API.

static def sum(a:x10.util.List[Long]):Long {

var s : Long = 0;

for(x in a) s += x;

return s;

}

The following code sums the elements of an integer rail.

192 CHAPTER 12. STATEMENTS

static def sum(a: Rail[Long]): Long {

var s : Long = 0;

for(v in a) s += v;

return s;

}

Iteration over a LongRange is quite common. This allows looping while varying a long
index:

var sum : Long = 0;

for(i in 1..10) sum += i;

assert sum == 55;

Iteration variables have the for statement as scope. They shadow other variables of
the same names.

12.13 Return statement

ReturnStmt ::= return Exp? ; (20.146)

Methods and closures may return values using a return statement. void methods
must return without a value; other methods must return a value of the return type.

Example: The following code illustrates returning values from a closure and a
method. The return inside of closure returns from closure, not from method.

def method(x:Long) {

val closure = (y:Long) => {return x+y;};

val res = closure(0);

assert res == x;

return res == x;

}

12.14 Assert statement

AssertStmt ::= assert Exp ; (20.10)
| assert Exp : Exp ;

The statement assert E checks that the Boolean expression E evaluates to true, and,
if not, throws an x10.lang.Error exception. The annotated assertion statement
assert E : F; checks E, and, if it is false, throws an x10.lang.Error exception
with F’s value attached to it.

Example: The following code compiles properly.

12.15. EXCEPTIONS IN X10 193

class Example {

public static def main(argv:Rail[String]) {

val a = 1;

assert a != 1 : "Changed my mind about a.";

}

}

However, when run, it prints a stack trace starting with

x10.lang.Error: Changed my mind about a.

12.15 Exceptions in X10

X10 programs can throw exceptions to indicate unusual or problematic situations; this
is abrupt termination. Exceptions, as data values, are instances of x10.lang.CheckedThrowable
or its subclasses. Note that for ease of implementation X10 does not permit subclasses
of x10.lang.CheckedThrowable to be generic, that is, take type parameters.

Exceptions may be thrown intentionally with the throw statement. Many primitives
and library functions throw exceptions if they encounter problems; e.g., dividing by
zero throws an instance of x10.lang.ArithmeticException.

When an exception is thrown, dynamically enclosing try-catch blocks in the same
activity can attempt to handle it. If the throwing statement in inside some try clause,
and some matching catch clause catches that type of exception, the corresponding
catch body will be executed, and the process of throwing is finished. If no statically-
enclosing try-catch block can handle the exception, the current method call returns
(abnormally), throwing the same exception from the point at which the method was
called.

This process continues until the exception is handled or there are no more calling meth-
ods in the activity. In the latter case, the activity will terminate abnormally, and the
exception will propagate to the activity’s root; see §14.1 for details.

X10 supports both checked and unchecked exceptions. Methods are obligated to de-
clare via a throws clause any checked exceptions that they might throw. However,
in X10, the class library design favors unchecked exceptions: virtually all excep-
tions in the standard library are unchecked. Checked exceptions are defined to be
any subclass of x10.lang.CheckedThrowable that are not also subclasses of either
x10.lang.Exception or x10.lang.Error. All of the concrete exception classes in
the X10 standard library are subclasses of either Exception or Error.

12.16 Throw statement

ThrowStmt ::= throw Exp ; (20.163)

194 CHAPTER 12. STATEMENTS

throw E throws an exception whose value is E, which must be an instance of a subtype
of x10.lang.CheckedThrowable.

Example: The following code checks if an index is in range and throws an exception
if not.

if (i < 0 || i >= x.size)

throw new MyIndexOutOfBoundsException();

12.17 Try–catch statement

TryStmt ::= try Block Catches (20.164)
| try Block Catches? Finally

Catches ::= CatchClause (20.32)
| Catches CatchClause

CatchClause ::= catch (Formal) Block (20.31)
Finally ::= finally Block (20.71)

Exceptions are handled with a try statement. A try statement consists of a try block,
zero or more catch blocks, and an optional finally block.

First, the try block is evaluated. If the block throws an exception, control transfers to
the first matching catch block, if any. A catch matches if the value of the exception
thrown is a subclass of the catch block’s formal parameter type.

The finally block, if present, is evaluated on all normal and exceptional control-flow
paths from the try block. If the try block completes normally or via a return, a
break, or a continue statement, the finally block is evaluated, and then control
resumes at the statement following the try statement, at the branch target, or at the
caller as appropriate. If the try block completes exceptionally, the finally block is
evaluated after the matching catch block, if any, and when and if the finally block
finishs normally, the exception is rethrown.

The parameter of a catch block has the block as scope. It shadows other variables of
the same name.

Example: The example() method below executes without any assertion errors

class Example {

class ThisExn extends Exception {}

class ThatExn extends Exception {}

var didFinally : Boolean = false;

def example(b:Boolean) {

try {

throw b ? new ThatExn() : new ThisExn();

}

catch(ThatExn) {return true;}

12.18. ASSERT 195

catch(ThisExn) {return false;}

finally {

this.didFinally = true;

}

}

static def doExample() {

val e = new Example();

assert e.example(true);

assert e.didFinally == true;

}

}

Limitation: Constraints on exception types in catch blocks are not currently sup-
ported.

12.18 Assert

The assert statement assert B; checks that the Boolean expression B evaluates to
true. If so, computation proceeds. If not, it throws x10.lang.AssertionError.

The extended form assert B:A; is similar, but provides more debugging information.
The value of the expression A is available as part of the AssertionError, e.g., to be
printed on the console.

Example: assert is useful for confirming properties that you believe to be true and
wish to rely on. In particular, well-chosen asserts make a program robust in the face
of code changes and unexpected uses of methods. For example, the following method
compute percent differences, but asserts that it is not dividing by zero. If the mean is
zero, it throws an exception, including the values of the numbers as potentially useful
debugging information.

static def percentDiff(x:Double, y:Double) {

val diff = x-y;

val mean = (x+y)/2;

assert mean != 0.0 : [x,y];

return Math.abs(100 * (diff / mean));

}

At times it may be considered important not to check assert statements; e.g., if the
test is expensive and the code is sufficiently well-tested. The -noassert command
line option causes the compiler to ignore all assert statements.

13 Places

An X10 place is a repository for data and activities, corresponding loosely to a process
or a processor. Places induce a concept of “local”. The activities running in a place may
access data items located at that place with the efficiency of on-chip access. Accesses to
remote places may take orders of magnitude longer. X10’s system of places is designed
to make this obvious. Programmers are aware of the places of their data, and know
when they are incurring communication costs, but the actual operation to do so is easy.
It’s not hard to use non-local data; it’s simply hard to to do so accidentally.

The set of places available to a computation is determined at the time that the program
is started, and remains fixed through the run of the program. See the README docu-
mentation on how to set command line and configuration options to set the number of
places.

Places are first-class values in X10, as instances x10.lang.Place. Place provides
a number of useful ways to query places, such as Place.places(), which returns a
PlaceGroup of the places available to the current run of the program.

Objects and structs are created in a single place – the place that the constructor call
was running in. They cannot change places. They can be copied to other places, and
the special library struct GlobalRef allows values at one place to point to values at
another.

13.1 The Structure of Places

Places are numbered starting at 0; the number is stored in the field pl.id. The method
Place.numPlaces() returns the number of Places in the current execution of the
program. The program starts by executing a main method at Place.FIRST_PLACE,
which is Place.places()(0); see §14.4.

13.2 here

The variable here is always bound to the place at which the current computation is
running, in the same way that this is always bound to the instance of the current

196

13.3. AT: PLACE CHANGING 197

class (for non-static code), or self is bound to the instance of the type currently being
constrained. here may denote different places in the same method body or even the
same expression, due to place-shifting operations.

This is not unusual for automatic variables: self denotes two different values (one
List, one Long) when one describes a non-null list of non-zero numbers as List[Long{self!=0}]{self!=null}.
In the following code, here has one value at h0, and a different one at h1 (unless there
is only one place).

val h0 = here;

val world = Place.places();

at (world.next(here)) {

val h1 = here;

assert (h0 != h1);

}

(Similar examples show that self and this have the same behavior: self can be
shadowed by constrained types appearing inside of type constraints, and this by inner
classes.)

The following example looks through a list of references to Things. It finds those
references to things that are here, and deals with them.

public static def deal(things: List[GlobalRef[Thing]]) {

for(gr in things) {

if (gr.home == here) {

val grHere =

gr as GlobalRef[Thing]{gr.home == here};

val thing <: Thing = grHere();

dealWith(thing);

}

}

}

13.3 at: Place Changing

An activity may change place synchronously using the at statement or at expression.
Like any distributed operation, it is potentially expensive, as it requires, at a minimum,
two messages and the copying of all data used in the operation, and must be used with
care – but it provides the basis for distributed programming in X10.

AtStmt ::= at (Exp) Stmt (20.20)
AtExp ::= at (Exp) ClosureBody (20.19)

The PlaceExp must be an expression of type Place or some subtype. For program-
ming convenience, if PlaceExp is of type GlobalRef[T] then the home property of
GlobalRef is used as the value of PlaceExp.

198 CHAPTER 13. PLACES

An activity may also spawn an asynchronous remote child activity. For optimal perfor-
mance, it is desirable for the spawning activity to continue executing locally without
waiting for the message creating the remote child activity to arrive at the destination
place. X10 supports this “fire-and-forget” style of remote activity creation by special
handling of the combination of at (P) async S. In particular, any exceptions raised
during deserialization (§13.3.2) at the remote place will be reported asynchronously (as
if they occured after the remote activity async S was spawned).

Example: The following example creates a rail a located here, and copies it to
another place. a in the second place refers to the copy. The copy is modified and
examined. After the at finishes, the original is also examined, and (since only the
copy, not the original, was modified) is observed to be unchanged.

val a = [1,2,3];

val world = Place.places();

at(world.next(here)) {

a(1) = 4;

assert a(0)==1 && a(1)==4 && a(2)==3;

}

assert a(0)==1 && a(1)==2 && a(2)==3;

13.3.1 Copying Values

An activity executing at(q)S at a place p evaluates q at place p, which should be a
Place. It then moves to place q to execute S. The values variables that S refers to
are copied (§13.3.2) to q, and bound to the variables of the same name. If the at is
inside of an instance method and S uses this, this is copied as well. Note that a field
reference this.fld or a method call this.meth() will cause this to be copied —
as will their abbreviated forms fld and meth(), despite the lack of a visible this.

Note that the value obtained by evaluating q is not necessarily distinct from p (e.g., q
may be here). This does not alter the behavior of at. at(here)S will copy all the
values mentioned in S, even though there is no actual change of place, and even though
the original values already exist there.

On normal termination of S control returns to p and execution is continued with the
statement following at (q) S. If S terminates abruptly with exception E, E is seri-
alized into a buffer, the buffer is communicated to p where it is deserialized into an
exception E1 and at (p) S throws E1.

Since at(p) S is a synchronous construct, usual control-flow constructs such as break,
continue, return and throw are permitted in S. All concurrency related constructs
– async, finish, atomic, when are also permitted.

The at-expression at(p)E is similar, except that, in the case of normal termination of
E, the value that E produces is serialized into a buffer, transported to the starting place,
and deserialized, and the value of the at-expression is the result of deserialization.

Limitation: X10 does not currently allow break, continue, or return to exit from
an at.

13.3. AT: PLACE CHANGING 199

13.3.2 How at Copies Values

The values mentioned in S are copied to place p by at(p)S as follows.

First, the original-expressions are evaluated to give a vector of X10 values. Con-
sider the graph of all values reachable from these values (except for transient fields
(§13.3.5, GlobalRefs (§13.3.6); also custom serialization (§13.3.2 may alter this be-
havior)).

Second this graph is serialized into a buffer and transmitted to place q. Third, the vector
of X10 values is re-created at q by deserializing the buffer at q. Fourth, S is executed at
q, in an environment in which each variable v declared in F refers to the corresponding
deserialized value.

Note that since values accessed across an at boundary are copied, the programmer may
wish to adopt the discipline that either variables accessed across an at boundary con-
tain only structs or stateless objects, or the methods invoked on them do not access any
mutable state on the objects. Otherwise the programmer has to ensure that side effects
are made to the correct copy of the object. For this the struct x10.lang.GlobalRef[T]
is often useful.

Serialization and deserialization.

The X10 runtime provides a default mechanism for serializing/deserializing an ob-
ject graph with a given set of roots. This mechanism may be overridden by the pro-
grammer on a per class or struct basis as described in the API documentation for
x10.io.CustomSerialization. The default mechanism performs a deep copy of
the object graph (that is, it copies the object or struct and, recursively, the values con-
tained in its fields), but does not traverse or copy transient fields. transient fields
are omitted from the serialized data. On deserialization, transient fields are initial-
ized with their default values (§4.7). The types of transient fields must therefore
have default values.

The default serialization/deserialization mechanism will not (modulo error conditions
like OutOfMemoryError) throw any exceptions. However, user code running during
serialization/deserialization via CustomSerialization may raise exceptions. These
exceptions are handled like any other exception raised during the execution of an X10
activity. However, due to the special treatment of at (p) async S (§13.3) any ex-
ception raised during deserialization will be handled as if it was raised by async S,
not by the at statement itself.

A struct s of type x10.lang.GlobalRef[T] 13.3.6 is serialized as a unique global ref-
erence to its contained object o (of type T). Please see the documentation of x10.lang.GlobalRef[T]
for more details.

13.3.3 at and Activities

at(p)S does not start a new activity. It should be thought of as transporting the current
activity to p, running S there, and then transporting it back. async is the only construct

200 CHAPTER 13. PLACES

in the language that starts a new activity. In different contexts, each one of the following
combination of async and at makes sense: (1) at(p) async S and, (2) async
at(p) S. In the first case, the expression p is evaluated synchronously by the current
activity and then a single remote async is spawned. In the second case, p is semantically
required to be evaluated asynchronously with the parent async as it is contained in the
body of an async. Then the evaluation of S is transported to the new place. In most
cases, the first form (at(p) async S) is preferred to second one (async at(p) S),
since it enables a more efficient runtime implementation (it avoids the spawning a local
async solely to evaluate p).

Since at(p) S does not start a new activity, Smay contain constructs which only make
sense within a single activity. For example,

for(x in globalRefsToThings)

if (at(x.home) x().isNice())

return x();

returns the first nice thing in a collection. If we had used async at(x.home), this
would not be allowed; you can’t return from an async.

Limitation: X10 does not currently allow break, continue, or return to exit from
an at.

13.3.4 Copying from at

at(p)S copies data required in S, and sends it to place p, before executing S there.
The only things that are not copied are values only reachable through GlobalRefs and
transient fields, and data omitted by custom serialization.

Example:

val c = new Cell[Long](9); // (1)

at (here) { // (2)

assert(c() == 9); // (3)

c.set(8); // (4)

assert(c() == 8); // (5)

}

assert(c() == 9); // (6)

The at statement copies the Cell and its contents. After (1), c is a Cell containing 9;
call that cell c1 At (2), that cell is copied, resulting in another cell c2 whose contents
are also 9, as tested at (3). (Note that the copying behavior of at happens even when
the destination place is the same as the starting place— even with at(here).) At (4),
the contents of c2 are changed to 8, as confirmed at (5); the contents of c1 are of
course untouched. Finally, at (c), outside the scope of the at started at line (2), c
refers to its original value c1 rather than the copy c2.

The at statement induces a deep copy. Not only does it copy the values of variables, it
copies values that they refer to through zero or more levels of reference. Structures are

13.3. AT: PLACE CHANGING 201

preserved as well: if two fields x.f and x.g refer to the same object o1 in the original,
then x.f and x.g will both refer to the same object o2 in the copy.

Example: In the following variation of the preceding example, a’s original value a1
is a rail with two references to the same Cell[Long] c1. The fact that a1(0) and a1(1)
are both identical to c1 is demonstrated in (A)-(C), as a1(0) is modified and a1(1) is
observed to change. In (D)-(F), the copy a2 is tested in the same way, showing that
a2(0) and a2(1) both refer to the same Cell[Long] c2. However, the test at (G) shows
that c2 is a different cell from c1, because changes to c2 did not propagate to c1.

val c = new Cell[Long](5);

val a : Rail[Cell[Long]] = [c,c as Cell[Long]];

assert(a(0)() == 5 && a(1)() == 5); // (A)

c.set(6); // (B)

assert(a(0)() == 6 && a(1)() == 6); // (C)

at(here) {

assert(a(0)() == 6 && a(1)() == 6); // (D)

c.set(7); // (E)

assert(a(0)() == 7 && a(1)() == 7); // (F)

}

assert(a(0)() == 6 && a(1)() == 6); // (G)

13.3.5 Copying and Transient Fields

Recall that fields of classes and structs marked transient are not copied by at. In-
stead, they are set to the default values for their types. Types that do not have default
values cannot be used in transient fields.

Example: Every Trans object has an a-field equal to 1. However, despite the
initializer on the b field, it is not the case that every Trans has b==2. Since b is
transient, when the Trans value this is copied at at(here){...} in example(),
its b field is not copied, and the default value for an Long, 0, is used instead. Note that
we could not make a transient field c : Long{c != 0}, since the type has no default
value, and copying would in fact set it to zero.

class Trans {

val a : Long = 1;

transient val b : Long = 2;

//ERROR: transient val c : Long{c != 0} = 3;

def example() {

assert(a == 1 && b == 2);

at(here) {

assert(a == 1 && b == 0);

}

}

}

202 CHAPTER 13. PLACES

13.3.6 Copying and GlobalRef

A GlobalRef[T] (say g) contains a reference to a value v of type T, in a form which
can be transmitted, and a Place g.home indicating where the value lives. When a
GlobalRef is serialized an opaque, globally unique handle to v is created.

Example: The following example does not copy the value huge. However, huge
would have been copied if it had been put into a Cell, or simply used directly.

val huge = "A potentially big thing";

val href = GlobalRef(huge);

at (here) {

use(href);

}

}

Values protected in GlobalRefs can be retrieved by the application operation g(). g()
is guarded; it can only be called when g.home == here. If you want to do anything
other than pass a global reference around or compare two of them for equality, you
need to placeshift back to the home place of the reference, often with at(g.home).

Example: The following program, for reasons best known to the programmer, modifies
the command-line argument array.

public static def main(argv:Rail[String]) {

val argref = GlobalRef[Rail[String]](argv);

val world = Place.places();

at(world.next(here))

use(argref);

}

static def use(argref : GlobalRef[Rail[String]]) {

at(argref) {

val argv = argref();

argv(0) = "Hi!";

}

}

There is an implicit coercion from GlobalRef[T] to Place, so at(argref)S goes to
argref.home.

13.3.7 Warnings about at

There are two dangers involved with at:

• Careless use of at can result in copying and transmission of very large data
structures. In particular, it is very easy to capture this – a field reference will
do it – and accidentally copy everything that this refers to, which can be very
large. A disciplined use of copy specifiers to make explicit just what gets copied
can ameliorate this issue.

13.3. AT: PLACE CHANGING 203

• As seen in the examples above, a local variable reference xmay refer to different
objects in different nested at scopes. The programmer must either ensure that a
variable accessed across an at boundary has no mutable state or be prepared to
reason about which copy gets modified. A disciplined use of copy specifiers to
give different names to variables can ameliorate this concern.

14 Activities

An activity is a statement being executed, independently, with its own local variables;
it may be thought of as a very light-weight thread. An X10 computation may have
many concurrent activities executing at any give time. All X10 code runs as part of an
activity; when an X10 program is started, the main method is invoked in an activity,
called the root activity.

Activities progress by executing control structures. For example, when(x==0); blocks
the current activity until some other activity sets x to zero. However, activities deter-
mine the loca at which they may be blocked and resumed, using when and similar
constructs. There are no means by which one activity can arbitrarily interrupt, block,
kill or resume another.

An activity may be running, blocked on some condition or terminated. An activity
terminates when it has no more statements to execute; it terminates normally (abruptly)
if the last statement it executes terminates normally (abruptly) (§14.1).

Activities can be long-running, and may access a lot of data. In particular they can call
recursive methods (and therefore have runtime stacks). However, activities can also
perform very few actions, such as incrementing some variables.

An activity may asynchronously and in parallel launch activities. Every activity except
the initial main activity is spawned by another. Thus, at any instant, the activities in a
program form a tree.

X10 uses this tree in crucial ways. First is the distinction between local termination and
global termination of a statement. The execution of a statement by an activity is said
to terminate locally when the activity has finished all its computation. (For instance
the creation of an asynchronous activity terminates locally when the activity has been
created.) It is said to terminate globally when it has terminated locally and all activities
that it may have spawned have, recursively, terminated globally. For example, consider:

async {s1();}

async {s2();}

The primary activity spawns two child activities and then terminates locally, very
quickly. The child activities may take arbitrary amounts of time to terminate (and may
spawn grandchildren). When s1(), s2(), and all their descendants terminate locally,
then the primary activity terminates globally.

204

14.1. THE X10 ROOTED EXCEPTION MODEL 205

The program as a whole terminates when the root activity terminates globally. In par-
ticular, X10 does not permit the creation of daemon threads—threads that outlive the
lifetime of the root activity. We say that an X10 computation is rooted (§14.4).

Future Extensions. We may permit the initial activity to be a daemon activity to
permit reactive computations, such as webservers, that may not terminate.

14.1 The X10 rooted exception model

The rooted nature of X10 computations permits the definition of a rooted exception
model. In multi-threaded programming languages there is a natural parent-child re-
lationship between a thread and a thread that it spawns. Typically the parent thread
continues execution in parallel with the child thread. Therefore the parent thread can-
not serve to catch any exceptions thrown by the child thread.

The presence of a root activity and the concept of global termination permits X10 to
adopt a more powerful exception model. In any state of the computation, say that
an activity A is a root of an activity B if A is an ancestor of B and A is blocked at
a statement (such as the finish statement §14.3) awaiting the termination of B (and
possibly other activities). For every X10 computation, the root-of relation is guaranteed
to be a tree. The root of the tree is the root activity of the entire computation. If A is the
nearest root of B, the path from A to B is called the activation path for the activity.1

We may now state the exception model for X10. An uncaught exception propagates
up the activation path to its nearest root activity, where it may be handled locally or
propagated up the root-of tree when the activity terminates (based on the semantics of
the statement being executed by the activity).2 There is always a good place to put a
try-catch block to catch exceptions thrown by an asynchronous activity.

14.2 async: Spawning an activity

Asynchronous activities serve as a single abstraction for supporting a wide range of
concurrency constructs such as message passing, threads, DMA, streaming, and data
prefetching. (In general, asynchronous operations are better suited for supporting scal-
ability than synchronous operations.)

An activity is created by executing the async statement:

AsyncStmt ::= async ClockedClause? Stmt (20.15)
| clocked async Stmt

ClockedClause ::= clocked Arguments (20.39)

1Note that depending on the state of the computation the activation path may traverse activities that are
running, blocked or terminated.

2In X10 v2.4 the finish statement is the only statement that marks its activity as a root activity. Future
versions of the language may introduce more such statements.

206 CHAPTER 14. ACTIVITIES

The basic form of async is async S, which starts a new activity located here execut-
ing S. (For the clocked form, see §15.4.)

Multiple activities launched by a single activity in a place are not ordered in any way.
They are added to the set of activities running in the place and will be executed based
on the local scheduler’s decisions. If some particular sequencing of events is needed,
when, atomic, finish, clocks, and other X10 constructs can be used. X10 implemen-
tations are not required to have fair schedulers, though every implementation should
make a best faith effort to ensure that every activity eventually gets a chance to make
forward progress.

The statement in the body of an async is subject to the restriction that it must be
acceptable as the body of a void method for an anonymous inner class declared at that
point in the code. For example, it may reference val variables in lexically enclosing
scopes, but not var variables. Similarly, it cannot break or continue surrounding
loops.

14.3 Finish

The statement finish S converts global termination to local termination.

FinishStmt ::= finish Stmt (20.72)
| clocked finish Stmt

An activity A executes finish S by executing S and then waiting for all activities
spawned by S (directly or indirectly, here or at other places) to terminate. An activity
may terminate normally, or abruptly, i.e. by throwing an exception. All exceptions
thrown by spawned activities are caught and accumulated.

finish S terminates locally when all activities spawned by S terminate globally (ei-
ther abruptly or normally). If S terminates normally, then finish S terminates nor-
mally and A continues execution with the next statement after finish S. If S or one of
the activities spawned by it terminate abruptly, then finish S terminates abruptly and
throws a single exception, of type x10.lang.MultipleExceptions, formed from
the collection of exceptions accumulated at finish S.

Thus finish S statement serves as a collection point for uncaught exceptions gener-
ated during the execution of S.

Note that repeatedly finishing a statement has little effect after the first finish:
finish finish S is indistinguishable from finish S if S terminates normally. If S
throws exceptions, finish S collects the exceptions and wraps them in a MultipleExceptions,
whereas finish finish S does the same, and then puts that MultipleExceptions
inside of a second MultipleExceptions.

14.4. INITIAL ACTIVITY 207

14.4 Initial activity

An X10 computation is initiated from the command line on the presentation of a class
or struct name C. The container must have a main method:

public static def main(a: Rail[String]):void

method, otherwise an exception is thrown and the computation terminates. The single
statement

finish async at (Place.FIRST_PLACE) {

C.main(s);

}

is executed where s is a one-dimensional Rail of strings created from the command
line arguments. This single activity is the root activity for the entire computation. (See
§13 for a discussion of places.)

14.5 Ateach statements

Deprecated: The ateach construct is deprecated.

AtEachStmt ::= ateach (LoopIndex in Exp) ClockedClause? Stmt (20.18)
| ateach (Exp) Stmt

LoopIndexDeclr ::= Id HasResultType? (20.113)
| [IdList] HasResultType?

| Id [IdList] HasResultType?

LoopIndex ::= Mods? LoopIndexDeclr (20.112)
| Mods? VarKeyword LoopIndexDeclr

In ateach(p in D) S, Dmust be either of type Dist (see §16.4.3) or of type DistArray[T]
(see §16), and p will be of type Point (see §16.3.1). If D is an DistArray[T], then
ateach (p in D)S is identical to ateach(p in D.dist)S; the iteration is over the
array’s underlying distribution.

Instead of writing ateach (p in D) S the programmer could write

for (place in D.places()) at (place) async {

for (p in D|here) async {

S(p);

}

}

For each point p in D, statement S is executed concurrently at place D(p).

break and continue statements may not be applied to ateach.

208 CHAPTER 14. ACTIVITIES

14.6 vars and Activities

X10 restricts the use of local var variables in activities, to make programs more deter-
ministic. Specifically, a local var variable x defined outside of async S cannot appear
inside async S unless there is a finish surrounding async S with the definition of
x outside of it.

Example: The following code is fine; the definition of result appears outside of the
finish block:

var result : Long = 0;

finish {

async result = 1;

}

assert result == 1;

This code is deterministic: the async will finish before the assert starts, and the
assert’s test will be true.

However, without the finish, the code would not compile in X10. If it were allowed
to compile, the activity might finish or might not finish before the println, and the
program would not be deterministic.

14.7 Atomic blocks

X10’s atomic blocks (atomic S and when (c) S) provide a high-level construct for
coordinating the mutation of shared data. An atomic block is executing as if in a single
step, with respect to atomic blocks executed by all other activities in the same place.
That is, all atomic blocks execute in a serializable order. Hence no atomic block can
see the intermediate state within the execution of some other atomic block.

Code executed inside of atomic S and when(E)S is subject to certain restrictions. A
violation of these restrictions causes an IllegalOperationException to be thrown
at the point of the violation.

• S may not spawn another activity.

• S may not use any blocking statements; when, Clock.advanceAll(), finish.
(The use of a nested atomic is permitted.)

• S may not force() a Future.

• S may not use at expressions.

That is S must be sequential, single-place and non-blocking.

A programmer may use atomic blocks to guarantee that invariants of shared data-
structures are maintained even as they are being accessed simultaneously by multiple

14.7. ATOMIC BLOCKS 209

activities running in the same place. An X10 program in which all accesses (both reads
and writes) of shared variables appear in atomic or when blocks is guaranteed to use
all shared variables atomically. Equivalently, if two accesses to some shared variable
v could collide at runtime, and one is in an atomic block, then the other must be in an
atomic block as well to guarantee atomicity of the accesses to v. If some accesses to
shared variables are not protected by atomic or when, then race conditions or dead-
locks may occur. In particular, atomic blocks at the same place are atomic with respect
to each other. They may not be atomic with respect to non-atomic code, or with respect
to atomic sections at different places.

AtomicStmt ::= atomic Stmt (20.21)
WhenStmt ::= when (Exp) Stmt (20.207)

Example: Consider a class Redund[T], which encapsulates a list list and, (redun-
dantly) keeps the size of the list in a second field size. Then r:Redund[T] has the
invariant r.list.size() == r.size, which must be true at any point at which no
method calls on r are active.

If the add method on Redund (which adds an element to the list) were defined as:

def add(x:T) { // Incorrect

this.list.add(x);

this.size = this.size + 1;

}

Then two activities simultaneously adding elements to the same r could break the in-
variant. Suppose that r starts out empty. Let the first activity perform the list.add,
and compute this.size+1, which is 1, but not store it back into this.size yet. (At
this point, r.list.size()==1 and r.size==0; the invariant expression is false, but,
as the first call to r.add() is active, the invariant does not need to be true – it only
needs to be true when the call finishes.) Now, let the second activity do its call to add
to completion, which finishes with r.size==1. (As before, the invariant expression is
false, but a call to r.add() is still active, so the invariant need not be true.) Finally,
let the first activity finish, which assigns the 1 computed before back into this.size.
At the end, there are two elements in r.list, but r.size==1. Since there are no calls
to r.add() active, the invariant is required to be true, but it is not.

In this case, the invariant can be maintained by making the increment atomic. Doing
so forbids that sequence of events; the atomic block cannot be stopped partway.

def add(x:T) {

atomic {

this.list.add(x);

this.size = this.size + 1;

}

}

210 CHAPTER 14. ACTIVITIES

14.7.1 Unconditional atomic blocks

The simplest form of an atomic block is the unconditional atomic block: atomic
S. it executes S as if in a single step with respect to all other concurrently executing
atomic blocks. S may throw an exception; when control leaves atomic S the side-
effects executed so far are made visible to other atomic blocks. The programmer may
surround S with a try/finally block and try to undo assignments when an exception
is thrown.

Atomic blocks are closely related to non-blocking synchronization constructs [7], and
can be used to implement non-blocking concurrent algorithms.

Note an important property of an (unconditional) atomic block:

atomic {s1; atomic s2} = atomic {s1; s2} (14.1)

Unconditional atomic blocks do not introduce deadlocks. They may exhibit all the bad
behavior of sequential programs, including throwing exceptions and running forever,
but they are guaranteed not to deadlock.

Example: The following class method implements a (generic) compare and swap
(CAS) operation:

var target:Any = null;

public atomic def CAS(old1: Any, y: Any):Boolean {

if (target.equals(old1)) {

target = y;

return true;

}

return false;

}

14.7.2 Conditional atomic blocks

Conditional atomic blocks are of the form when(b)S; b is called the guard, and S the
body.

An activity executing such a statement suspends until such time as the guard is true in
the current state. In that state, the body is executed. The checking of the guards and
the execution of the corresponding guarded statement is done atomically.

X10 does not guarantee that a conditional atomic block will execute if its condition
holds only intermittently. For, based on the vagaries of the scheduler, the precise instant
at which a condition holds may be missed. Therefore the programmer is advised to
ensure that conditions being tested by conditional atomic blocks are eventually stable,
i.e., they will continue to hold until the block executes (the action in the body of the
block may cause the condition to not hold any more).

14.7. ATOMIC BLOCKS 211

The statement when (true) S is behaviorally identical to atomic S: it never sus-
pends.

The body S of when(b)S is subject to the same restrictions that the body of atomic S
is. The guard is subject to the same restrictions as well. Furthermore, guards should
not have side effects. Note that this implies that guarded statements are required to
be flat, that is, they may not contain conditional atomic blocks. (The implementation
of nested conditional atomic blocks may require sophisticated operational techniques
such as rollbacks.)

Conditional atomic blocks allow the activity to wait for some condition to be satisfied
before executing an atomic block. For example, consider a Redund class holding a
list r.list and, redundantly, its length r.size. A pop operation will delay until the
Redund is nonempty, and then remove an element and update the length.

def pop():T {

var ret : T;

when(size>0) {

ret = list.removeAt(0);

size --;

}

return ret;

}

The execution of the test is atomic with the execution of the block. This is important;
it means that no other activity can sneak in and falsify the condition after the test was
seen to be true, but before the block is executed. In this example, two pops executing
on a list with one element would work properly. Without the conditional atomic block
– even doing the decrement atomically – one call to pop could pass the size>0 guard;
then the other call could run to completion (removing the only element of the list);
then, when the first call proceeds, its removeAt will fail.

Note that if would not work here.

if(size>0) atomic{size--; return list.removeAt(0);}

allows another activity to act between the test and the atomic block. And

atomic{ if(size>0) {size--; ret = list.removeAt(0);}}

does not wait for size>0 to become true.

Example: The following class shows how to implement a bounded buffer of size
1 in X10 for repeated communication between a sender and a receiver. The call
buf.send(ob) waits until the buffer has space, and then puts ob into it. Dually,
buf.receive() waits until the buffer has something in it, and then returns that thing.

class OneBuffer[T] {

var datum: T;

def this(t:T) { this.datum = t; this.filled = true; }

var filled: Boolean;

212 CHAPTER 14. ACTIVITIES

public def send(v: T) {

when (!filled) {

this.datum = v;

this.filled = true;

}

}

public def receive(): T {

when (filled) {

v: T = datum;

filled = false;

return v;

}

}

}

When when is Tested

Suppose that activity A is blocked waiting on when(e)S, because e is false. If some
other activity B changes the state in an atomic section in a way that makes e become
true, then either:

• A will eventually execute S, or

• Some activity C 6= A will cause e to become false again, or

• Some activity at that place will execute an infinite number of steps.

In particular, if no other activity ever falsifies e, then A will, eventually, discover that
e evaluates to true and run S (provided that no other activity at that place is running
forever).

Two caveats are worth noting:

• X10 has no guarantees of fairness or liveness.

• X10 only makes guarantees about state changes in atomic blocks alerting whens.
State changes outside of atomic blocks might not cause A to re-evaluate e.

Example: The method good below will always terminate (assuming no other activ-
ities are executing an infinite number of steps). In particular, if the when statement is
allowed to run first and block on c(), the atomic will alert it that c() has changed.

The method bad has no such guarantee: it might terminate if the compiler and sched-
uler are in a generous mood, or the when might wait forever to be told that c() is now
true. Without an atomic, the when statement might not be notified about the change in
c().

14.8. USE OF ATOMIC BLOCKS 213

static def good() {

val c = new Cell[Boolean](false);

async {

atomic {c() = true;}

}

when(c());

}

static def bad() {

val c = new Cell[Boolean](false);

async {

c() = true;

}

when(c());

}

14.8 Use of Atomic Blocks

The semantics of atomicity is chosen as a compromise between programming simplic-
ity and efficient implementation. Unlike some possible definitions of “atomic”, atomic
blocks do not provide absolute atomicity.

Atomic blocks are atomic with respect to each other.

var n : Long = 0;

finish {

async atomic n = n + 1; //(a)

async atomic n = n + 2; //(b)

}

This program has only two possible interleavings: either (a) entirely precedes (b) or
(b) entirely precedes (a). Both end up with n==3.

However, atomic blocks are not atomic with respect to non-atomic code. It we remove
the atomics on (a), we get far messier semantics.

var n : Long = 0;

finish {

// LEGAL BUT UNWISE

async n = n + 1; //(a)

async atomic n = n + 2; //(b)

}

If X10 had absolute (“strong”) atomic semantics, this program would be guaranteed to
treat the atomic increment as a single statement. This would permit three interleavings:
the two possible from the fully atomic program, or a third one with the events: (a)’s
read of 0 from n, the entirety of (b), and then (a)’s write of 0+1 back to n. This

214 CHAPTER 14. ACTIVITIES

interleaving results in n==1. So, with absolute atomic semantics, n==1 or n==3 are the
possible results.

However, atomic blocks in X10 are “weak”. Atomic blocks are atomic with respect
to each other — but there is no guarantee about how they interact with non-atomic
statements at all. They might even break up the atomicity of an atomic block. In
particular, the following fourth interleaving is possible: (a)’s read of 0 from n, (b)’s
read of 0 from n, (a)’s write of 1 to n, and (b)’s write of 2 to n. Thus, n==2 is
permissible as a result in X10.

However, X10’s semantics do impose a certain burden on the programmer. A sufficient
rule of thumb is that, if any access to a variable is done in an atomic section, then all
accesses to it must be in atomic sections.

Atomic sections are a powerful and convenient general solution. Classes in the pack-
age x10.util.concurrent may be more efficient and more convenient in particular
cases. For example, an AtomicInteger provides an atomic integer cell, with atomic
get, set, compare-and-set, and add operations. Each AtomicInteger takes care of its
own locking. Accesses to one AtomicInteger a only block activities which try to
access a — not others, not even if they are using different AtomicIntegers or even
atomic blocks.

15 Clocks

Many concurrent algorithms proceed in phases: in phase k, several activities work in-
dependently, but synchronize together before proceeding on to phase k + 1. X10 sup-
ports this communication structure (and many variations on it) with a generalization of
barriers called clocks. Clocks are designed to be dynamic (new activities can be regis-
tered with clocks, and terminated activities automatically deregister from clocks), and
to support a simple syntactic discipline for deadlock-free and race-free conditions. Just
like finish, X10’s clocks can both be used within a single place and to synchronize
activities across multiple places.

The following minimalist example of clocked code has two worker activities A and B,
and three phases. In the first phase, each worker activity says its name followed by
1; in the second phase, by a 2, and in the third, by a 3. So, if say prints its argument,
A-1 B-1 A-2 B-2 B-3 A-3would be a legitimate run of the program, but A-1 A-2
B-1 B-2 A-3 B-3 (with A-2 before B-1) would not.

The program creates a clock cl to manage the phases. Each participating activity
does the work of its first phase, and then executes Clock.advanceAll(); to signal
that it is finished with that work. Clock.advanceAll(); is blocking, and causes the
participant to wait until all participant have finished with the phase – as measured by
the clock cl to which they are both registered. Then they do the second phase, and
another Clock.advanceAll(); to make sure that neither proceeds to the third phase
until both are ready. This example uses finish to wait for both particiants to finish.

class ClockEx {

static def say(s:String) {

Console.OUT.println(s);

}

public static def main(argv:Rail[String]) {

finish async{

val cl = Clock.make();

async clocked(cl) {// Activity A

say("A-1");

Clock.advanceAll();

say("A-2");

Clock.advanceAll();

say("A-3");

215

216 CHAPTER 15. CLOCKS

}// Activity A

async clocked(cl) {// Activity B

say("B-1");

Clock.advanceAll();

say("B-2");

Clock.advanceAll();

say("B-3");

}// Activity B

}

}

}

This chapter describes the syntax and semantics of clocks and statements in the lan-
guage that have parameters of type Clock.

The key invariants associated with clocks are as follows. At any stage of the compu-
tation, a clock has zero or more registered activities. An activity may perform oper-
ations only on those clocks it is registered with (these clocks constitute its clock set).
An attempt by an activity to operate on a clock it is not registered with will cause a
ClockUseException to be thrown. An activity is registered with zero or more (ex-
isting) clocks when it is created. During its lifetime, the only additional clocks it can
possibly be registered with are exactly those that it creates. In particular it is not possi-
ble for an activity to register itself with a clock it discovers by reading a data structure.

The primary operations that an activity a may perform on a clock c that it is registered
upon are:

• It may spawn and simultaneously register a new activity on c, with the statement
async clocked(c)S.

• It may unregister itself from c, with c.drop(). After doing so, it can no longer
use most operations on c.

• It may resume the clock, with c.resume(), indicating that it has finished with
the current phase associated with c and is ready to move on to the next one.

• It may wait on the clock, with c.advance(). This first does c.resume(), and
then blocks the current activity until the start of the next phase, viz., until all
other activities registered on that clock have called c.resume().

• It may block on all the clocks it is registered with simultaneously, by the com-
mand Clock.advanceAll();. This, in effect, calls c.advance() simultane-
ously on all clocks c that the current activity is registered with.

• Other miscellaneous operations are available as well; see the Clock API.

15.1. CLOCK OPERATIONS 217

15.1 Clock operations

There are two language constructs for working with clocks. async clocked(cl) S
starts a new activity registered on one or more clocks. Clock.advanceAll(); blocks
the current activity until all the activities sharing clocks with it are ready to proceed
to the next clock phase. Clocks are objects, and have a number of useful methods on
them as well.

15.1.1 Creating new clocks

Clocks are created using a factory method on x10.lang.Clock:

val c: Clock = Clock.make();

The current activity is automatically registered with the newly created clock. It may
deregister using the dropmethod on clocks (see the documentation of x10.lang.Clock).
On (normal or abrupt) termination, an activity is automatically deregistered from all
clocks it is registered with.

15.1.2 Registering new activities on clocks

AsyncStmt ::= async ClockedClause? Stmt (20.15)
| clocked async Stmt

ClockedClause ::= clocked Arguments (20.39)

The async statement with a clocked clause of either form, say

async clocked (c1, c2, c3) S

starts a new activity, initially registered with clocks c1, c2, and c3, and running S.
The activity running this code must be registered on those clocks. Violations of these
conditions are punished by the throwing of a ClockUseException.

If an activity a that has executed c.resume() then starts a new activity b also regis-
tered on c (e.g., via async clocked(c) S), the new activity b starts out having also
resumed c, as if it too had executed c.resume(). That is, a and b are in the same
phase of the clock.

// ACTIVITY a

val c = Clock.make();

c.resume();

async clocked(c) {

// ACTIVITY b

c.advance();

b_phase_two();

// END OF ACTIVITY b

218 CHAPTER 15. CLOCKS

}

c.advance();

a_phase_two();

// END OF ACTIVITY a

In the proper execution, a and b both perform c.advance() and then their phase-2
actions. However, if b were not initially in the resume state for c, there would be a
race condition; b could perform c.advance() and proceed to b_phase_two before a
performed c.advance().

An activity may check whether or not it is registered on a clock c by the method call
c.registered()

NOTE: X10 does not contain a “register” operation that would allow an activity to dis-
cover a clock in a datastructure and register itself (or another process) on it. Therefore,
while a clock c may be stored in a data structure by one activity a and read from it by
another activity b, b cannot do much with c unless it is already registered with it. In
particular, it cannot register itself on c, and, lacking that registration, cannot register a
sub-activity on it with async clocked(c) S.

15.1.3 Resuming clocks

X10 permits split phase clocks. An activity may wish to indicate that it has completed
whatever work it wishes to perform in the current phase of a clock c it is registered
with, without suspending itself altogether. It may do so by executing c.resume();.

An activity may invoke resume() only on a clock it is registered with, and has not
yet dropped (§15.1.5). A ClockUseException is thrown if this condition is violated.
Nothing happens if the activity has already invoked a resume on this clock in the
current phase.

An activity may invoke Clock.resumeAll() to resume all the clocks that it is reg-
istered with and has not yet dropped. This resume()s all these clocks in parallel, or,
equivalently, sequentially in some arbitrary order.

15.1.4 Advancing clocks

An activity may execute the following method call to signal that it is done with the
current phase.

Clock.advanceAll();

Execution of this call blocks until all the clocks that the activity is registered with
(if any) have advanced. (The activity implicitly issues a resume on all clocks it is
registered with before suspending.)

Clock.advanceAll(); may be thought of as calling c.advance() in parallel for
all clocks that the current activity is registered with. (The parallelism is conceptually

15.2. DEADLOCK FREEDOM 219

important: if activities a and b are both registered on clocks c and d, and a executes
c.advance(); d.advance() while b executes d.advance(); c.advance(), then
the two will deadlock. However, if the two clocks are waited on in parallel, as Clock.advanceAll();
does, a and b will not deadlock.)

Equivalently, Clock.advanceAll(); sequentially calls c.resume() for each reg-
istered clock c, in arbitrary order, and then c.advance() for each clock, again in
arbitrary order.

An activity blocked on advance() resumes execution once it is marked for progress
by all the clocks it is registered with.

15.1.5 Dropping clocks

An activity may drop a clock by executing c.drop();.

The activity is no longer considered registered with this clock. A ClockUseException
is thrown if the activity has already dropped c.

15.2 Deadlock Freedom

In general, programs using clocks can deadlock, just as programs using loops can fail to
terminate. However, programs written with a particular syntactic discipline are guaran-
teed to be deadlock-free, just as programs which use only bounded loops are guaranteed
to terminate. The syntactic discipline is:

• The advance() instance method shall not be called on any clock. (The Clock.advanceAll();
method is allowed for this discipline.)

• Inside of finish{S}, all clocked asyncs shall be in the scope some unclocked
async in S.

X10 does not enforce this discipline. Doing so would exclude useful programs, many
of which are deadlock-free for reasons more subtle than the straightforward syntactic
discipline. Still, this discipline is useful for simple cases.

The first clause of the discipline prevents a deadlock in which an activity is registered
on two clocks, advances one of them, and ignores the other. The second clause prevents
the following deadlock.

val c:Clock = Clock.make();

async clocked(c) { // (A)

finish async clocked(c) { // (B) Violates clause 2

Clock.advanceAll(); // (Bnext)

}

Clock.advanceAll(); // (Anext)

}

220 CHAPTER 15. CLOCKS

(A), first of all, waits for the finish containing (B) to finish. (B) will execute its
advance at (Bnext), and then wait for all other activities registered on c to execute
their advance()s. However, (A) is registered on c. So, (B) cannot finish until (A) has
proceeded to (Anext), and (A) cannot proceed until (B) finishes. Thus, the activities
are deadlocked.

15.3 Program equivalences

From the discussion above it should be clear that the following equivalences hold:

c.resume(); Clock.advanceAll(); = Clock.advanceAll(); (15.1)

c.resume(); d.resume(); = d.resume(); c.resume(); (15.2)

c.resume(); c.resume(); = c.resume(); (15.3)

Note that Clock.advanceAll(); Clock.advanceAll(); is not the same as Clock.advanceAll();.
The first will wait for clocks to advance twice, and the second once.

15.4 Clocked Finish

In the most common case of a single clock coordinating a few behaviors, X10 allows
coding with an implicit clock. finish and async statements may be qualified with
clocked.

A clocked finish introduces a new clock. It executes its body in the usual way
that a finish does— except that, when its body completes, the activity executing the
clocked finish drops the clock, while it waits for asynchronous spawned asyncs to
terminate.

A clocked async registers its async with the implicit clock of the surrounding clocked
finish.

The bodies of the clocked finish and clocked async statements may use the
Clock.advanceAll() method call to advance the implicit clock. Since the implicit
clock is not available in a variable, it cannot be manipulated directly. (If you want to
manipulate the clock directly, use an explicit clock.)

Example: The following code starts two activities, each of which perform their first
phase, wait for the other to finish phase 1, and then perform their second phase.

clocked finish {

clocked async {

phase("A", 1);

Clock.advanceAll();

15.4. CLOCKED FINISH 221

phase("A", 2);

}

clocked async {

phase("B", 1);

Clock.advanceAll();

phase("B", 2);

}

}

The clocked async and clocked finish constructs can be combined with at in
the same ways as their unclocked counterparts.

Example: The following code creates one clocked activity in every Place that syn-
chronize to execute iter steps of a two phase computation. The clock ensures that ev-
ery activity has completed the call to before(N) before any activity calls after(N).
Note that executions of after(N) and before(N+1) in different places may overlap;
if this is not desired an additional call to Clock.advanceAll() could be added after
the call to after(count).

clocked finish {

for (p in Place.places()) {

at (p) clocked async {

for (count in 1..iters) {

before(count);

Clock.advanceAll();

after(count);

}

}

}

}

Clocked finishes may be nested. The inner clocked finish operates in a single phase
of the outer one.

16 Rails and Arrays

16.1 Overview

Indexable memory is a fundamental abstraction provided by a programming language.
To enable the programmer to best balance performance and flexibility, X10 provides a
layered implementation of indexable memory. The foundation of all indexable storage
in X10 is x10.lang.Rail, an intrinsic one-dimensional array analogous to the built-in
arrays provided by languages such as C or Java. On top of Rail, more sophisticated
array abstractions can be constructed completely as user-defined X10 classes. Two such
families of user-defined array abstractions are included in the X10 core class libraries
in the x10.array and x10.regionarray packages. Both families of arrays provide
both local (single place) and distributed (multi-place) arrays.

The next section specifies Rail. Subsequent sections outline the x10.array and
x10.regionarray packages. As discussed, in more detail below, Rail and the classes
of x10.array provide significantly higher performance operations than the corre-
sponding classes of x10.regionarray. Therefore we recommend that programmers
only use the more general arrays of x10.regionarray where the increased flexibil-
ity justifies the redudced performance. We also encourage programmers to use the
classes of x10.array as an example of how to define high-performance array abstrac-
tions in X10 and use them as templates for defining additional high-performance array
abstractions (for example column-major arrays as in Fortran or 1-based arrays as in
MATLAB).

16.2 Rails

The Rail class provides a basic abstraction of fixed-sized indexed storage. If r is a
Rail[T], then r contains r.size elements of type T that may be accessed using the
Long values 0 to r.size-1 as indices. All accesses to the elements of a Rail are
checked: attempting to use an index that is less than 0 or greater than r.size-1 will
result in an ArrayIndexOutOfBoundsException being thrown.

As shown in the example below, instances of Rail[T] may be created using one of
several constructors that initialize the data elements to the zero-value of T, a single
initial value, or to a different initial value for each element of the Rail.

222

16.2. RAILS 223

// A zero-initialized Rail of 10 doubles

val r1 = new Rail[Double](10);

// A Rail of 10 doubles, all initialized to pi

val r2 = new Rail[Double](10, Math.PI);

// A Rail of 10 doubles, r3(i) == i*pi

val r3 = new Rail[Double](10, (i:long)=>i*Math.PI);

As described in more detail in section 11.26, X10 also includes a shorthand form for
Rail construction: simply put brackets around a list of expressions.

// A Rail[Long] containing the first 5 primes

val r1 = [2,3,5,7,11];

// A Rail[Double] such that r2(i) == i*pi

val r2 = [Math.PI, 2*Math.PI, 3*Math.PI, 4*Math.PI];

Accessing and updating single elements of a Rail is doing using application syntax.
For example, a(i)=a(i+1); sets the ith element of a to the value of the i+1 element
of a. If T supports the + or - operation, then the usual pre/post increment/decrement
operations are also available on individual array elements. For example, a(i)++ is
equivalent to a(i) = a(i)+1

Iteration over the elements of a Rail can be accomplished using several equivalent
idioms. Furthermore, via some modest compiler support, each of these for loops will
actually result in identical generated code. In the examples below, r is a Rail[Long]
and sum is a local variable of type Long.

// A classic C-style for loop

for (var i:long=0; i<r.size; i++) {

sum += r(i);

}

// Iterate over the LongRange 0..(r.size-1)

for (i in 0..(r.size-1)) {

sum += r(i);

}

// Get the LongRange to iterate over from r

for (i in r.range()) {

sum += r(i);

}

// Directly iterate over the values of r

for (v in r) {

sum += v;

}

224 CHAPTER 16. RAILS AND ARRAYS

Basic bulk operations such as clearing (setting to zero), filling with a single value, and
copying are provided by methods of the Rail class. Efficient copying of Rails across
places is supported via the combination of the x10.lang.GlobalRail struct1 and the
asyncCopy method of Rail.

Additional complex bulk operations on Rail such as sorting, searching, map, and re-
duce are provided by the x10.util.RailUtils class.

When implementing higher-level data structures that use Rail as their backing storage,
there may be significant performance advantage in performing unsafe operations on
Rail. For example, when building a multi-dimensional Array class, the Array level
bounds checking and initialization logic make the Rail level operations redundant.
To support such scenarios the class x10.lang.Unsafe provides methods to allocate
uninitialized Rail objects and to access the elements of a Rail without bounds check-
ing. These unsafe extensions should be used judiciously, as improper use can result in
memory safety violations that would not be possible in pure X10 code.

16.3 x10.array: Simple Arrays

Classes in the x10.array package provide high-performance implementations of both
local and distributed multi-dimension arrays. The array implementations in this pack-
age are restricted to the case of rectangular, dense, zero-based index spaces. By making
this restriction, the indexing calculations for both single-place and multi-place arrays
can be optimized, resulting in an array implementation that should obtain equivalent
performance to the corresponding array abstractions in C or Fortran. More general
index spaces are supported by the classes in the x10.regionarray package (see Sec-
tion 16.4.

The three main concepts of this package: iteration spaces, arrays, and distributed ar-
rays are outlined below. All three concepts are implemented as simple class hierarchies
with an abstract superclass and a collection of concrete final subclasses that contain
the performance-critical operations. Client code using the abstractions can be written
(with lower performance) using the abstract APIs provided by the superclass, but per-
formance sensitive code should be written using the more specific type of the concrete
subclasses. This enables compile time optimization and inlining of key operations,
resulting in optimal code sequences.

16.3.1 Points

Both kinds of arrays are indexed by Points, which are n-dimensional tuples of inte-
gers. The rank property of a point gives its dimensionality. Points can be constructed
from integers, or Rail[Long] by the \xcdPoint.make‘ factory methods:

1a specialized version of x10.lang.GlobalRef that includes the size of the referenced Rail to enable
bounds checking

16.3. X10.ARRAY: SIMPLE ARRAYS 225

val origin_1 : Point{rank==1} = Point.make(0);

val origin_2 : Point{rank==2} = Point.make(0,0);

val origin_5 : Point = Point.make(new Rail[Long](5));

There is an implicit conversion from Rail[Long] to Point, giving a convenient syntax
for constructing points:

val p : Point = [1,2,3];

val q : Point{rank==5} = [1,2,3,4,5];

val r : Point(3) = [11,22,33];

The coordinates of a point are available by function application, or, if you prefer, by
subscripting; p(i) is the ith coordinate of the point p. Point(n) is a type-defined
shorthand for Point{rank==n}.

16.3.2 IterationSpace

An IterationSpace is a generalization of LongRange to multiple dimensions. The
rank property of the IterationSpace corresponds to its dimensionality. An IterationSpace
represents an ordered collection of Points of the same rank as the IterationSpace.
The primary purpose of an IterationSpace is to represent the indices of an Array
or DistArray.

16.3.3 Array

The abstract Array class provides rank-generic operations for single place multi-dimensional
arrays. Its concrete subclasses Array_1, Array_2, etc. provide rank-specific opera-
tions such as efficient element access. The APIs of the classes are designed to be a
natural extension of the Rail API to multiple dimensions. In most usage scenarios,
programmers should operate using the types of the concrete subclasses, not of Array
itself.

The example below illustrates the construction and indexing operations of rank 2 arrays
using a simple matrix multiply kernel where N is a Long.

val a = new Array_2[double](N, N, (i:long,j:long)=>(i*j) as double);

val b = new Array_2[double](N, N, (i:long,j:long)=>(i-j) as double);

val c = new Array_2[double](N, N, (i:long,j:long)=>(i+j) as double);

for (i in 0..(N-1))

for (j in 0..(N-1))

for (k in 0..(N-1))

a(i,j) += b(i,k)*c(k,j);

Similarly to Rail, iteration over the elements of a Array can be accomplished using
several equivalent idioms. Furthermore, via some modest compiler support, each of
these for loops will actually result in identical generated code. In the examples below,
a is a Array_2[Long] and sum is a local variable of type Long.

226 CHAPTER 16. RAILS AND ARRAYS

// A classic C-style for loop

for (var i:long=0; i<a.numElems_1; i++) {

for (var j:long=0; j<a.numElems_2; j++) {

sum += a(i,j);

}

}

// Iterate over the indices of a using Point destructuring

for ([i,j] in a.indices()) {

sum += a(i,j);

}

// Directly iterate over the values of a

for (v in a) {

sum += v;

}

An additional idiom which iterates over the Points in the IterationSpace of awith-
out destructuring the Points is also supported, but should be avoid in the current
implementation of X10 as the compiler does not optimize away all of the overheads
associated with explicit use of Point objects.

// Iterate over the indices of a using Points

for (p in a.indices()) {

sum += a(p);

}

16.3.4 DistArray

The abstract class DistArray and its concrete subclasses represent an extension of
the Array API to multiple places. In X10 version 2.4.0 DistArrays are still a work
in progress. Only three concrete implementations are available: DistArray_Unique
which has one data element per Place, DistArray_Block_1 which block distributes
a rank-1 array across the Places in its PlaceGroup, and DistArray_BlockBlock_2
which distributes blocks of a rank-2 array across the Places in its PlaceGroup.

The API of DistArray is preliminary in this release of X10 we anticipate extending it
with more operations and supporting a wider range of ranks and distributions in future
release of X10.

16.4 x10.regionarray: Flexible Arrays

Classes in the x10.regionarray package provide the most general and flexible array
abstraction that support mapping arbitrary multi-dimensional index spaces to data ele-
ments. Although they are significantly more flexible than Rails or the classes of the

16.4. X10.REGIONARRAY: FLEXIBLE ARRAYS 227

x10.array package, this flexibility does carry with it an expectation of lower runtime
performance.

Arrays provide indexed access to data at a single Place, via Points—indices of any
dimensionality. DistArrays is similar, but spreads the data across multiple Places,
via Dists.

16.4.1 Regions

A region is a set of points of the same rank. X10 provides a built-in class, x10.regionarray.Region,
to allow the creation of new regions and to perform operations on regions. Each region
R has a property R.rank, giving the dimensionality of all the points in it.

Example:

val MAX_HEIGHT=20;

val Null = Region.makeUnit(); //Empty 0-dimensional region

val R1 = Region.make(1, 100); // Region 1..100

val R2 = Region.make(1..100); // Region 1..100

val R3 = Region.make(0..99, -1..MAX_HEIGHT);

val R4 = Region.makeUpperTriangular(10);

val R5 = R4 && R3; // intersection of two regions

The LongRange value 1..100 can be used to construct the one-dimensional Region
consisting of the points {[m], . . . , [n]} Region by using the Region.make factory
method. LongRanges are useful in building up regions, especially rectangular regions.

By a special dispensation, the compiler knows that, if r : Region(m) and s :
Region(n), then r*s : Region(m+n). (The X10 type system ordinarily could not
specify the sum; the best it could do would be r*s : Region, with the rank of the
region unknown.) This feature allows more convenient use of arrays; in particular, one
does not need to keep track of ranks nearly so much.

Various built-in regions are provided through factory methods on Region.

• Region.makeEmpty(n) returns an empty region of rank n.

• Region.makeFull(n) returns the region containing all points of rank n.

• Region.makeUnit() returns the region of rank 0 containing the unique point
of rank 0. It is useful as the identity for Cartesian product of regions.

• Region.makeHalfspace(normal, k), where normal is a Point and k an
Long, returns the unbounded half-space of rank normal.rank, consisting of all
points p satisfying the vector inequality p·normal ≤ k.

• Region.makeRectangular(min, max), where min and max are rank-1 length-
n integer arrays, returns a Region(n) equal to: [min(0) .. max(0), . . .,
min(n-1)..max(n-1)].

228 CHAPTER 16. RAILS AND ARRAYS

• Region.makeBanded(size, a, b) constructs the banded Region(2) of size
size, with a bands above and b bands below the diagonal.

• Region.makeBanded(size) constructs the banded Region(2) with just the
main diagonal.

• Region.makeUpperTriangular(N) returns a region corresponding to the non-
zero indices in an upper-triangular N x N matrix.

• Region.makeLowerTriangular(N) returns a region corresponding to the non-
zero indices in a lower-triangular N x N matrix.

• If R is a region, and p a Point of the same rank, then R+p is R translated forwards
by p – the region whose points are r+p for each r in R.

• If R is a region, and p a Point of the same rank, then R-p is R translated backwards
by p – the region whose points are r-p for each r in R.

All the points in a region are ordered canonically by the lexicographic total order. Thus
the points of the region (1..2)*(1..2) are ordered as

(1,1), (1,2), (2,1), (2,2)

Sequential iteration statements such as for (§12.12) iterate over the points in a region
in the canonical order.

A region is said to be rectangular if it is of the form (T1 * · · · * Tk) for some set of
intervals Ti = li .. hi . In particular an LongRange turned into a Region is rect-
angular: Region.make(1..10). Such a region satisfies the property that if two points
p1 and p3 are in the region, then so is every point p2 between them (that is, it is convex).
(Banded and triangular regions are not rectangular.) The operation R.boundingBox()
gives the smallest rectangular region containing R.

Operations on regions

Let R be a region. A sub-region is a subset of R.

Let R1 and R2 be two regions whose types establish that they are of the same rank. Let
S be another region; its rank is irrelevant.

R1 && R2 is the intersection of R1 and R2, viz., the region containing all points which
are in both R1 and R2. For example, Region.make(1..10) && Region.make(2..20)
is 2..10.

R1 * S is the Cartesian product of R1 and S, formed by pairing each point in R1 with
every point in S. Thus, Region.make(1..2)*Region.make(3..4)*Region.make(5..6)
is the region of rank 3 containing the eight points with coordinates [1,3,5], [1,3,6],
[1,4,5], [1,4,6], [2,3,5], [2,3,6], [2,4,5], [2,4,6].

For a region R and point p of the same rank, R+p and R-p represent the translation of
the region forward and backward by p. That is, R+p is the set of points p+q for all q in
R, and R-p is the set of q-p.

More Region methods are described in the API documentation.

16.4. X10.REGIONARRAY: FLEXIBLE ARRAYS 229

16.4.2 Arrays

Arrays are organized data, arranged so that the data can be accessed with subscripts.
An Array[T] A has a Region A.region, specifying which Points are in A. For each
point p in A.region, A(p) is the datum of type T associated with p. X10 implemen-
tations should attempt to store Arrays efficiently, and to make array element accesses
quick—e.g., avoiding constructing Points when unnecessary.

This generalizes the concepts of arrays appearing in many other programming lan-
guages. A Point may have any number of coordinates, so an Array can have, in
effect, any number of integer subscripts.

Example: Indeed, it is possible to write code that works on Arrays regardless of
dimension. For example, to add one Array[Long] src into another dest,

static def addInto(src: Array[Long], dest:Array[Long])

{src.region == dest.region}

{

for (p in src.region)

dest(p) += src(p);

}

Since p is a Point, it can hold as many coordinates as are necessary for the arrays
src and dest.

The basic operation on arrays is subscripting: if A is an Array[T] and p a point with
the same rank as A.region, then A(p) is the value of type T associated with point p.
This is the same operation as function application (§10.2); arrays implement function
types, and can be used as functions.

Array elements can be changed by assignment. If t:T,

A(p) = t;

modifies the value associated with p to be t, and leaves all other values in A unchanged.

An Array[T] named a has:

• a.region: the Region upon which a is defined.

• a.size: the number of elements in a.

• a.rank, the rank of the points usable to subscript a. a.rank is a cached copy of
a.region.rank.

Array Constructors

To construct an array whose elements all have the same value init, call new Array[T](R,
init). For example, an array of a thousand "oh!"s can be made by: new Array[String](1000,
"oh!").

230 CHAPTER 16. RAILS AND ARRAYS

To construct and initialize an array, call the two-argument constructor. new Array[T](R,
f) constructs an array of elements of type T on region R, with a(p) initialized to f(p)
for each point p in R. f must be a function taking a point of rank R.rank to a value of
type T.

Example: One way to construct the array [11, 22, 33] is with an array con-
structor new Array[Long](3, (i:long)=>11*i). To construct a multiplication
table, call new Array[Long](Region.make(0..9, 0..9), (p:Point(2)) =>
p(0)*p(1)).

Other constructors are available; see the API documentation and §11.26.

Array Operations

The basic operation on Arrays is subscripting. If a:Array[T] and p:Point{rank
== a.rank}, then a(p) is the value of type T appearing at position p in a. The syntax
is identical to function application, and, indeed, arrays may be used as functions. a(p)
may be assigned to, as well, by the usual assignment syntax a(p)=t. (This uses the
application and setting syntactic sugar, as given in §8.7.5.)

Sometimes it is more convenient to subscript by longs. Arrays of rank 1-4 can, in fact,
be accessed by longs:

val A1 = new Array[Long](10, 0);

A1(4) = A1(4) + 1;

val A4 = new Array[Long](Region.make(1..2, 1..3, 1..4, 1..5), 0);

A4(2,3,4,5) = A4(1,1,1,1)+1;

Iteration over an Array is defined, and produces the Points of the array’s region. If
you want to use the values in the array, you have to subscript it. For example, you could
take the logarithm of every element of an Array[Double] by:

for (p in a) a(p) = Math.log(a(p));

The method a.values() can be used to enumerate all the values of an Array[T]
array a.

static def allNonNegatives(a:Array[Double]):Boolean {

for (v in a.values()) if (v < 0.0D) return false;

return true;

}

16.4.3 Distributions

Distributed arrays are spread across multiple Places. A distribution, a mapping from
a region to a set of places, describes where each element of a distributed array is kept.
Distributions are embodied by the class x10.regionarray.Dist and its subclasses.

16.4. X10.REGIONARRAY: FLEXIBLE ARRAYS 231

The rank of a distribution is the rank of the underlying region, and thus the rank of
every point that the distribution applies to.

Example:

val R <: Region = Region.make(1..100);

val D1 <: Dist = Dist.makeBlock(R);

val D2 <: Dist = Dist.makeConstant(R, here);

D1 distributes the region R in blocks, with a set of consecutive points at each place, as
evenly as possible. D2 maps all the points in R to here.

Let D be a distribution. D.region denotes the underlying region. Given a point p, the
expression D(p) represents the application of D to p, that is, the place that p is mapped
to by D. The evaluation of the expression D(p) throws an ArrayIndexOutofBoundsException
if p does not lie in the underlying region.

PlaceGroups

A PlaceGroup represents an ordered set of Places. PlaceGroups exist for perfor-
mance and scaleability: they are more efficient, in certain critical places, than general
collections of Place. PlaceGroup implements Sequence[Place], and thus provides
familiar operations – pg.size() for the number of places, pg.iterator() to iterate
over them, etc.

PlaceGroup is an abstract class. The concrete class SparsePlaceGroup is intended
for a small group of places. new SparsePlaceGroup(somePlace) is a good PlaceGroup
containing one place. new SparsePlaceGroup(seqPlaces) constructs a sparse place
group from a Rail of places.

Operations returning distributions

Let R be a region, Q a PlaceGroup, and P a place.

Unique distribution The distribution Dist.makeUnique(Q) is the unique distribu-
tion from the region Region.make(1..k) to Q mapping each point i to pi.

Constant distributions. The distribution Dist.makeConstant(R,P) maps every
point in region R to place P. The special case Dist.makeConstant(R) maps every
point in R to here.

Block distributions. The distribution Dist.makeBlock(R) distributes the elements
of R, in approximately-even blocks, over all the places available to the program. There
are other Dist.makeBlock methods capable of controlling the distribution and the set
of places used; see the API documentation.

232 CHAPTER 16. RAILS AND ARRAYS

Domain Restriction. If D is a distribution and R is a sub-region of D.region, then
D | R represents the restriction of D to R—that is, the distribution that takes each point
p in R to D(p), but doesn’t apply to any points but those in R.

Range Restriction. If D is a distribution and P a place expression, the term D | P
denotes the sub-distribution of D defined over all the points in the region of D mapped
to P.

Note that D | here does not necessarily contain adjacent points in D.region. For
instance, if D is a cyclic distribution, D | here will typically contain points that differ
by the number of places. An implementation may find a way to still represent them in
contiguous memory, e.g., using an arithmetic function to map from the region index to
an index into the array.

16.4.4 Distributed Arrays

Distributed arrays, instances of DistArray[T], are very much like Arrays, except that
they distribute information among multiple Places according to a Dist value passed
in as a constructor argument.

Example: The following code creates a distributed array holding a thousand cells,
each initialized to 0.0, distributed via a block distribution over all places.

val R <: Region = Region.make(1..1000);

val D <: Dist = Dist.makeBlock(R);

val da <: DistArray[Float]

= DistArray.make[Float](D, (Point(1))=>0.0f);

16.4.5 Distributed Array Construction

DistArrays are instantiated by invoking one of the make factory methods of the
DistArray class. A DistArray creation must take either an Long as an argument or a
Dist. In the first case, a distributed array is created over the distribution Dist.makeConstant(Region.make(0,
N-1),here); in the second over the given distribution.

Example: A distributed array creation operation may also specify an initializer func-
tion. The function is applied in parallel at all points in the domain of the distribution.
The construction operation terminates locally only when the DistArray has been fully
created and initialized (at all places in the range of the distribution).

For instance:

val ident = ([i]:Point(1)) => i;

val data : DistArray[Long]

= DistArray.make[Long](Dist.makeConstant(Region.make(1, 9)), ident);

val blk = Dist.makeBlock(Region.make(1..9, 1..9));

val data2 : DistArray[Long]

= DistArray.make[Long](blk, ([i,j]:Point(2)) => i*j);

16.4. X10.REGIONARRAY: FLEXIBLE ARRAYS 233

The first declaration stores in data a reference to a mutable distributed array with 9
elements each of which is located in the same place as the array. The element at [i]
is initialized to its index i.

The second declaration stores in data2 a reference to a mutable two-dimensional dis-
tributed array, whose coordinates both range from 1 to 9, distributed in blocks over all
Places, initialized with i*j at point [i,j].

16.4.6 Operations on Arrays and Distributed Arrays

Arrays and distributed arrays share many operations. In the following, let a be an array
with base type T, and da be an array with distribution D and base type T.

Element operations

The value of a at a point p in its region of definition is obtained by using the indexing
operation a(p). The value of da at p is similarly da(p). This operation may be used
on the left hand side of an assignment operation to update the value: a(p)=t; and
da(p)=t; The operator assignments, a(i) += e and so on, are also available.

It is a runtime error to access arrays, with da(p) or da(p)=v, at a place other than
da.dist(p), viz. at the place that the element exists.

Arrays of Single Values

For a region R and a value v of type T, the expression new Array[T](R, v) produces
an array on region R initialized with value v. Similarly, for a distribution D and a value
v of type T the expression

DistArray.make[T](D, (Point(D.rank))=>v)

constructs a distributed array with distribution D and base type T initialized with v at
every point.

Note that Arrays are constructed by constructor calls, but DistArrays are constructed
by calls to the factory methods DistArray.make. This is because Arrays are fairly
simple objects, but DistArrays may be implemented by different classes for different
distributions. The use of the factory method gives the library writer the freedom to
select appropriate implementations.

Restriction of an array

Let R be a sub-region of da.region. Then da | R represents the sub-DistArray of
da on the region R. That is, da | R has the same values as da when subscripted by a
point in region R && da.region, and is undefined elsewhere.

Recall that a rich set of operators are available on distributions (§16.4.3) to obtain sub-
distributions (e.g. restricting to a sub-region, to a specific place etc).

234 CHAPTER 16. RAILS AND ARRAYS

Operations on Whole Arrays

Pointwise operations The unary map operation applies a function to each element of
a distributed or non-distributed array, returning a new distributed array with the same
distribution, or a non-distributed array with the same region.

The following produces an array of cubes:

val A = new Array[Long](11, (i:long)=>i);

assert A(3) == 3 && A(4) == 4 && A(10) == 10;

val cube = (i:Long) => i*i*i;

val B = A.map(cube);

assert B(3) == 27 && B(4) == 64 && B(10) == 1000;

A variant operation lets you specify the array B into which the result will be stored,

val A = new Array[Long](11, (i:long)=>i);

assert A(3) == 3 && A(4) == 4 && A(10) == 10;

val cube = (i:Long) => i*i*i;

val B = new Array[Long](A.region); // B = 0,0,0,0,0,0,0,0,0,0,0

A.map(B, cube);

assert B(3) == 27 && B(4) == 64 && B(10) == 1000;

This is convenient if you have an already-allocated array lying around unused. In
particular, it can be used if you don’t need A afterwards and want to reuse its space:

val A = new Array[Long](11, (i:long)=>i);

assert A(3) == 3 && A(4) == 4 && A(10) == 10;

val cube = (i:Long) => i*i*i;

A.map(A, cube);

assert A(3) == 27 && A(4) == 64 && A(10) == 1000;

The binary map operation takes a binary function and another array over the same re-
gion or distributed array over the same distribution, and applies the function pointwise
to corresponding elements of the two arrays, returning a new array or distributed array
of the same shape. The following code adds two distributed arrays:

static def add(da:DistArray[Long], db: DistArray[Long])

{da.dist==db.dist}

= da.map(db, (a:Long,b:Long)=>a+b);

Reductions Let f be a function of type (T,T)=>T. Let a be an array over base type
T. Let unit be a value of type T. Then the operation a.reduce(f, unit) returns
a value of type T obtained by combining all the elements of a by use of f in some
unspecified order (perhaps in parallel). The following code gives one method which
meets the definition of reduce, having a running total r, and accumulating each value
a(p) into it using f in turn. (This code is simply given as an example; Array has this
operation defined already.)

16.4. X10.REGIONARRAY: FLEXIBLE ARRAYS 235

def oneWayToReduce[T](a:Array[T], f:(T,T)=>T, unit:T):T {

var r : T = unit;

for(p in a.region) r = f(r, a(p));

return r;

}

For example, the following sums an array of longs. f is addition, and unit is zero.

val a = new Array[Long](4, (i:long)=>i+1);

val sum = a.reduce((a:Long,b:Long)=>a+b, 0);

assert(sum == 10); // 10 == 1+2+3+4

Other orders of evaluation, degrees of parallelism, and applications of f(x,unit) and
f(unit,x)are also correct. In order to guarantee that the result is precisely deter-
mined, the function f should be associative and commutative, and the value unit
should satisfy f(unit,x) == x == f(x,unit) for all x:T.

DistArrays have the same operation. This operation involves communication be-
tween the places over which the DistArray is distributed. The X10 implementation
guarantees that only one value of type T is communicated from a place as part of this
reduction process.

Scans Let f:(T,T)=>T, unit:T, and a be an Array[T] or DistArray[T]. Then
a.scan(f,unit) is the array or distributed array of type T whose ith element in
canonical order is the reduction by f with unit unit of the first i elements of a.

This operation involves communication between the places over which the distributed
array is distributed. The X10 implementation will endeavour to minimize the commu-
nication between places to implement this operation.

Other operations on arrays, distributed arrays, and the related classes may be found in
the x10.regionarray package.

17 Annotations

X10 provides an an annotation system system for to allow the compiler to be extended
with new static analyses and new transformations.

Annotations are constraint-free interface types that decorate the abstract syntax tree of
an X10 program. The X10 type-checker ensures that an annotation is a legal interface
type. In X10, interfaces may declare both methods and properties. Therefore, like any
interface type, an annotation may instantiate one or more of its interface’s properties.

17.1 Annotation syntax

The annotation syntax consists of an “@” followed by an interface type.

Annotations ::= Annotation (20.6)
| Annotations Annotation

Annotation ::= @ NamedTypeNoConstraints (20.4)

Annotations can be applied to most syntactic constructs in the language including class
declarations, constructors, methods, field declarations, local variable declarations and
formal parameters, statements, expressions, and types. Multiple occurrences of the
same annotation (i.e., multiple annotations with the same interface type) on the same
entity are permitted.

Recall that interface types may have dependent parameters.

The following examples illustrate the syntax:

• Declaration annotations:

// class annotation

@Value

class Cons { ... }

// method annotation

@PreCondition(0 <= i && i < this.size)

public def get(i: Long): T { ... }

236

17.2. ANNOTATION DECLARATIONS 237

// constructor annotation

@Where(x != null)

def this(x: T) { ... }

// constructor return type annotation

def this(x: T): C@Initialized { ... }

// variable annotation

@Unique x: A;

• Type annotations:

List@Nonempty

Int@Range(1n,4n)

Rail[Rail[Double]]@Size(n * n)

• Expression annotations:

m() @RemoteCall

• Statement annotations:

@Atomic { ... }

@MinIterations(0)

@MaxIterations(n)

for (var i: Long = 0; i < n; i++) { ... }

// An annotated empty statement ;

@Assert(x < y);

17.2 Annotation declarations

Annotations are declared as interfaces. They must be subtypes of the interface x10.lang.annotation.Annotation.
Annotations on particular static entities must extend the corresponding Annotation
subclasses, as follows:

• Expressions—ExpressionAnnotation

• Statements—StatementAnnotation

• Classes—ClassAnnotation

238 CHAPTER 17. ANNOTATIONS

• Fields—FieldAnnotation

• Methods—MethodAnnotation

• Imports—ImportAnnotation

• Packages—PackageAnnotation

18 Interoperability with Other
Languages

The ability to interoperate with other programming languages is an essential feature
of the X10 implementation. Cross-language interoperability enables both the incre-
mental adoption of X10 in existing applications and the usage of existing libraries and
frameworks by newly developed X10 programs.

There are two primary interoperability scenarios that are supported by X10 v2.4: inline
substitution of fragments of foreign code for X10 program fragments (expressions,
statements) and external linkage to foreign code.

18.1 Embedded Native Code Fragments

The @Native(lang,code) Construct annotation from x10.compiler.Native in
X10 can be used to tell the X10 compiler to substitute code for whatever it would have
generated when compiling Construct with the lang back end.

The compiler cannot analyze native code the same way it analyzes X10 code. In partic-
ular, @Native fields and methods must be explicitly typed; the compiler will not infer
types.

18.1.1 Native staticMethods

static methods can be given native implementations. Note that these implementa-
tions are syntactically expressions, not statements, in C++ or Java. Also, it is possible
(and common) to provide native implementations into both Java and C++ for the same
method.

import x10.compiler.Native;

class Son {

@Native("c++", "printf(\"Hi!\")")

@Native("java", "System.out.println(\"Hi!\")")

static def printNatively():void {}

}

239

240 CHAPTER 18. INTEROPERABILITY WITH OTHER LANGUAGES

If only some back-end languages are given, the X10 code will be used for the remaining
back ends:

import x10.compiler.Native;

class Land {

@Native("c++", "printf(\"Hi from C++!\")")

static def example():void {

x10.io.Console.OUT.println("Hi from X10!");

};

}

The nativemodifier on methods indicates that the method must not have an X10 code
body, and @Native implementations must be given for all back ends:

import x10.compiler.Native;

class Plants {

@Native("c++", "printf(\"Hi!\")")

@Native("java", "System.out.println(\"Hi!\")")

static native def printNatively():void;

}

Values may be returned from external code to X10. Scalar types in Java and C++
correspond directly to the analogous types in X10.

import x10.compiler.Native;

class Return {

@Native("c++", "1")

@Native("java", "1")

static native def one():Int;

}

Types are not inferred for methods marked as @Native.

Parameters may be passed to external code. (#1) is the first parameter, (#2) the
second, and so forth. ((#0) is the name of the enclosing class, or the this variable.)
Be aware that this is macro substitution rather than normal parameter passing; e.g., if
the first actual parameter is i++, and (#1) appears twice in the external code, i will be
incremented twice. For example, a (ridiculous) way to print the sum of two numbers
is:

import x10.compiler.Native;

class Species {

@Native("c++","printf(\"Sum=%d\", ((#1)+(#2)))")

@Native("java","System.out.println(\"\" + ((#1)+(#2)))")

static native def printNatively(x:Int, y:Int):void;

}

Static variables in the class are available in the external code. For Java, the static
variables are used with their X10 names. For C++, the names must be mangled, by use
of the FMGL macro.

18.1. EMBEDDED NATIVE CODE FRAGMENTS 241

import x10.compiler.Native;

class Ability {

static val A : Int = 1n;

@Native("java", "A+2")

@Native("c++", "Ability::FMGL(A)+2")

static native def fromStatic():Int;

}

18.1.2 Native Blocks

Any block may be annotated with @Native(lang,stmt), indicating that, in the given
back end, it should be implemented as stmt. All variables from the surrounding con-
text are available inside stmt. For example, the method call born.example(10n), if
compiled to Java, changes the field y of a Born object to 10. If compiled to C++ (for
which there is no @Native), it sets it to 3.

import x10.compiler.Native;

class Born {

var y : Int = 1n;

public def example(x:Int):Int{

@Native("java", "y=x;")

{y = 3n;}

return y;

}

}

Note that the code being replaced is a statement – the block {y = 3n;} in this case –
so the replacement should also be a statement.

Other X10 constructs may or may not be available in Java and/or C++ code. For ex-
ample, type variables do not correspond exactly to type variables in either language,
and may not be available there. The exact compilation scheme is not fully specified.
You may inspect the generated Java or C++ code and see how to do specific things, but
there is no guarantee that fancy external coding will continue to work in later versions
of X10.

The full facilities of C++ or Java are available in native code blocks. However, there
is no guarantee that advanced features behave sensibly. You must follow the exact
conventions that the code generator does, or you will get unpredictable results. Fur-
thermore, the code generator’s conventions may change without notice or documenta-
tion from version to version. In most cases the code should either be a very simple
expression, or a method or function call to external code.

242 CHAPTER 18. INTEROPERABILITY WITH OTHER LANGUAGES

18.2 Interoperability with External Java Code

With Managed X10, we can seamlessly call existing Java code from X10, and call X10
code from Java. We call this the Java interoperability [13] feature.

By combining Java interoperability with X10’s distributed execution features, we can
even make existing Java applications, which are originally designed to run on a single
Java VM, scale-out with minor modifications.

18.2.1 How Java program is seen in X10

Managed X10 does not pre-process the existing Java code to make it accessible from
X10. X10 programs compiled with Managed X10 will call existing Java code as is.

Types In X10, both at compile time and run time, there is no way to distinguish Java
types from X10 types. Java types can be referred to with regular import statement, or
their qualified names. The package java.lang is not auto-imported into X10. In Man-
aged x10, the resolver is enhanced to resolve types with X10 source files in the source
path first, then resolve them with Java class files in the class path. Note that the resolver
does not resolve types with Java source files, therefore Java source files must be com-
piled in advance. To refer to Java types listed in Tables 18.1, and 18.2, which include
all Java primitive types, use the corresponding X10 type (e.g. use x10.lang.Int (or
in short, Int) instead of int).

Fields Fields of Java types are seen as fields of X10 types.

Managed X10 does not change the static initialization semantics of Java types, which
is per-class, at load time, and per-place (Java VM), therefore, it is subtly different than
the per-field lazy initialization semantics of X10 static fields.

Methods Methods of Java types are seen as methods of X10 types.

Generic types Generic Java types are seen as their raw types (§4.8 in [6]). Raw
type is a mechanism to handle generic Java types as non-generic types, where the type
parameters are assumed as java.lang.Object or their upperbound if they have it.
Java introduced generics and raw type at the same time to facilitate generic Java code
interfacing with non-generic legacy Java code. Managed X10 uses this mechanism for
a slightly different purpose. Java erases type parameters at compile time, whereas X10
preserves their values at run time. To manifest this semantic gap in generics, Managed
X10 represents Java generic types as raw types and eliminates type parameters at source
code level. For more detailed discussions, please refer to [14, 15].

18.2. INTEROPERABILITY WITH EXTERNAL JAVA CODE 243

import x10.interop.Java;

public class XClass {

public static def main(args:Rail[String]):void {

try {

val a = Java.newArray[Int](2n);

a(0n) = 0n;

a(1n) = 1n;

a(2n) = 2n;

} catch (e:x10.lang.ArrayIndexOutOfBoundsException) {

Console.OUT.println(e);

}

}

}

> x10c -d bin src/XClass.x10

> x10 -cp bin XClass

x10.lang.ArrayIndexOutOfBoundsException: Array index out of range: 2

Figure 18.1: Java exceptions in X10

Arrays X10 rail and array types are generic types whose representation is different
from Java array types.

Managed X10 provides a special X10 type x10.interop.Java.array[T]which rep-
resents Java array type T[]. Note that for X10 types in Table 18.1, this type means the
Java array type of their primary type. For example, array[Int] and array[String]
mean int[] and java.lang.String[], respectively. Managed X10 also provides
conversion methods between X10 Rails and Java arrays (Java.convert[T](a:Rail[T]):array[T]
and Java.convert[T](a:array[T]):Rail[T]), and creation methods for Java ar-
rays (Java.newArray[T](d0:Int):array[T] etc.).

Exceptions The X10 v2.4 exception hierarchy has been designed so that there is
a natural correspondence with the Java exception hierarchy. As shown in Table 18.2,
many commonly used Java exception types are directly mapped to X10 exception types.
Exception types that are thus aliased may be caught (and thrown) using either their Java
or X10 types. In X10 code, it is stylistically preferable to use the X10 type to refer to
the exception as shown in Figure 18.1.

Compiling and executing X10 programs We can compile and run X10 programs
that call existing Java code with the same x10c and x10 command by specifying the lo-
cation of Java class files or jar files that your X10 programs refer to, with -classpath
(or in short, -cp) option.

244 CHAPTER 18. INTEROPERABILITY WITH OTHER LANGUAGES

18.2.2 How X10 program is translated to Java

Managed X10 translates X10 programs to Java class files.

X10 does not provide a Java reflection-like mechanism to resolve X10 types, methods,
and fields with their names at runtime, nor a code generation tool, such as javah, to
generate stub code to access them from other languages. Java programmers, therefore,
need to access X10 types, methods, and fields in the generated Java code directly as
they access Java types, methods, and fields. To make it possible, Java programmers
need to understand how X10 programs are translated to Java.

Some aspects of the X10 to Java translation scheme may change in future version of
X10; therefore in this document only a stable subset of translation scheme will be
explained. Although it is a subset, it has been extensively used by X10 core team and
proved to be useful to develop Java Hadoop interop layer for a Main-memory Map
Reduce (M3R) engine [11] in X10.

In the following discussions, we deliberately ignore generic X10 types because the
translation of generics is an area of active development and will undergo some changes
in future versions of X10. For those who are interested in the implementation of
generics in Managed X10, please consult [15]. We also don’t cover function types,
function values, and all non-static methods. Although slightly outdated, another pa-
per [14], which describes translation scheme in X10 2.1.2, is still useful to understand
the overview of Java code generation in Managed X10.

Types X10 classes and structs are translated to Java classes with the same names.
X10 interfaces are translated to Java interfaces with the same names.

Table 18.1 shows the list of special types that are mapped to Java primitives. Primitives
are their primary representations that are useful for good performance. Wrapper classes
are used when the reference types are needed. Each wrapper class has two static meth-
ods $box() and $unbox() to convert its value from primary representation to wrapper
class, and vice versa, and Java backend inserts their calls as needed. An you notice,
every unsigned type uses the same Java primitive as its corresponding signed type for
its representation.

Table 18.2 shows a non-exhaustive list of another kind of special types that are mapped
(not translated) to Java types. As you notice, since an interface Any is mapped to a class
—java.lang.Object— and Object is hidden from the language, there is no direct way
to create an instance of Object. As a workaround, Java.newObject() is provided.

As you also notice, x10.lang.Comparable[T] is mapped to java.lang.Comparable.
This is needed to map x10.lang.String, which implements x10.lang.Compatable[String],
to java.lang.String for performance, but as a trade off, this mapping results in the
lost of runtime type information for Comparable[T] in Managed X10. The runtime
of Managed X10 has built-in knowledge for String, but for other Java classes that im-
plement java.lang.Comparable, instanceof Comparable[Int] etc. may return
incorrect results. In principle, it is impossible to map X10 generic type to the existing
Java generic type without losing runtime type information.

18.2. INTEROPERABILITY WITH EXTERNAL JAVA CODE 245

X10 Java (primary) Java (wrapper class)
x10.lang.Byte 1y byte (byte)1 x10.core.Byte

x10.lang.UByte 1uy byte (byte)1 x10.core.UByte

x10.lang.Short 1s short (short)1 x10.core.Short

x10.lang.UShort 1us short (short)1 x10.core.UShort

x10.lang.Int 1n int 1 x10.core.Int

x10.lang.UInt 1un int 1 x10.core.UInt

x10.lang.Long 1 long 1l x10.core.Long

x10.lang.ULong 1u long 1l x10.core.ULong

x10.lang.Float 1.0f float 1.0f x10.core.Float

x10.lang.Double 1.0 double 1.0 x10.core.Double

x10.lang.Char ’c’ char ’c’ x10.core.Char

x10.lang.Boolean true boolean true x10.core.Boolean

Table 18.1: X10 types that are mapped to Java primitives

X10 Java
x10.lang.Any java.lang.Object

x10.lang.Comparable[T] java.lang.Comparable

x10.lang.String java.lang.String

x10.lang.CheckedThrowable java.lang.Throwable

x10.lang.CheckedException java.lang.Exception

x10.lang.Exception java.lang.RuntimeException

x10.lang.ArithmeticException java.lang.ArithmeticException

x10.lang.ClassCastException java.lang.ClassCastException

x10.lang.IllegalArgumentException java.lang.IllegalArgumentException

x10.util.NoSuchElementException java.util.NoSuchElementException

x10.lang.NullPointerException java.lang.NullPointerException

x10.lang.NumberFormatException java.lang.NumberFormatException

x10.lang.UnsupportedOperationException java.lang.UnsupportedOperationException

x10.lang.IndexOutOfBoundsException java.lang.IndexOutOfBoundsException

x10.lang.ArrayIndexOutOfBoundsException java.lang.ArrayIndexOutOfBoundsException

x10.lang.StringIndexOutOfBoundsException java.lang.StringIndexOutOfBoundsException

x10.lang.Error java.lang.Error

x10.lang.AssertionError java.lang.AssertionError

x10.lang.OutOfMemoryError java.lang.OutOfMemoryError

x10.lang.StackOverflowError java.lang.StackOverflowError

void void

Table 18.2: X10 types that are mapped (not translated) to Java types

246 CHAPTER 18. INTEROPERABILITY WITH OTHER LANGUAGES

class C {

static val a:Int = ...;

var b:Int;

}

interface I {

val x:Int = ...;

}

class C {

static int get$a() { return ...; }

int b;

}

interface I {

abstract static class $Shadow {

static int get$x() { return ...; }

}

}

Figure 18.2: X10 fields in Java

Fields As shown in Figure 18.2, instance fields of X10 classes and structs are trans-
lated to the instance fields of the same names of the generated Java classes. Static
fields of X10 classes and structs are translated to the static methods of the generated
Java classes, whose name has get$ prefix. Static fields of X10 interfaces are translated
to the static methods of the special nested class named $Shadow of the generated Java
interfaces.

Note on name resolution In X10, fields (both static and instance), local variables,
and types are in the same name space, and fields and local variables have higher prece-
dence than types in resolving names. This is same as in Java and it is programmers’
responsibility to avoid name conflict. Figure 18.3 explains how name conflict occurs.
Uncommenting either a or b, or replacing c with c’ causes Field C not found in type
”x10.lang.Long” at x. Even if there is no name conflict in X10 code, it may occur in
the generated Java code since Java backend generates static field access to get runtime
type in some situation. To avoid potential name conflict, the best practice is not to use
the same name for variables and package prefix.

Methods As shown in Figure 18.4, methods of X10 classes or structs are translated
to the methods of the same names of the generated Java classes. Methods of X10 inter-
faces are translated to the methods of the same names of the generated Java interfaces.

Every method whose return type has two representations, such as the types in Ta-
ble 18.1, will have $O suffix with its name. For example, def f():Int in X10 will

18.3. INTEROPERABILITY WITH EXTERNAL C AND C++ CODE 247

Main.x10:

public class Main {

//static val p:Long = 1; // a

//val p:Long = 1; // b

//def func(p:Long) { // c’

def func() { // c

val f = p.C.f; // x

}

}

p/C.x10:

package p;

public class C {

public static val f = true;

}

Figure 18.3: Name conflict in X10

be compiled as int f$O() in Java. For those who are interested in the reason, please
look at our paper [15].

Compiling Java programs To compile Java program that calls X10 code, you should
use x10cj command instead of javac (or whatever your Java compiler). It invokes the
post Java-compiler of x10c with the appropriate options. You need to specify the
location of X10-generated class files or jar files that your Java program refers to.

x10cj -cp MyX10Lib.jar MyJavaProg.java

Executing Java programs Before executing any X10-generated Java code, the run-
time of Managed X10 needs to be set up properly at each place. To set up the runtime, a
special launcher named runjava is used to run Java programs. All Java programs that
call X10 code should be launched with it, and no other mechanisms, including direct
execution with java command, are supported.

Usage: runjava <Java-main-class> [arg0 arg1 ...]

18.3 Interoperability with External C and C++ Code

C and C++ code can be linked to X10 code, either by writing auxiliary C++ files and
adding them with suitable annotations, or by linking libraries.

248 CHAPTER 18. INTEROPERABILITY WITH OTHER LANGUAGES

interface I {

def f():Int;

def g():Any;

}

class C implements I {

static def s():Int = 0n;

static def t():Any = null;

public def f():Int = 1n;

public def g():Any = null;

}

interface I {

int f$O();

java.lang.Object g();

}

class C implements I {

static int s$O() { return 0; }

static java.lang.Object t() { return null; }

public int f$O() { return 1; }

public java.lang.Object g() { return null; }

}

Figure 18.4: X10 methods in Java

18.3. INTEROPERABILITY WITH EXTERNAL C AND C++ CODE 249

18.3.1 Auxiliary C++ Files

Auxiliary C++ code can be written in .h and .cc files, which should be put in the
same directory as the the X10 file using them. Connecting with the library uses the
@NativeCPPInclude(dot_h_file_name) annotation to include the header file, and
the @NativeCPPCompilationUnit(dot_cc_file_name) annotation to include the
C++ code proper. For example:

MyCppCode.h:

void foo();

MyCppCode.cc:

#include <cstdlib>

#include <cstdio>

void foo() {

printf("Hello World!\n");

}

Test.x10:

import x10.compiler.Native;

import x10.compiler.NativeCPPInclude;

import x10.compiler.NativeCPPCompilationUnit;

@NativeCPPInclude("MyCPPCode.h")

@NativeCPPCompilationUnit("MyCPPCode.cc")

public class Test {

public static def main (args:Rail[String]) {

{ @Native("c++","foo();") {} }

}

}

18.3.2 C++ System Libraries

If we want to additionally link to more libraries in /usr/lib for example, it is neces-
sary to adjust the post-compilation directly. The post-compilation is the compilation of
the C++ which the X10-to-C++ compiler x10c++ produces.

The primary mechanism used for this is the -cxx-prearg and -cxx-postarg com-
mand line arguments to x10c++. The values of any -cxx-prearg commands are
placed in the post compiler command before the list of .cc files to compile. The val-
ues of any -cxx-postarg commands are placed in the post compiler command after
the list of .cc files to compile. Typically pre-args are arguments intended for the C++
compiler itself, while post-args are arguments intended for the linker.

The following example shows how to compile blas into the executable via these com-
mands. The command must be issued on one line.

250 CHAPTER 18. INTEROPERABILITY WITH OTHER LANGUAGES

x10c++ Test.x10 -cxx-prearg -I/usr/local/blas

-cxx-postarg -L/usr/local/blas -cxx-postarg -lblas’

19 Definite Assignment

X10 requires that every variable be set before it is read. Sometimes this is easy, as
when a variable is declared and assigned together:

var x : Long = 0;

assert x == 0;

However, it is convenient to allow programs to make decisions before initializing vari-
ables.

def example(a:Long, b:Long) {

val max:Long;

//ERROR: assert max==max; // can’t read ’max’

if (a > b) max = a;

else max = b;

assert max >= a && max >= b;

}

This is particularly useful for val variables. vars could be initialized to a default value
and then reassigned with the right value. vals must be initialized once and cannot be
changed, so they must be initialized with the correct value.

However, one must be careful – and the X10 compiler enforces this care. Without the
else clause, the preceding code might not give max a value by the time assert is
invoked.

This leads to the concept of definite assignment [5]. A variable is definitely assigned
at a point in code if, no matter how that point in code is reached, the variable has been
assigned to. In X10, variables must be definitely assigned before they can be read.

As X10 requires that val variables not be initialized twice, we need the dual concept
as well. A variable is definitely unassigned at a point in code if it cannot have been
assigned no matter how that point in code is reached. For example, immediately after
val x:Long, x is definitely unassigned.

Finally, we need the concept of singly and multiply assigned. A variable is singly
assigned in a block if it is assigned precisely once; it is multiply assigned if it could
possibly be assigned more than once. vars can multiply assigned as desired. vals

251

252 CHAPTER 19. DEFINITE ASSIGNMENT

must be singly assigned. For example, the code x = 1; x = 2; is perfectly fine if x
is a var, but incorrect (even in a constructor) if x is a val.

At some points in code, a variable might be neither definitely assigned nor definitely
unassigned. Such states are not always useful.

def example(flag : Boolean) {

var x : Long;

if (flag) x = 1;

// x is neither def. assigned nor unassigned.

x = 2;

// x is def. assigned.

This shows that we cannot simply define “definitely unassigned” as “not definitely
assigned”. If x had been a val rather than a var, the previous example would not be
allowed.

Unfortunately, a completely accurate definition of “definitely assigned” or “definitely
unassigned” is undecidable – impossible for the compiler to determine. So, X10 takes
a conservative approximation of these concepts. If X10’s definition says that x is defi-
nitely assigned (or definitely unassigned), then it will be assigned (or not assigned) in
every execution of the program.

However, there are programs which X10’s algorithm says are incorrect, but which ac-
tually would behave properly if they were executed. In the following example, flag is
either true or false, and in either case x will be initialized. However, X10’s analysis
does not understand this — thought it would understand if the example were coded
with an if-else rather than a pair of ifs. So, after the two if statements, x is not
definitely assigned, and thus the assert statement, which reads it, is forbidden.

def example(flag:Boolean) {

var x : Long;

if (flag) x = 1;

if (!flag) x = 2;

// ERROR: assert x < 3;

}

19.1 Asynchronous Definite Assignment

Local variables and instance fields allow asynchronous assignment. A local variable
can be assigned in an async statement, and, when the async is finished, the variable
is definitely assigned.

Example:

val a : Long;

finish {

async {

19.2. CHARACTERISTICS OF DEFINITE ASSIGNMENT 253

a = 1;

}

// a is not definitely assigned here

}

// a is definitely assigned after ’finish’

assert a==1;

This concept supports a core X10 programming idiom. A val variable may be initial-
ized asynchronously, thereby providing a means for returning a value from an async
to be used after the enclosing finish.

19.2 Characteristics of Definite Assignment

The properties “definitely assigned”, “singly assigned”, and “definitely unassigned”
are computed by a conservative approximation of X10’s evaluation rules.

The precise details are up to the implementation. Many basic cases must be handled
accurately; e.g., x=1; definitely and singly assigns x.

However, in more complicated cases, a conforming X10 may mark as invalid some
code which, when executed, would actually be correct. For example, the following
program fragment will always result in x being definitely and singly assigned:

val x : Long;

var b : Boolean = mysterious();

if (b) x = cryptic();

if (!b) x = unknown();

However, most conservative approximations of program execution won’t mark x as
properly initialized, though it is. For x to be properly initialized, precisely one of
the two assignments to x must be executed. If b were true initially, it would still be
true after the call to cryptic() — since methods cannot modify their caller’s local
variables – and so the first but not the second assignment would happen. If b were false
initially, it would still be false when !b is tested, and so the second but not the first
assignment would happen. Either way, x is definitely and singly assigned.

However, for a slightly different program, this analysis would be wrong. E.g., if b were
a field of this rather than a local variable, cryptic() could change b; if b were true
initially, both assignments might happen, which is incorrect for a val.

This sort of reasoning is beyond most conservative approximation algorithms. (Indeed,
many do not bother checking that !b late in the program is the opposite of b earlier.)
Algorithms that pay attention to such details and subtleties tend to be fairly expensive,
which would lead to very slow compilation for X10 – for the sake of obscure cases.

X10’s analysis provides at least the following guarantees. We describe them in terms
of a statement S performing some collection of possible numbers of assignments to

254 CHAPTER 19. DEFINITE ASSIGNMENT

variables — on a scale of “0”, “1”, and “many”. For example, if (b) x=1; else
{x=1;x=2;y=2;} might assign to x one or many times, and might assign to y zero or
one time. Hence, after it, x is definitely assigned and may be multiply assigned, and y
is neither definitely assigned nor definitely unassigned.

These descriptions are combined in natural ways. For example, if R says that x will be
assigned 0 or 1 times, and S says it will be assigned precisely once, then R;Swill assign
it one or many times. If only one or R or S will occur, as from if (b) R; else S;,
then x may be assigned 0 or 1 times.

This information is sufficient for the tests X10 makes. If x can is assigned one or many
times in S, it is definitely assigned. It is an error if x is ever read at a point where it
have been assigned zero times. It is an error if a val may be assigned many times.

We do not guarantee that any particular X10 compiler uses this algorithm; indeed, as
of the time of writing, the X10 compiler uses a somewhat more precise one. However,
any conformant X10 compiler must provide results which are at least as accurate as
this analysis.

Assignment: x = e

x = e assigns to x, in addition to whatever assignments e makes. For example, if
this.setX(y) sets a field x to y and returns y, then x = this.setX(y) definitely
and multiply assigns x.

async and finish

By itself, async S provides few guarantees. After an activity executes async{x=1;}
we know that there is a separate activity which (on being scheduled) will set x to 1. We
do not know that this has happened yet.

However, if there is a finish around the async, the situation is clearer. After finish
async x=1;, x has definitely been assigned.

In general, if an async S appears in the body of a finish in a way that guarantees
that it will be executed, then, after the finish, the assignments made by S will have
occurred. For example, if S definitely assigns to x, and the body of the finish guaran-
tees that async S will be executed, then finish{...async S...} definitely assigns
x.

if and switch

When if(E) S else T finishes, it will have performed the assignments of E, together
with those of either S or T but not both. For example, if (b) x=1; else x=2;
definitely assigns x, but if (b) x=1; does not.

switch is more complex, but follows the same principles as if. For example, switch(E){case
1: A; break; case 2: B; default: C;} performs the assignments of E, and those

19.2. CHARACTERISTICS OF DEFINITE ASSIGNMENT 255

of precisely one of A, or B;C, or C. Note that case 2 falls through to the default case, so
it performs the same assignments as B;C.

Sequencing

When R;S finishes, it will have performed the assignments of R and those of S, if R and
S terminate normally. If R terminates abruptly, then only the assignments of R executed
till the point of termination will have been executed. if R terminates normally, but S
terminates abruptly then the assignments of R will have been executed and those of S
executed till the point of termination.

For example, x=1;y=2; definitely assigns x and y, and x=1;x=2; multiply assigns x.

Loops

while(E)S performs the assignments of E one or more times, and those of S zero or
more times. For example, if while(b()){x=1;} might assign to x zero, one, or many
times. do S while(E) performs the assignments of E one or more times, and those of
S one or more times.

for(A;B;C)D performs the assignments of A once, those of B one or more times, and
those of C and D one or more times. for(x in E)S performs the assignments of E
once and those of S zero or more times.

Loops are of very little value for providing definite assignments, since X10 does not in
general know how many times they will be executed.

continue and break inside of a loop are hard to describe in simple terms. They may
be conservatively assumed to cause the loop to give no information about the variables
assigned inside of it. For example, the analysis may conservatively conclude that do{
x = 1; if (true) break; } while(true) may assign to x zero, one, or many
times, overlooking the more precise fact that it is assigned once.

Method Calls

A method call E.m(A,B) performs the assignments of E, A, and B once each, and also
those of m. This implies that X10 must be aware of the possible assignments performed
by each method.

If X10 has complete information about m (as when m is a private or final method),
this is straightforward. When such information is fundamentally impossible to acquire,
as when m is a non-final method invocation, X10 has no choice but to assume that m
might do anything that a method can do. (For this reason, the only methods that can be
called from within a constructor on a raw – incompletely-constructed – object) are the
private and final ones.)

• m cannot assign to local variables of the caller; methods have no such power.

256 CHAPTER 19. DEFINITE ASSIGNMENT

• Let m be an instance method. m can assign to var fields of this freely,

• Let m be an instance method. m cannot initialize val fields of this. (But see
§8.5.2; when one constructor calls another as the first statement of its body,
the other constructor can initialize vval fields. This is a constructor call, not
a method call.)

Recall that every container must be fully initialized upon exit from its constructor.
X10 places certain restrictions on which methods can be called from a constructor; see
§8.11.1. One of these restrictions is that methods called before object initialization is
complete must be final or private — and hence, available for static analysis. So,
when checking field initialization, X10 will ensure:

1. Each val field is initialized before it is read. A method that does not read a val
field f may be called before f is initialized; a method that reads f must not be
called until f is initialized. For example, a constructor may have the form:

class C {

val f : Long;

val g : String;

def this() {

f = fless();

g = useF();

}

private def fless() = "f not used here".length();

private def useF() = "f=" + this.f;

}

2. var fields require a deeper analysis. Consider a var field var x:T without
initializer. If T has a default value, x may be read inside of a constructor before
it is otherwise written, and it will have its default value.

If T has no default value, an analysis like that used for vals must be performed
to determine that x is initialized before it is used. The situation is more complex
than for vals, however, because a method can assign to x as well read from
it. The X10 compiler computes a conservative approximation of which methods
read and write which var fields. (Doing this carefully requires finding a solution
of a set of equations over sets of variables, with each callable method having
equations describing what it reads and writes.)

at

at(p)S performs precisely the assignments of p and those of S. Note that S is executed
at the place named by p in an environment in which all variables used in S but defined
outside S are bound to copies (made at p) of the values they had at the at(p)S statement
(§13.3).

19.2. CHARACTERISTICS OF DEFINITE ASSIGNMENT 257

atomic

atomic S performs the assignments of S, and when(E)S performs those of E and S.
Note that E or S may terminate abruptly.

try

try S catch(x:T1) E1 ... catch(x:Tn) En finally F performs some or all
of the assignments of S, plus all the assignments of zero or one of the E’s, plus those of
F. For example,

try {

x = boomy();

x = 0;

}

catch(e:Boom) { y = 1; }

finally { z = 1; }

assigns x zero, one, or many times1, assigns y zero or one time, and assigns z exactly
once.

Expression Statements

Expression statements E;, and other statements that execute an expression and do
something innocuous with it (local variable declaration and assert) have the same
effects as E.

return, throw

Statements that do not finish normally, such as return and throw, do not initialize
anything (though the computation of the return or thrown value may). They also termi-
nate a line of computation. For example, if(b) {x=1; return;} x=2; definitely
and singly assigns x.

1A more precise analysis could discover that x cannot be initialized only once.

20 Grammar

In this grammar, X? denotes an optional X element.

(0) AdditiveExp ::= MultiplicativeExp
| AdditiveExp + MultiplicativeExp
| AdditiveExp - MultiplicativeExp

(1) AndExp ::= EqualityExp
| AndExp & EqualityExp

(2) AnnotatedType ::= Type Annotations

(3) Annotation ::= @ NamedTypeNoConstraints

(4) AnnotationStmt ::= Annotations? NonExpStmt

(5) Annotations ::= Annotation
| Annotations Annotation

(6) ApplyOpDecln ::= MethMods operator this TypeParams? Formals Guard?

HasResultType? MethodBody

(7) ArgumentList ::= Exp
| ArgumentList , Exp

(8) Arguments ::= (ArgumentList)

(9) AssertStmt ::= assert Exp ;
| assert Exp : Exp ;

(10) AssignPropCall ::= property TypeArgs? (ArgumentList?) ;

258

259

(11) Assignment ::= LeftHandSide AsstOp AsstExp
| ExpName (ArgumentList?) AsstOp AsstExp
| Primary (ArgumentList?) AsstOp AsstExp

(12) AsstExp ::= Assignment
| ConditionalExp

(13) AsstOp ::= =

| *=

| /=

| %=

| +=

| -=

| <<=

| >>=

| >>>=

| &=

| ˆ=

| |=

(14) AsyncStmt ::= async ClockedClause? Stmt
| clocked async Stmt

(15) AtCaptureDeclr ::= Mods? VarKeyword? VariableDeclr
| Id
| this

(16) AtCaptureDeclrs ::= AtCaptureDeclr
| AtCaptureDeclrs , AtCaptureDeclr

(17) AtEachStmt ::= ateach (LoopIndex in Exp) ClockedClause? Stmt
| ateach (Exp) Stmt

(18) AtExp ::= at (Exp) ClosureBody

(19) AtStmt ::= at (Exp) Stmt

(20) AtomicStmt ::= atomic Stmt

(21) BasicForStmt ::= for (ForInit? ; Exp? ; ForUpdate?) Stmt

260 CHAPTER 20. GRAMMAR

(22) BinOp ::= +

| -

| *

| /

| %

| &

| |

| ˆ

| &&

| ||

| <<

| >>

| >>>

| >=

| <=

| >

| <

| ==

| !=

| ..

| ->

| <-

| -<

| >-

| **

| ˜

| !˜

| !

(23) BinOpDecln ::= MethMods operator TypeParams? (Formal) BinOp (Formal)
Guard? HasResultType? MethodBody

| MethMods operator TypeParams? this BinOp (Formal) Guard?

HasResultType? MethodBody
| MethMods operator TypeParams? (Formal) BinOp this Guard?

HasResultType? MethodBody

(24) Block ::= { BlockStmts? }

(25) BlockInteriorStmt ::= LocVarDeclnStmt
| ClassDecln
| StructDecln
| TypeDefDecln
| Stmt

261

(26) BlockStmts ::= BlockInteriorStmt
| BlockStmts BlockInteriorStmt

(27) BooleanLiteral ::= true

| false

(28) BreakStmt ::= break Id? ;

(29) CastExp ::= Primary
| ExpName
| CastExp as Type

(30) CatchClause ::= catch (Formal) Block

(31) Catches ::= CatchClause
| Catches CatchClause

(32) ClassBody ::= { ClassMemberDeclns? }

(33) ClassDecln ::= Mods? class Id TypeParamsI? Properties? Guard? Super? Interfaces?

ClassBody

(34) ClassMemberDecln ::= InterfaceMemberDecln
| CtorDecln

(35) ClassMemberDeclns ::= ClassMemberDecln
| ClassMemberDeclns ClassMemberDecln

(36) ClassName ::= TypeName

(37) ClassType ::= NamedType

(38) ClockedClause ::= clocked Arguments

(39) ClosureBody ::= Exp
| ClosureBodyBlock

(40) ClosureBodyBlock ::= Annotations? { BlockStmts? LastExp }
| Annotations? Block

262 CHAPTER 20. GRAMMAR

(41) ClosureExp ::= Formals Guard? HasResultType? => ClosureBody

(42) CompilationUnit ::= PackageDecln? TypeDeclns?

| PackageDecln? ImportDeclns TypeDeclns?

| ImportDeclns PackageDecln ImportDeclns? TypeDeclns?

| PackageDecln ImportDeclns PackageDecln ImportDeclns?

TypeDeclns?

(43) ConditionalAndExp ::= InclusiveOrExp
| ConditionalAndExp && InclusiveOrExp

(44) ConditionalExp ::= ConditionalOrExp
| ClosureExp
| AtExp
| ConditionalOrExp ? Exp : ConditionalExp

(45) ConditionalOrExp ::= ConditionalAndExp
| ConditionalOrExp || ConditionalAndExp

(46) ConstantExp ::= Exp

(47) ConstrainedType ::= NamedType
| AnnotatedType

(48) ConstraintConjunction ::= Exp
| ConstraintConjunction , Exp

(49) ContinueStmt ::= continue Id? ;

(50) ConversionOpDecln ::= ExplConvOpDecln
| ImplConvOpDecln

(51) CtorBlock ::= { ExplicitCtorInvo? BlockStmts? }

(52) CtorBody ::= CtorBlock
| = ExplicitCtorInvo
| = AssignPropCall
| ;

(53) CtorDecln ::= Mods? def this TypeParams? Formals Guard? HasResultType? CtorBody

263

(54) DepNamedType ::= SimpleNamedType DepParams
| ParamizedNamedType DepParams

(55) DoStmt ::= do Stmt while (Exp) ;

(56) EmptyStmt ::= ;

(57) EnhancedForStmt ::= for (LoopIndex in Exp) Stmt
| for (Exp) Stmt

(58) EqualityExp ::= RelationalExp
| EqualityExp == RelationalExp
| EqualityExp != RelationalExp
| Type == Type
| EqualityExp ˜ RelationalExp
| EqualityExp !˜ RelationalExp

(59) ExclusiveOrExp ::= AndExp
| ExclusiveOrExp ˆ AndExp

(60) Exp ::= AsstExp

(61) ExpName ::= Id
| FullyQualifiedName . Id

(62) ExpStmt ::= StmtExp ;

(63) ExplConvOpDecln ::= MethMods operator TypeParams? (Formal) as Type Guard?

MethodBody
| MethMods operator TypeParams? (Formal) as ? Guard?

HasResultType? MethodBody

(64) ExplicitCtorInvo ::= this TypeArgs? (ArgumentList?) ;
| super TypeArgs? (ArgumentList?) ;
| Primary . this TypeArgs? (ArgumentList?) ;
| Primary . super TypeArgs? (ArgumentList?) ;

(65) ExtendsInterfaces ::= extends Type
| ExtendsInterfaces , Type

264 CHAPTER 20. GRAMMAR

(66) FieldAccess ::= Primary . Id
| super . Id
| ClassName . super . Id

(67) FieldDecln ::= Mods? VarKeyword FieldDeclrs ;
| Mods? FieldDeclrs ;

(68) FieldDeclr ::= Id HasResultType
| Id HasResultType? = VariableInitializer

(69) FieldDeclrs ::= FieldDeclr
| FieldDeclrs , FieldDeclr

(70) Finally ::= finally Block

(71) FinishStmt ::= finish Stmt
| clocked finish Stmt

(72) ForInit ::= StmtExpList
| LocVarDecln

(73) ForStmt ::= BasicForStmt
| EnhancedForStmt

(74) ForUpdate ::= StmtExpList

(75) Formal ::= Mods? FormalDeclr
| Mods? VarKeyword FormalDeclr
| Type

(76) FormalDeclr ::= Id ResultType
| [IdList] ResultType
| Id [IdList] ResultType

(77) FormalDeclrs ::= FormalDeclr
| FormalDeclrs , FormalDeclr

(78) FormalList ::= Formal
| FormalList , Formal

265

(79) Formals ::= (FormalList?)

(80) FullyQualifiedName ::= Id
| FullyQualifiedName . Id

(81) FunctionType ::= TypeParams? (FormalList?) Guard? => Type

(82) Guard ::= DepParams

(83) Throws ::= throws ThrowsList

(84) ThrowsList ::= Type
| ThrowsList , Type

(85) HasResultType ::= ResultType
| <: Type

(86) HasZeroConstraint ::= Type haszero

(87) HomeVariable ::= Id
| this

(88) HomeVariableList ::= HomeVariable
| HomeVariableList , HomeVariable

(89) Id ::= IDENTIFIER

(90) IdList ::= Id
| IdList , Id

(91) IfThenElseStmt ::= if (Exp) Stmt else Stmt

(92) IfThenStmt ::= if (Exp) Stmt

(93) ImplConvOpDecln ::= MethMods operator TypeParams? (Formal) Guard?

HasResultType? MethodBody

(94) ImportDecln ::= SingleTypeImportDecln
| TypeImportOnDemandDecln

266 CHAPTER 20. GRAMMAR

(95) ImportDeclns ::= ImportDecln
| ImportDeclns ImportDecln

(96) InclusiveOrExp ::= ExclusiveOrExp
| InclusiveOrExp | ExclusiveOrExp

(97) InterfaceBody ::= { InterfaceMemberDeclns? }

(98) InterfaceDecln ::= Mods? interface Id TypeParamsI? Properties? Guard?

ExtendsInterfaces? InterfaceBody

(99) InterfaceMemberDecln ::= MethodDecln
| PropMethodDecln
| FieldDecln
| TypeDecln

(100) InterfaceMemberDeclns ::= InterfaceMemberDecln
| InterfaceMemberDeclns InterfaceMemberDecln

(101) InterfaceTypeList ::= Type
| InterfaceTypeList , Type

(102) Interfaces ::= implements InterfaceTypeList

(103) KeywordOp ::= for

| if

| try

| throw

| async

| atomic

| when

| finish

| at

| continue

| break

| ateach

| while

| do

(104) KeywordOpDecln ::= MethMods operator keywordOp TypeParams? Formals Guard?

Throws? HasResultType? MethodBody

267

(105) LabeledStmt ::= Id : LoopStmt

(106) LastExp ::= Exp

(107) LeftHandSide ::= ExpName
| FieldAccess

(108) Literal ::= IntegerLiteral

| LongLiteral

| ByteLiteral

| UnsignedByteLiteral

| ShortLiteral

| UnsignedShortLiteral

| UnsignedIntegerLiteral

| UnsignedLongLiteral

| FloatingPointLiteral

| DoubleLiteral

| BooleanLiteral
| CharacterLiteral

| StringLiteral

| null

(109) LocVarDecln ::= Mods? VarKeyword VariableDeclrs
| Mods? VarDeclsWType
| Mods? VarKeyword FormalDeclrs

(110) LocVarDeclnStmt ::= LocVarDecln ;

(111) LoopIndex ::= Mods? LoopIndexDeclr
| Mods? VarKeyword LoopIndexDeclr

(112) LoopIndexDeclr ::= Id HasResultType?

| [IdList] HasResultType?

| Id [IdList] HasResultType?

(113) LoopStmt ::= ForStmt
| WhileStmt
| DoStmt
| AtEachStmt

268 CHAPTER 20. GRAMMAR

(114) MethMods ::= Mods?

| MethMods property
| MethMods Mod

(115) MethodBody ::= = LastExp ;
| Annotations? Block
| ;

(116) MethodDecln ::= MethMods def Id TypeParams? Formals Guard? Throws?

HasResultType? MethodBody
| BinOpDecln
| PrefixOpDecln
| ApplyOpDecln
| SetOpDecln
| ConversionOpDecln
| KeywordOpDecln

(117) MethodInvo ::= MethodName TypeArgs? (ArgumentList?)
| Primary . Id TypeArgs? (ArgumentList?)
| super . Id TypeArgs? (ArgumentList?)
| ClassName . super . Id TypeArgs? (ArgumentList?)
| Primary TypeArgs? (ArgumentList?)

(118) MethodInvoStmt ::= MethodName TypeArgs? Arguments? ClosureBodyBlock
| Primary . Id TypeArgs? Arguments? ClosureBodyBlock
| super . Id TypeArgs? Arguments? ClosureBodyBlock
| ClassName . super . Id TypeArgs? Arguments? ClosureBodyBlock
| Primary TypeArgs? Arguments? ClosureBodyBlock

(119) MethodName ::= Id
| FullyQualifiedName . Id

(120) Mod ::= abstract

| Annotation
| atomic

| final

| native

| private

| protected

| public

| static

| transient

| clocked

269

(121) MultiplicativeExp ::= RangeExp
| MultiplicativeExp * RangeExp
| MultiplicativeExp / RangeExp
| MultiplicativeExp % RangeExp
| MultiplicativeExp ** RangeExp

(122) NamedType ::= NamedTypeNoConstraints
| DepNamedType

(123) NamedTypeNoConstraints ::= SimpleNamedType
| ParamizedNamedType

(124) NonExpStmt ::= Block
| EmptyStmt
| AssertStmt
| SwitchStmt
| DoStmt
| BreakStmt
| ContinueStmt
| ReturnStmt
| ThrowStmt
| TryStmt
| LabeledStmt
| IfThenStmt
| IfThenElseStmt
| WhileStmt
| ForStmt
| AsyncStmt
| AtStmt
| AtomicStmt
| WhenStmt
| AtEachStmt
| FinishStmt
| AssignPropCall
| userStmtPrefix userStmt
| MethodInvoStmt

(125) ObCreationExp ::= new TypeName TypeArgs? (ArgumentList?) ClassBody?

| Primary . new Id TypeArgs? (ArgumentList?) ClassBody?

| FullyQualifiedName . new Id TypeArgs? (ArgumentList?)
ClassBody?

(126) PackageDecln ::= Annotations? package PackageName ;

270 CHAPTER 20. GRAMMAR

(127) PackageName ::= Id
| PackageName . Id

(128) PackageOrTypeName ::= Id
| PackageOrTypeName . Id

(129) ParamizedNamedType ::= SimpleNamedType Arguments
| SimpleNamedType TypeArgs
| SimpleNamedType TypeArgs Arguments

(130) PostDecrementExp ::= PostfixExp --

(131) PostIncrementExp ::= PostfixExp ++

(132) PostfixExp ::= CastExp
| PostIncrementExp
| PostDecrementExp

(133) PreDecrementExp ::= -- UnaryExpNotPlusMinus

(134) PreIncrementExp ::= ++ UnaryExpNotPlusMinus

(135) PrefixOp ::= +

| -

| !

| ˜

| ˆ

| |

| &

| *

| /

| %

(136) PrefixOpDecln ::= MethMods operator TypeParams? PrefixOp (Formal) Guard?

HasResultType? MethodBody
| MethMods operator TypeParams? PrefixOp this Guard?

HasResultType? MethodBody

271

(137) Primary ::= here

| [ArgumentList?]
| Literal
| self

| this

| ClassName . this
| (Exp)
| ObCreationExp
| FieldAccess
| MethodInvo

(138) Prop ::= Annotations? Id ResultType

(139) PropList ::= Prop
| PropList , Prop

(140) PropMethodDecln ::= Mods? property Id TypeParams? Formals Guard?

HasResultType? MethodBody
| Mods? property Id Guard? HasResultType? MethodBody

(141) Properties ::= (PropList)

(142) RangeExp ::= UnaryExp
| RangeExp .. UnaryExp

(143) RelationalExp ::= ShiftExp
| HasZeroConstraint
| SubtypeConstraint
| RelationalExp < ShiftExp
| RelationalExp > ShiftExp
| RelationalExp <= ShiftExp
| RelationalExp >= ShiftExp
| RelationalExp instanceof Type

(144) ResultType ::= : Type

(145) ReturnStmt ::= return Exp? ;

(146) SetOpDecln ::= MethMods operator this TypeParams? Formals = (Formal) Guard?

HasResultType? MethodBody

272 CHAPTER 20. GRAMMAR

(147) ShiftExp ::= AdditiveExp
| ShiftExp << AdditiveExp
| ShiftExp >> AdditiveExp
| ShiftExp >>> AdditiveExp
| ShiftExp -> AdditiveExp
| ShiftExp <- AdditiveExp
| ShiftExp -< AdditiveExp
| ShiftExp >- AdditiveExp
| ShiftExp ! AdditiveExp

(148) SimpleNamedType ::= TypeName
| Primary . Id
| ParamizedNamedType . Id
| DepNamedType . Id

(149) SingleTypeImportDecln ::= import TypeName ;

(150) Stmt ::= AnnotationStmt
| ExpStmt

(151) StmtExp ::= Assignment
| PreIncrementExp
| PreDecrementExp
| PostIncrementExp
| PostDecrementExp
| MethodInvo
| ObCreationExp

(152) StmtExpList ::= StmtExp
| StmtExpList , StmtExp

(153) StructDecln ::= Mods? struct Id TypeParamsI? Properties? Guard? Interfaces?

ClassBody

(154) SubtypeConstraint ::= Type <: Type
| Type :> Type

(155) Super ::= extends ClassType

(156) SwitchBlock ::= { SwitchBlockGroups? SwitchLabels? }

273

(157) SwitchBlockGroup ::= SwitchLabels BlockStmts

(158) SwitchBlockGroups ::= SwitchBlockGroup
| SwitchBlockGroups SwitchBlockGroup

(159) SwitchLabel ::= case ConstantExp :
| default :

(160) SwitchLabels ::= SwitchLabel
| SwitchLabels SwitchLabel

(161) SwitchStmt ::= switch (Exp) SwitchBlock

(162) ThrowStmt ::= throw Exp ;

(163) TryStmt ::= try Block Catches
| try Block Catches? Finally

(164) Type ::= FunctionType
| ConstrainedType
| Void

(165) TypeArgs ::= [TypeArgumentList]

(166) TypeArgumentList ::= Type
| TypeArgumentList , Type

(167) TypeDecln ::= ClassDecln
| StructDecln
| InterfaceDecln
| TypeDefDecln
| ;

(168) TypeDeclns ::= TypeDecln
| TypeDeclns TypeDecln

(169) TypeDefDecln ::= Mods? type Id TypeParams? Guard? = Type ;
| Mods? type Id TypeParams? (FormalList) Guard? = Type ;

(170) TypeImportOnDemandDecln ::= import PackageOrTypeName . * ;

274 CHAPTER 20. GRAMMAR

(171) TypeName ::= Id
| TypeName . Id

(172) TypeParam ::= Id

(173) TypeParamIList ::= TypeParam
| TypeParamIList , TypeParam
| TypeParamIList ,

(174) TypeParamList ::= TypeParam
| TypeParamList , TypeParam

(175) TypeParams ::= [TypeParamList]

(176) TypeParamsI ::= [TypeParamIList]

(177) UnannotatedUnaryExp ::= PreIncrementExp
| PreDecrementExp
| + UnaryExpNotPlusMinus
| - UnaryExpNotPlusMinus
| UnaryExpNotPlusMinus

(178) UnaryExp ::= UnannotatedUnaryExp
| Annotations UnannotatedUnaryExp

(179) UnaryExpNotPlusMinus ::= PostfixExp
| ˜ UnaryExp
| ! UnaryExp
| ˆ UnaryExp
| | UnaryExp
| & UnaryExp
| * UnaryExp
| / UnaryExp
| % UnaryExp

(180) UserAsyncStmt ::= async TypeArgs? Arguments? ClockedClause? ClosureBodyBlock

(181) UserAtEachStmt ::= ateach TypeArgs? (FormalList in ArgumentList?) ClosureBodyBlock
| ateach TypeArgs? (ArgumentList?) ClosureBodyBlock

(182) UserAtomicStmt ::= atomic TypeArgs? Arguments? ClosureBodyBlock

275

(183) UserAtStmt ::= at TypeArgs? (ArgumentList?) ClosureBodyBlock

(184) UserBreakStmt ::= break TypeArgs? Exp? ;

(185) UserCatchClause ::= catch (FormalList?) ClosureBodyBlock

(186) UserCatches ::= UserCatchClause
| UserCatches UserCatchClause

(187) UserContinueStmt ::= continue TypeArgs? Exp? ;

(188) UserDoStmt ::= do TypeArgs? ClosureBodyBlock while (ArgumentList?) ;

(189) UserEnhancedForStmt ::= for TypeArgs? (FormalList in ArgumentList?) ClosureBodyBlock
| for TypeArgs? (ArgumentList?) ClosureBodyBlock

(190) UserFinallyBlock ::= finally ClosureBodyBlock

(191) UserFinishStmt ::= finish TypeArgs? Arguments? ClosureBodyBlock

(192) UserIfThenStmt ::= if TypeArgs? (ArgumentList?) ClosureBodyBlock
| if TypeArgs? (ArgumentList?) ClosureBodyBlock else ClosureBodyBlock

(193) UserStmt ::= UserEnhancedForStmt
| UserIfThenStmt
| UserTryStmt
| UserThrowStmt
| UserAsyncStmt
| UserAtomicStmt
| UserWhenStmt
| UserFinishStmt
| UserAtStmt
| UserContinueStmt
| UserBreakStmt
| UserAtEachStmt
| UserWhileStmt
| UserDoStmt

276 CHAPTER 20. GRAMMAR

(194) UserStmtPrefix ::= FullyQualifiedName .
| Primary .
| super .

| ClassName . super .

(195) UserThrowStmt ::= throw TypeArgs? Exp? ;

(196) UserTryStmt ::= try TypeArgs? Arguments? ClosureBodyBlock UserCatches?

UserFinallyBlock?

(197) UserWhenStmt ::= when TypeArgs? (ArgumentList?) ClosureBodyBlock

(198) UserWhileStmt ::= while TypeArgs? (ArgumentList?) ClosureBodyBlock

(199) VarDeclWType ::= Id HasResultType = VariableInitializer
| [IdList] HasResultType = VariableInitializer
| Id [IdList] HasResultType = VariableInitializer

(200) VarDeclsWType ::= VarDeclWType
| VarDeclsWType , VarDeclWType

(201) VarKeyword ::= val

| var

(202) VariableDeclr ::= Id HasResultType? = VariableInitializer
| [IdList] HasResultType? = VariableInitializer
| Id [IdList] HasResultType? = VariableInitializer

(203) VariableDeclrs ::= VariableDeclr
| VariableDeclrs , VariableDeclr

(204) VariableInitializer ::= Exp

(205) Void ::= void

(206) WhenStmt ::= when (Exp) Stmt

(207) WhileStmt ::= while (Exp) Stmt

References

[1] David Bacon. Kava: A Java dialect with a uniform object model for lightweight
classes. Concurrency – Practice and Experience, 15:185–206, 2003.

[2] Joseph A. Bank, Barbara Liskov, and Andrew C. Myers. Parameterized types
and Java. In Proceedings of the 24th Annual ACM Symposium on Principles of
Programming Languages (POPL’97), pages 132–145, 1997.

[3] William Carlson, Tarek El-Ghazawi, Bob Numrich, and Kathy Yelick. Program-
ming in the Partitioned Global Address Space Model, 2003. Presentation at SC
2003, http://www.gwu.edu/ upc/tutorials.html.

[4] Bradford L. Chamberlain, Sung-Eun Choi, Steven J. Deitz, and Lawrence Snyder.
The high-level parallel language ZPL improves productivity and performance.
In Proceedings of the IEEE International Workshop on Productivity and Perfor-
mance in High-End Computing, 2004.

[5] J. Gosling, W. Joy, G. Steele, and G. Bracha. The Java Language Specification.
Addison Wesley, 2000.

[6] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) Language
Specification, The (3rd Edition) (Java (Addison-Wesley)). Addison-Wesley Pro-
fessional, 2005.

[7] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming
Languages and Systems, 13(1):124–149, January 1991.

[8] Kiyokuni Kawachiya, Mikio Takeuchi, Salikh Zakirov, and Tamiya Onodera.
Distributed garbage collection for managed X10. In Proceedings of the 2012
ACM SIGPLAN X10 Workshop, X10 ’12, pages 5:1–5:11, New York, NY, USA,
2012. ACM.

[9] Jose E. Moreira, Samuel P. Midkiff, Manish Gupta, Pedro V. Artigas, Marc Snir,
and Richard D. Lawrence. Java programming for high-performance numerical
computing. IBM Systems Journal, 39(1):21–, 2000.

[10] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala. Artima
Inc, 2 edition, January 2011.

277

278 REFERENCES

[11] A. Shinnar, D. Cunningham, B. Herta, and V. Saraswat. M3R: Increased perfor-
mance for in-memory Hadoop jobs. In Proceedings of VLDB Conference, VLDB
’12, 2012.

[12] A. Skjellum, E. Lusk, and W. Gropp. Using MPI: Portable Parallel Programming
with the Message Passing Iinterface. MIT Press, 1999.

[13] Mikio Takeuchi, David Cunningham, David Grove, and Vijay Saraswat. Java
interoperability in managed X10. In Proceedings of the third ACM SIGPLAN
X10 Workshop, X10 ’13, pages 39–46, New York, NY, USA, 2013. ACM.

[14] Mikio Takeuchi, Yuki Makino, Kiyokuni Kawachiya, Hiroshi Horii, Toyotaro
Suzumura, Toshio Suganuma, and Tamiya Onodera. Compiling X10 to Java. In
Proceedings of the 2011 ACM SIGPLAN X10 Workshop, X10 ’11, pages 3:1–
3:10, New York, NY, USA, 2011. ACM.

[15] Mikio Takeuchi, Salikh Zakirov, Kiyokuni Kawachiya, and Tamiya Onodera. Fast
method dispatch and effective use of primitives for reified generics in managed
X10. In Proceedings of the 2012 ACM SIGPLAN X10 Workshop, X10 ’12, pages
4:1–4:7, New York, NY, USA, 2012. ACM.

[16] K. A. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy,
P. N. Hilfinger, S. L. Graham, D. Gay, P. Colella, and A. Aiken. Titanium: A
high-performance java dialect. Concurrency - Practice and Experience, 10(11-
13):825–836, 1998.

Index 279

(), 107
()=, 107
++, 164
--, 164
:>, 180
<:, 68, 180
==, 168
? :, 167
DistArray, 232

creation, 232
Object, 33
as, 176
ateach, 207
instanceof, 179
this, 158

acc, 289
activity, 204

blocked, 204
creating, 205
initial, 207
running, 204
terminated, 204

allocation, 171
annotations, 236

type annotations, 50
anonymous class, 145
Any

structs, 149
application operator, 107
array, 222, 229

access, 233
constant promotion, 233
constructor, 229
distributed, 232
operations on, 230
pointwise operations, 234
reductions, 234
restriction, 233
scans, 235

assert, 192
assignment, 163

definite, 251

280 Index

assignment operator, 107
async, 205

clocked, 220
at, 197

blocking copying, 202
copying, 200
GlobalRef, 202
transient fields and, 201

ateach, 207
atomic, 208

conditional, 210
auto-boxing

struct to interface, 149

block, 185
Boolean, 150

literal, 24
Boolean operations, 167
break, 187
Byte, 150

call, 161
function, 161
method, 161
super, 162

cast, 172, 176
to generic type, 45

catch, 194
Char, 150
char

literal, 25
class, 33, 83

anonymous, 145
construction, 171
field, 69
inner, 141
instantation, 171
invariant, 120
nested, 141
static nested, 141

class declaration, 33
class invariant, 120
class invariants, 120
clock, 215

advanceAll, 218
clocked statements, 217

Index 281

ClockUseException, 216–218
creation, 217
drop, 219
operations on, 217
resume, 218

clocked
async, 220
finish, 220

clocked finish
nested, 221

closure, 153
parametrized, 35

coercion, 138, 175
explicit, 176
subsumption, 175
user-defined, 177

comment, 23
concrete type, 35
conditional expression, 167
constrained type, 39
constraint, 41

entailment, 44
permitted, 41
semantics, 43
subtyping, 44
syntax, 41

constraint solver
incompleteness, 44

constructor, 98, 124
and invariant, 121
closure in, 130
generated, 98
inner classes in, 130
parametrized, 35

container, 29
continue, 188
conversion, 175, 178

numeric, 178
string, 178
user-defined, 178
widening, 178

declaration
class declaration, 33
interface declaration, 34
reference class declaration, 33

282 Index

type, 36
decrement, 164
default value, 49
definite assignment, 251
definitely assigned, 251
definitely not assigned, 251
dependent type, 39
destructuring, 66
DistArray, 232

creation, 232
distributed array, 232

creation, 232
distribution, 230

block, 231
constant, 231
operations, 231
restriction

range, 232
region, 232

unique, 231
do, 190
documentation type declaration, 68
Double, 150
double

literal, 25
dynamic checks, 299

equality, 168
function, 157

Exception, 193
unchecked, 153

exception, 193, 194, 205
model, 205
rooted, 205

expression, 158
allowed in constraint, 41
conditional, 167
constraint, 41

extends, 121

field, 69, 85
access to, 159
hiding, 85
initialization, 85
qualifier, 86
static, 86

Index 283

transient, 86, 199, 201
final, 92
finally, 194
finish, 206

clocked, 220
nested clocked, 221

FIRST PLACE, 196
Float, 150
float

literal, 25
for, 190
formal parameter, 67
function, 153

==, 157
application, 154
at(Place), 157
equality, 157
equals, 157
hashCode, 157
home, 157
literal, 153
outer variables in, 156
toString, 157
typeName, 157
types, 47

generic type, 39
guard, 120

on method, 92

here, 196
hiding, 71

identifier, 23
if, 188
immutable variable, 64
implements, 121
implicit coercion, 138
implicitly non-escaping, 126
import, 75
import,type definitions, 37
increment, 164
initial activity, 207
initial value, 65
initialization, 65, 124

of field, 85

284 Index

static, 100
inner class, 141

constructor, 143
extending, 142

instanceof, 179
instantation, 171
Int, 150

literal, 25
integers

unsigned, 150
interface, 34, 77

field definition in, 80
interface declaration, 34
interoperability, 239
invariant

and constructor, 121
checked, 121
class, 120
type, 120

invocation, 161
function, 161
method, 161

keywords, 24

label, 186
literal, 24, 158

Boolean, 24
char, 25
double, 25
float, 25
function, 155
integer, 25
string, 26

local variable, 68
Long, 150

method, 89
calling, 161
final, 92
generic instance, 92
guard, 92
implicitly non-escaping, 126
instance, 89
invoking, 161
non-escaping, 126

Index 285

NonEscaping, 126
overloading, 95
parametrized, 35
property, 93
resolution, 133
signature, 89
static, 89
which one will get called, 133

method resolution
implicit coercions and, 138

name, 70
namespace, 70
native code, 239
new, 171
non-escaping, 126

implicitly, 126
NonEscaping, 126
null, 25, 33
nullary constructor, 65
numeric operations, 164
numeric promotion, 164

object, 83
constructor, 124
field, 69, 85
literal, 25

obscuring, 71
Offers, 289
offers, 289, 297
operation

numeric, 164
operator, 26, 102

user-defined, 102
overloading, 89

package, 70
parameter, 67

val, 90
var, 90

place, 196
changing, 197
FIRST PLACE, 196

point, 224
syntax, 224

polymorphism, 89

286 Index

primitive types, 150
private, 73
promotion, 164
properties

acyclic, 89
property, 34, 87

initialization, 87
property method, 93
protected, 73
public, 73

qualifier
field, 86

Rail, 222
rail

construction, 181
literal, 181

region, 227
convex, 228
intersection, 228
operations, 228
product, 228
sub-region, 228
syntax, 227

return, 192
root activity, 204

self, 39
shadowing, 70
Short, 150
signature, 89
statement, 183
statement label, 186
static nested class, 141
static nested struct, 151
STATIC CHECKS, 299
string

concatenation, 166
literal, 26

struct, 147
auto-boxing, 149
casting to interface, 149
construction, 171
constructor, 124
declaration, 148

Index 287

field, 69
instantation, 171
static nested, 151

subtype
test, 180

subtyping, 50
supercall, 162
switch, 189

termination, 204
abrupt, 193
global, 204
local, 204
normal, 193

this, 158
throw, 193
transient, 86, 199, 201
try, 194
type

annotated, 50
class, 33
coercion, 175
concrete, 35
constrained, 39
conversion, 175, 178
default value, 49
definitions, 36
dependent, 39
function, 47
generic, 35, 39
inference, 54
interface, 34
parameter, 35

type conversion, 172
implicit, 106
user-defined, 106

type equivalence, 50
type inference, 54
type invariants, 120
type system, 30
type-checking

extends clause, 121
implements clause, 121

types, 29
primitive, 150
unsigned, 150

288 Index

UByte, 150
UInt, 150
ULong, 150
unit type, 32
unsigned, 150
UShort, 150

val, 64, 184
var, 184
variable, 63

declaration, 184
immutable, 64
local, 68
val, 64

variable declaration, 64
variable declarator

destructuring, 66
variable name, 23
VERBOSE CHECKS, 299
void, 55

when, 210
timing, 212

while, 189
white space, 23

A Deprecations

X10 version 2.4 has a few relics of previous versions, code that is being used by li-
braries but is not intended for general programming. They should be ignored.

These are:

• acc variables.

• The offers clause for use with collecting finish.

• The grammar allows covariant and contravariant type parameters, marked by +
and -:

class Variant[X, +Y, -Z] {}

X10 does not support these in any other way.

• The syntax allows for a few Java-isms, such as c.class and super.class,
which are not used.

289

B Change Log

B.1 Changes from X10 v2.5

To resolve parsing ambiguities, the property keyword is now mandatory to introduce
property methods.

The X10 language now supports trailing closures. A trailing closure is a closure block
that is written and after the parentheses of a function call. This closure block is passed
as a closure without argument to the function.

B.2 Changes from X10 v2.4

Although there were no backwards incompatible language changes between X10 v2.4
and X10 v2.5, a few core class library APIs did have backwards incompatible changes.
These changes were driven by our experience with Resilient and Elastic X10 and are
designed to better support X10 computations over a dynamically varying number of
Places. In summary,

1. Static constants such as PlaceGroup.WORLD, and Place.MAX_PLACES were
removed. They are replaced by Place.places() and Place.numPlaces()
which return values that represent the current view on the dynamically change-
able set of Places available to the computation.

2. The removal of iteration functionality (next and prev) from Place. This func-
tionality is now provided only through PlaceGroup.

3. The addition of PlaceTopology to provide a more flexible set of APIs describ-
ing the topological relationships of Places.

In addition, the put and get methods of x10.util.Map were changed to no longer
wrap their return value in an instance of x10.util.Box. This improves the common
case efficiency of map usage, but does require that the Values stored in Map satisfy the
haszero constraint.

290

B.3. CHANGES FROM X10 V2.3 291

B.3 Changes from X10 v2.3

X10 v2.4 is not backwards compatible with X10 v2.3. The motivation for making
backwards incompatible language changes with this release of X10 is to significantly
improve the ability of the X10 programmer to exploit the expanded memory capabil-
ities of modern computer systems. In particular, X10 v2.4 includes an extensive re-
design of arrays and a change of the default type of unqualified integral literals (e.g.2)
from Int to Long. Taken together these two changes enable natural exploitation of
large memories via 64-bit addressing and Long-based indexing of arrays and similar
data structures.

B.3.1 Integral Literals

The default type of unqualified integral literals was changed from Int to Long.

The qualifying suffix n and un are used to indicate Int and UInt literals respectively.
The suffix u is now interpreted as indicating a ULong literal.

B.3.2 Arrays

An extensive redesign of the X10 abstractions for arrays is the major new feature of
the X10 v2.4 release. Although this redesign only involved very minor changes to
the actual X10 language specification, the core class libraries did change significantly.
As mentioned above, the driving motivation for the change was a long-contemplated
strategic decision to shift to from Int-based (32-bit) to Long-based (64-bit) indexing
for all X10 arrays. This change enables X10 to better utilize the rapidly expanding
memory capacity and 64-bit address space found on modern machines. For consis-
tency, the id field of x10.lang.Place and the size and indexing-related APIs of the
x10.util collection hierarchy were also changed from Int to Long.

Once this inherently backwards-incompatible decision was made, the X10 team de-
cided to do a larger rethinking of all of X10’s array implementations to introduce a
new time and space optimal implementation of zero-based, dense, rectangular multi-
dimensional arrays. This new implementation, in the x10.array package, is intended
to provide the best possible performance for the common-case it supports. The pre-
vious, more general array implementation is still available, but has been relocated to
a new package x10.array.regionarray. In addition, the x10.lang.Rail class
was re-introduced as a separate class in its own right and provides the intrinsic in-
dexed storage abstraction on which both array packages are built. The intent is that the
combination of Rail, x10.array and x10.regionarray provide a spectrum of ar-
ray abstractions that capture common usage patterns and enable appropriate trade-offs
between performance and flexibility.

In more detail the major array-related changes made in the X10 v2.4 release are

292 APPENDIX B. CHANGE LOG

1. The class x10.lang.Railwas introduced. It provides an efficient one-dimensional,
zero-based, densely indexed array implementation. Rail will provide the best
performance and is the preferred implementation of this basic abstraction.

2. The array literal syntax [1,2,3] is now defined to create a Rail instead of an
Array.

3. The main method signature is changed from Array[String] to Rail[String].

4. x10.util.IndexedMemoryChunk has removed from the X10 standard library.

5. To enable usage of classes from both x10.array and x10.regionarray, the
package x10.array is no longer auto-imported by the X10 compiler.

6. Most classes in the x10.array package in the X10 v2.3 release were relo-
cated to the x10.regionarray package in v2.4. A few classes like Point and
PlaceGroup were moved to the x10.lang package instead.

7. Point, Region, Dist, etc. were all updated to support long-based indexing by
consistently changing indexing related fields and methods from Int to Long.

B.3.3 Other Changes from X10 v2.3

1. The custom serialization protocol was changed to operate in terms of new user-
level classes x10.io.Serializer and x10.io.Deserializer. The serialize
method of the xcdx10.io.CustomSerialization interface now takes a Serializer
as an argument. The custom deserialization constructor for a class takes a Deserializer.
The x10.io.SerialData class used by the X10 v2.3 custom serialization pro-
tocol has been removed from the class library.

2. A constraint was added to PlaceLocalHandle that types used to instantiate a
PlaceLocalHandle must satisfy both the isref and haszero constraints.

3. The x10.util.Team API was revised by (a) removing the endpoint argument
from all API calls and (b) to operate on Rail and xcd‘Long‘ where appropriate.

B.4 Changes from X10 v2.2

1. In previous versions of X10 static fields were eagerly initialized in Place 0 and
the resulting values were serialized to all other places before execution of the
user main function was started. Starting with X10 v2.2.3, static fields are lazily
initialized on a per-Place basis when the field is first read by an activity executing
in a given Place.

2. The new syntax T isref for some type T will hold if T is represented by a
pointer at runtime. This is similar to the type constraint T haszero. T isref
is true for T that are function types, classes, and all values that have been cast to

B.5. CHANGES FROM X10 V2.1 293

interfaces (including boxed structs). T isref is used in the standard library, e.g.
for the GlobalRef[T] and PlaceLocalHandle[T] APIs.

3. x10.lang.Object is gone, there is now no single class that is the root of the
X10 class hierarchy.

• If, for some reason, you were explicitly extending Object, don’t do that
anymore.

• If you were doing new Object() to get a fresh value, use new Empty()
instead.

• If you were using Object as a supertype, use Any (the one true supertype).

• If you were using the type constraint T <: Object to disallow structs, use
T isref instead.

4. The exception hierarchy has changed, and checked exceptions have been rein-
troduced. The ’throws’ annotation is required on methods, as in Java. It is not
supported on closures, so checked exceptions cannot be thrown from a closure.
The exception hierarchy has been chosen to exist in a 1:1 relationship with Java’s.
However, unlike Java, we prefer using unchecked exceptions wherever possible,
and this is reflected in the naming of the X10 classes. The following classes are
all in the x10.lang package.

• CheckedThrowable (mapped to java.lang.Throwable)

• CheckedException extends CheckedThrowable (mapped to java.lang.Exception)

• Exception extends CheckedException (mapped to java.lang.RuntimeException)

• Error extends CheckedThrowable (mapped to java.lang.Error)

Anything under CheckedThrowable can be thrown using the throw statement.
But anything that is not under Exception or Error can only be thrown if it
is caught by an enclosing try/catch, or it is thrown from a method with an
appropriate throws annotation, as in Java.

RuntimeException is gone from X10. Use Exception instead.

All the exceptions in the standard library are under Exception, except AssertionError
and OutOfMemoryException, which are under Error (as in Java). This means
all exceptions in the standard library remain unchecked.

B.5 Changes from X10 v2.1

1. Covariance and contravariance are gone.

2. Operator definitions are regularized. A number of new operator symbols are
available.

3. The operator in is gone. in is now only a keyword.

294 APPENDIX B. CHANGE LOG

4. Method functions and operator functions are gone.

5. m..n is now a type of struct called IntRange.

6. for(i in m..n) now works. The old forms, for((i) in m..n) and for([i]
in m..n), are no longer needed.

7. (e as T) now has type T. (It used to have an identity constraint conjoined in.)

8. vars can no longer be assigned in their place of origin. Use a GlobalRef[Cell[T]]
instead. We’ll have a new idiom for this in 2.3.

9. The -STATIC_CALLS command-line flag is now -STATIC_CHECKS.

10. Any string may be written in backquotes to make an identifier: ‘while‘.

11. The next and resume keywords are gone; they have been replaced by static
methods on Clock.

12. The typed array construction syntax new Array[T][t1,t2] is gone. Use [t1
as T, t2] (if just plain [t1,t2] doesn’t work).

B.6 Changes from X10 v2.0.6

This document summarizes the main changes between X10 2.0.6 and X10 2.1. The
descriptions are intended to be suggestive rather than definitive; see the language spec-
ification for full details.

B.6.1 Object Model

1. Objects are now local rather than global.

(a) The home property is gone.

(b) at(P)S produces deep copies of all objects reachable from lexically ex-
posed variables in S when it executes S. (Warning: They are copied even
in at(here)S.)

2. The GlobalRef[T] struct is the only way to produce or manipulate cross-place
references.

(a) GlobalRef’s have a home property.

(b) Use GlobalRef[Foo](foo) to make a new global reference.

(c) Use myGlobalRef() to access the object referenced; this requires here
== myGlobalRef.home.

3. The ! type modifier is no longer needed or present.

B.6. CHANGES FROM X10 V2.0.6 295

4. global modifiers are now gone:

(a) global methods in interfaces are now the default.

(b) global fields are gone. In some cases object copying will produce the
same effect as global fields. In other cases code must be rewritten. It may
be desirable to mark nonglobal fields transient in many cases.

(c) global methods are now marked @Global instead. Methods intended to
be non-global may be marked @Pinned.

B.6.2 Constructors

1. proto types are gone.

2. Constructors and the methods they call must satisfy a number of static checks.

(a) Constructors can only invoke private or final methods, or methods an-
notated @NonEscaping.

(b) Methods invoked by constructors cannot read fields before they are written.

(c) The compiler ensures this with a detailed protocol.

3. It is still impossible for X10 constructors to leak references to this or observe
uninitialized fields of an object. Now, however, the mechanisms enforcing this
are less obtrusive than in 2.0.6; the burden is largely on the compiler, not the
programmer.

B.6.3 Implicit clocks for each finish

Most clock operations can be accomplished using the new implicit clocks.

1. A finish may be qualified with clocked, which gives it a clock.

2. An async in a clocked finish may be marked clocked. This registers it on
the same clock as the enclosing finish.

3. clocked async S and clocked finish S may use next in the body of S to
advance the clock.

4. When the body of a clocked finish completes, the clocked finish is dropped
form the clock. It will still wait for spawned asyncs to terminate, but such asyncs
need to wait for it.

296 APPENDIX B. CHANGE LOG

B.6.4 Asynchronous initialization of val

vals can be initialized asynchronously. As always with vals, they can only be read
after it is guaranteed that they have been initialized. For example, both of the prints
below are good. However, the commented-out print in the async is bad, since it is
possible that it will be executed before the initialization of a.

val a:Int;

finish {

async {

a = 1;

print("a=" + a);

}

// WRONG: print("a=" + a);

}

print("a=" + a);

B.6.5 Main Method

The signature for the main method is now:

def main(Array[String]) {..}

or, if the arguments are actually used,

def main(argv: Array[String](1)) {..}

B.6.6 Assorted Changes

1. The syntax for destructuring a point now uses brackets rather than braces: for(
[i] in 1..10), rather than the prior (i).

B.6.7 Safety of atomic and when blocks

1. Static effect annotations (safe, sequential, nonblocking, pinned) are no
longer used. They have been replaced by dynamic checks.

2. Using an inappropriate operation in the scope of an atomic or when construct
will throw IllegalOperationException. The following are inappropriate:

• when
• resume() or next on clocks

• async

• Future.make(), or Future.force().

• at

B.7. CHANGES FROM X10 V2.0 297

B.6.8 Removed Topics

The following are gone:

1. foreach is gone.

2. All vars are effectively shared, so shared is gone.

3. The place clause on async is gone. async (P) S should be written at(P)
async S.

4. Checked exceptions are gone.

5. future is gone.

6. await ... or ... is gone.

7. const is gone.

B.6.9 Deprecated

The following constructs are still available, but are likely to be replaced in a future
version:

1. ValRail.

2. Rail.

3. ateach

4. offers. The offers concept was experimental in 2.1, but was determined in-
adequate. It has not been removed from the compiler yet, but it will be soon. In
the meantime, traces of it are still visible in the grammar. They should not be
used and can safely be ignored.

B.7 Changes from X10 v2.0

Some of these changes have been made obsolete in X10 2.2.

• Any is now the top of the type hierarchy (every object, struct and function has
a type that is a subtype of Any). Any defines home, at, toString, typeName,
equals and hashCode. Any also defines the methods of Equals, so Equals is
not needed any more.

• Revised discussion of incomplete types.

• The manual has been revised and brought into line with the current implementa-
tion.

298 APPENDIX B. CHANGE LOG

B.8 Changes from X10 v1.7

The language has changed in the following ways. Some of these changes have been
made obsolete in X10 2.2.

• Type system changes: There are now three kinds of entities in an X10 computa-
tion: objects, structs and functions. Their associated types are class types, struct
types and function types.

Class and struct types are called container types in that they specify a collec-
tion of fields and methods. Container types have a name and a signature (the
collection of members accessible on that type). Collection types support prim-
itive equality == and may support user-defined equality if they implement the
x10.lang.Equals interface.

Container types (and interface types) may be further qualified with constraints.

A function type specifies a set of arguments and their type, the result type, and
(optionally) a guard. A function application type-checks if the arguments are of
the given type and the guard is satisfied, and the return value is of the given type.
A function type does not permit == checks. Closure literals create instances of
the corresponding function type.

Container types may implement interfaces and zero or more function types.

All types support a basic set of operations that return a string representation, a
type name, and specify the home place of the entity.

The type system is not unitary. However, any type may be used to instantiate a
generic type.

There is no longer any notion of value classes. value classes must be re-written
into structs or (reference) classes.

• Global object model: Objects are instances of classes. Each object is associated
with a globally unique identifier. Two objects are considered identical == if their
ids are identical. Classes may specify global fields and methods. These can be
accessed at any place. (global fields must be immutable.)

• Proto types. For the decidability of dependent type checking it is necessary that
the property graph is acyclic. This is ensured by enforcing rules on the leakage
of this in constructors. The rules are flexible enough to permit cycles to be
created with normal fields, but not with properties.

• Place types. Place types are now implemented. This means that non-global
methods can be invoked on a variable, only if the variable’s type is either a struct
type or a function type, or a class type whose constraint specifies that the object
is located in the current place.

There is still no support for statically checking array access bounds, or perform-
ing place checks on array accesses.

C Options

C.1 Compiler Options: Common

The X10 compilers have many useful options.

C.1.1 Optimization: -O or -optimize

This flag causes the compiler to generate optimized code.

C.1.2 Debugging: -DEBUG=boolean

This flag, if true, causes the compiler to generate debugging information. It is false by
default.

C.1.3 Call Style: -STATIC CHECKS, -VERBOSE CHECKS

By default, if a method call could be correct but is not necessarily correct, the X10
compiler generates a dynamic check to ensure that it is correct before it is performed.
For example, the following code:

def use(n:Int{self == 0}) {}

def test(x:Int) {

use(x); // creates a dynamic cast

}

compiles even though it is possible that x!=0 when use(x) is called. In this case, the
compiler inserts a cast, which has the effect of checking that the call is correct before
it happens:

def use(n:Int{self == 0}) {}

def test(x:Int) {

use(x as Int{self == 0});

}

299

300 APPENDIX C. OPTIONS

The compiler produces a warning that it inserted some dynamic casts. If you then want
to see what it did, use -VERBOSE_CHECKS.

You may also turn on strict static checking, with the -STATIC_CHECKS flag. With static
checking, calls that cannot be proved correct statically will be marked as errors.

C.1.4 Help: -help and -- -help

These options cause the compiler to print a list of all command-line options.

C.1.5 Source Path: -sourcepath path

This option tells the compiler where to look for X10 source code.

C.1.6 Output Directory: -d directory

This option tells the compiler to produce its output files in the specified directory.

C.1.7 Executable File: -o path

This option tells the compiler what path to use for the executable file.

C.2 Compiler Option: C++

The C++ compilation command x10c++ has the following option as well.

C.2.1 Runtime: -x10rt impl

This option tells which runtime implementation to use. The choices are sockets,
standalone, pami, mpi, and bgas_bgp.

C.3 Compiler Option: Java

The Java compilation command x10c has the following option as well.

C.3.1 Class Path: -classpath path

This option is used in conjunction with the Java interoperability feature to tell the com-
piler where to look for Java .class files that may be used by the X10 code being com-
piled.

C.4. EXECUTION OPTIONS: JAVA 301

C.4 Execution Options: Java

The Java execution command x10 has a number of options as well.

C.4.1 Class Path: -classpath path

This option specifies the search path for class files.

C.4.2 Library Path: -libpath path

This option specifies the search path for native libraries.

C.4.3 Heap Size: -mssize and -mxsize

Sets the minimum and maximum size of the heap.

C.4.4 Stack Size: -sssize

Sets the maximum size of the stack.

C.4.5 Places: -np count

Specify the number of places.

C.4.6 Hosts: -host host1,host2,... or -hostfile file

Specify the hosts either by the list of host names or the host file.

C.4.7 Runtime: -x10rt impl

This option tells which runtime implementation to use. The choices are sockets,
JavaSockets (experimental), and mpi (experimental).

C.4.8 Help: -h

Prints a listing of all execution options.

302 APPENDIX C. OPTIONS

C.5 Running X10

An X10 application is launched either by a direct invocation of the generated executable
or using a launcher command. The specification of the number of places and the map-
ping from places to hosts is transport specific and discussed in §C.6 for Managed X10
(Java back end) and §C.7 for Native X10 (C++ back end). For distributed runs, the
x10 distribution (libraries) and the compiled application code (binary or bytecode) are
expected to be available at the same paths on all the nodes.

Detailed, up-to-date documentation may be found at http://x10-lang.org/documentation/
practical-x10-programming/x10rt-implementations.html

C.6 Managed X10

Managed X10 applications are launched using the x10 script followed by the qualified
name of the main class.

x10c HelloWholeWorld.x10

x10 HelloWholeWorld

The main purpose of the x10 script is to set the jvm classpath and the java.library.path
system property to ensure the x10 libraries are on the path.

C.7 Native X10

On most platforms and for most transports, X10 applications can be launched by in-
voking the generated executable.

x10c++ -o HelloWholeWorld HelloWholeWorld.x10

./HelloWholeWorld

On cygwin, X10 applications must be launched using the runx10 script followed by the
name of the generated executable.

x10c++ -o HelloWholeWorld HelloWholeWorld.x10

runx10 HelloWholeWorld

The purpose of the runx10 script is to ensure the x10 libraries are on the path.

http://x10-lang.org/documentation/practical-x10-programming/x10rt-implementations.html
http://x10-lang.org/documentation/practical-x10-programming/x10rt-implementations.html

D Acknowledgments and
Trademarks

The X10 language has been developed as part of the IBM PERCS Project, which is
supported in part by the Defense Advanced Research Projects Agency (DARPA) under
contract No. NBCH30390004.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

303

	Introduction
	Overview of X10
	Object-oriented features
	The sequential core of X10
	Places and activities
	Distributed heap management
	Clocks
	Arrays, regions and distributions
	Annotations
	Translating MPI programs to X10
	Summary and future work
	Design for scalability
	Design for productivity
	Conclusion

	Lexical and Grammatical structure
	Whitespace
	Comments
	Identifiers
	Keywords
	Literals
	Separators
	Operators
	Grammatical Notation

	Types
	Type System
	Unit Types: Classes, Struct Types, and Interfaces
	Class types
	Struct Types
	Interface types
	Properties

	Type Parameters and Generic Types
	Type definitions
	Motivation and use

	Constrained types
	Examples of Constraints
	Syntax of constraints
	Constraint solver: incompleteness and approximation
	Acyclicity of Properties
	Limitation: Generics and Constraints at Runtime

	Function types
	Default Values
	Annotated types
	Subtyping and type equivalence
	Common ancestors of types
	Fundamental types
	The interface Any

	Type inference
	Variable declarations
	Return types
	Inferring Type Arguments

	Type Dependencies
	Typing of Variables and Expressions
	Limitations of Strict Typing

	Variables
	Immutable variables
	Initial values of variables
	Destructuring syntax
	Formal parameters
	Local variables and Type Inference
	Fields

	Names and packages
	Names
	Shadowing
	Hiding
	Obscuring
	Ambiguity and Disambiguation

	Access Control
	Details of `protected`

	Packages
	Name Collisions

	import Declarations
	Single-Type Import
	Automatic Import
	Implicit Imports

	Conventions on Type Names

	Interfaces
	Interface Syntax
	Access to Members
	Member Specification
	Property Methods
	Field Definitions
	Fine Points of Fields

	Generic Interfaces
	Interface Inheritance
	Members of an Interface

	Classes
	Principles of X10 Objects
	Basic Design
	Class Declaration Syntax

	Fields
	Field Initialization
	Field hiding
	Field qualifiers

	Properties
	Properties and Field Initialization
	Properties and Fields
	Acyclicity of Properties

	Methods
	Forms of Method Definition
	Method Return Types
	Throws Clause
	Final Methods
	Generic Instance Methods
	Method Guards
	Property methods
	Method overloading, overriding, hiding, shadowing and obscuring

	Constructors
	Automatic Generation of Constructors
	Calling Other Constructors
	Return Type of Constructor

	Static initialization
	Compatability with Prior Versions of X10

	User-Defined Operators
	Binary Operators
	Unary Operators
	Type Conversions
	Implicit Type Coercions
	Assignment and Application Operators

	User-Defined Control Structures
	User-Defined for
	User-Defined if
	User-Defined try
	User-Defined throw
	User-Defined async
	User-Defined atomic
	User-Defined when
	User-Defined finish
	User-Defined at
	User-Defined ateach
	User-Defined while and do
	User-Defined continue
	User-Defined break

	Class Guards and Invariants
	Invariants for implements and extends clauses
	Timing of Invariant Checks
	Invariants and constructor definitions

	Generic Classes
	Use of Generics

	Object Initialization
	Constructors and Non-Escaping Methods
	Fine Structure of Constructors
	Definite Initialization in Constructors
	Summary of Restrictions on Classes and Constructors

	Method Resolution
	Space of Methods
	Possible Methods
	Field Resolution
	Other Disambiguations

	Static Nested Classes
	Inner Classes
	Constructors and Inner Classes

	Local Classes
	Anonymous Classes

	Structs
	Struct declaration
	Boxing of structs
	Optional Implementation of Any methods
	Primitive Types
	Signed and Unsigned Integers

	Example structs
	Nested Structs
	Default Values of Structs
	Converting Between Classes And Structs

	Functions
	Overview
	Function Application
	Function Literals
	Outer variable access

	Functions as objects of type Any

	Expressions
	Literals
	this
	Local variables
	Field access
	Function Literals
	Calls
	super calls

	Assignment
	Increment and decrement
	Numeric Operations
	Conversions and coercions
	Unary plus and unary minus

	Bitwise complement
	Binary arithmetic operations
	Binary shift operations
	Binary bitwise operations
	String concatenation
	Logical negation
	Boolean logical operations
	Boolean conditional operations
	Relational operations
	Conditional expressions
	Stable equality
	No Implicit Coercions for ==
	Non-Disjointness Requirement

	Allocation
	Casts and Conversions
	Casts
	Explicit Conversions
	Resolving Ambiguity

	Coercions and conversions
	Coercions
	Conversions

	"instanceof"
	Nulls in Constraints in as and instanceof

	Subtyping expressions
	Rail Constructors
	Parenthesized Expressions

	Statements
	Empty statement
	Local variable declaration
	Block statement
	Expression statement
	Labeled statement
	Break statement
	Continue statement
	If statement
	Switch statement
	While statement
	Do–while statement
	For statement
	Return statement
	Assert statement
	Exceptions in X10
	Throw statement
	Try–catch statement
	Assert

	Places
	The Structure of Places
	here
	 at: Place Changing
	Copying Values
	How at Copies Values
	at and Activities
	Copying from at
	Copying and Transient Fields
	Copying and GlobalRef
	Warnings about `at`

	Activities
	The X10 rooted exception model
	async: Spawning an activity
	Finish
	Initial activity
	Ateach statements
	`var`s and Activities
	Atomic blocks
	Unconditional atomic blocks
	Conditional atomic blocks

	Use of Atomic Blocks

	Clocks
	Clock operations
	Creating new clocks
	Registering new activities on clocks
	Resuming clocks
	Advancing clocks
	Dropping clocks

	Deadlock Freedom
	Program equivalences
	Clocked Finish

	Rails and Arrays
	Overview
	Rails
	x10.array: Simple Arrays
	Points
	IterationSpace
	Array
	DistArray

	x10.regionarray: Flexible Arrays
	Regions
	Arrays
	Distributions
	Distributed Arrays
	Distributed Array Construction
	Operations on Arrays and Distributed Arrays

	Annotations
	Annotation syntax
	Annotation declarations

	Interoperability with Other Languages
	Embedded Native Code Fragments
	Native static Methods
	Native Blocks

	Interoperability with External Java Code
	How Java program is seen in X10
	How X10 program is translated to Java

	Interoperability with External C and C++ Code
	Auxiliary C++ Files
	C++ System Libraries

	Definite Assignment
	Asynchronous Definite Assignment
	Characteristics of Definite Assignment

	Grammar
	References
	Alphabetic index of definitions of concepts, keywords, and procedures
	Deprecations
	Change Log
	Changes from X10 v2.5
	Changes from X10 v2.4
	Changes from X10 v2.3
	Integral Literals
	Arrays
	Other Changes from X10 v2.3

	Changes from X10 v2.2
	Changes from X10 v2.1
	Changes from X10 v2.0.6
	Object Model
	Constructors
	Implicit clocks for each finish
	Asynchronous initialization of val
	Main Method
	Assorted Changes
	Safety of atomic and when blocks
	Removed Topics
	Deprecated

	Changes from X10 v2.0
	Changes from X10 v1.7

	Options
	Compiler Options: Common
	Optimization: -O or -optimize
	Debugging: -DEBUG=boolean
	Call Style: -STATIC_CHECKS, -VERBOSE_CHECKS
	Help: -help and – -help
	Source Path: -sourcepath path
	Output Directory: -d directory
	Executable File: -o path

	Compiler Option: C++
	Runtime: -x10rt impl

	Compiler Option: Java
	Class Path: -classpath path

	Execution Options: Java
	Class Path: -classpath path
	Library Path: -libpath path
	Heap Size: -mssize and -mxsize
	Stack Size: -sssize
	Places: -np count
	Hosts: -host host1,host2,... or -hostfile file
	Runtime: -x10rt impl
	Help: -h

	Running X10
	Managed X10
	Native X10

	Acknowledgments and Trademarks

