X10 Language Specification
Version 2.2

DRAFT — January 31, 2012
Vijay Saraswat, Bard Bloom, Igor Peshansky, Olivier Tardieu, and David Grove

Please send comments to bardb@us.ibm.com

January 31, 2012

This report provides a description of the programming language X10. X10 is a
class-based object-oriented programming language designed for high-performance,
high-productivity computing on high-end computers supporting ~ 10> hardware
threads and ~ 10'° operations per second.

X10 is based on state-of-the-art object-oriented programming languages and de-
viates from them only as necessary to support its design goals. The language is
intended to have a simple and clear semantics and be readily accessible to main-
stream OO programmers. It is intended to support a wide variety of concurrent
programming idioms.

The X10 design team consists of Bard Bloom, David Cunningham, Robert Fuhrer,
David Grove, Sreedhar Kodali, Nathaniel Nystrom, Igor Peshansky, Vijay Saraswat,
Mikio Takeuchi, Olivier Tardieu, Yoav Zibin.

This version of the language was implemented by a team that includes the design-
ers and Bowen Alpern, Philippe Charles, Ben Herta, Yan Li, Yuki Makino, Toshio
Suganuma, Hai Chuan Wang.

Past members include Shivali Agarwal, David Bacon, Raj Barik, Ganesh Bik-
shandi, Bob Blainey, Perry Cheng, Christopher Donawa, Julian Dolby, Kemal
Ebcioglu, Stephen Fink, Patrick Gallop, Christian Grothoff, Allan Kielstra, Sriram

1

Krishnamoorthy, Bruce Lucas, Vivek Sarkar, Armando Solar-Lezama, S. Alexan-
der Spoon, Sayantan Sur, Christoph von Praun, Leena Unnikrishnan, Pradeep
Varma, Krishna Nandivada Venkata, Jan Vitek, and Tong Wen.

For extended discussions and support we would like to thank: Gheorghe Almasi,
Robert Blackmore, Rob O’Callahan, Calin Cascaval, Norman Cohen, Elmootaz
Elnozahy, John Field, Kevin Gildea, Chulho Kim, Orren Krieger, Doug Lea, John
McCalpin, Paul McKenney, Andrew Myers, Filip Pizlo, Ram Rajamony, R. K.
Shyamasundar, V. T. Rajan, Frank Tip, Mandana Vaziri, and Hanhong Xue.

We thank Jonathan Rhees and William Clinger with help in obtaining the EKTgX
style file and macros used in producing the Scheme report, on which this docu-
ment is based. We acknowledge the influence of the J ava’™ Language Specifica-
tion [3], the Scala language specification [8l], and ZPL [4]].

This document specifies the language corresponding to Version 2.1 of the imple-
mentation. Version 1.7 of the report was co-authored by Nathaniel Nystrom. The
design of structs in X10 was led by Olivier Tardieu and Nathaniel Nystrom.

Earlier implementations benefited from significant contributions by Raj Barik,
Philippe Charles, David Cunningham, Christopher Donawa, Robert Fuhrer, Chris-
tian Grothoff, Nathaniel Nystrom, Igor Peshansky, Vijay Saraswat, Vivek Sarkar,
Olivier Tardieu, Pradeep Varma, Krishna Nandivada Venkata, and Christoph von
Praun. Tong Wen has written many application programs in X10. Guojing Cong
has helped in the development of many applications. The implementation of
generics in X10 was influenced by the implementation of PolyJ [2] by Andrew
Myers and Michael Clarkson.

Contents

(L__Introduction| 12
2__Overview of X10| 15
2.1 ~ Object-oriented features| 15
[2.2 ~ The sequential core of X10, 19
23 Placesandactivities] 20
RACIoCKS . . . o 21
[2.5 Arrays, regions and distributions|o 0L 21
2.6 Annotationsl 22
2.7 Translating MPI programs to X10 22
2.8 Summary and future work| 22
[2.8.1 Design for scalability|. 22

[2.8.2 Design for productivity|. 23

283 Conclusionl 24

Lexical and Grammatical str r 25
(3.1 Whitespace|., 25
B2 Comments| 25
B3 Identifiers 25
3.4 Keywords| 26
BE _Literald o oo 26
[3.6 Separators| 28
(3.7 Operators|. e 29
B.8 Grammatical Nofation 30

4 Types 31
4.1 TypeSystem| 32
4.2 Unit Types: Classes, Struct Types, and Interfaces|. 35
M2.1 Classtypes| i i 35

4 CONTENTS
422 StructTypes|, 36

“.2.3 Interfacetypes| L. 37

@24 Properties|. o 37

4.3 'Type Parameters and Generic Types| 38
4.4 Typedefinitions| 39
“4.4.1 Motivationandusel 41

4.5 Constramned types| o oo 43
4.5.1 Examples of Constraints| 44

4.5.2 Syntax of constraints| 46

4.5.3 Constraint solver: incompleteness and approximation|. . 50

4.5.4 Acyclicity of Properties| 50

4.5.5 Limitation: Generics and Constraints at Runtimel 51

4.6 Functiontypes| 53
U7 Default Values 55
4.8 Annotatedtypes| 57
4.9 Subtyping and type equivalence 57
.10 Common ancestors of types| 59
@4.11 Fundamental types| 61
4.11.1 TheinterfaceAny|. 61
4.11.2 TheclassObject| 61

412 Typeinference| 61
“4.12.1 Variable declarations| 62
4.12.2 Returntypes| 62
#4.12.3 Inferring Type Arguments| 64

4.13 Type Dependencies| 69
.14 Typing of Variables and Expressions| 69
/.15 Limitations of Strict Typing| 72
5__Variables| 73
0.1 Immutable variables| 75
5.2 Initial values of variablesl 76
[5.3 Destructuring syntax| 77
[5.4 Formal parameters| L. 78
[5.5 Local variables and Type Inference| 79
B Feldsl. . . .o 80
|6 Names and packages| 81

6.1 Names

CONTENTS 5

[6.1.1 ~ Shadowing| 81

6.1.2 Hiding 82

[6.1.3 Obscuring| 83

[6.1.4 Ambiguity and Disambiguation| 83

6.2 AccessControll 84
[6.2.1 Details of protected] 85

6.3 Packages 86
6.3.1 Name Collistons| 87

6.4 import Declarations|. 87
[6.4.1 Single-Type Import. 88

[6.4.2 Automatic Import|, 88

[6.4.3 Implicit Imports| 88

[6.5 Conventions on Type Names|. 89
90
(7.1 Interface Syntax| 92
(/.2 Accessto Members|, 92
[/.3 Member Specification| oL 92
(/.4 Property Methods| 93
(/.5 Field Definitions| 93
[7.5.1 Fine Points of Fields| 94

[/.6 Generic Interfaces 95
'/ Interface Inheritancel 95
7.8 Members of anInterfacel L. 96
8 Classes 97
(8.1 Principles of X10Objects| 97
(8.1.1 ~ BasicDesign|l 97

[8.1.2 Class Declaration Syntax|. 98

82 Fieldsl. 99
8.2.1 Field Imtialization| 100

(8.2.2 Fieldhiding. 0 0 L. 100

[8.2.3 Fieldqualifiers 101

(8.3 Properties| 102
[8.3.1 Properties and Field Initialization| 104

[8.3.2 Propertiesand Fields| 104

[8.3.3 Acychlicity of Properties| 104

CONTENTS

8.4.1 Forms of Method Defimition| 107

[8.4.2 Method Return Types| 107

843 Final Methodsl 108

8.4.4 Generic Instance Methods| 108

845 MethodGuards|. 108

[8.4.6 Property methods|. 110

[8.4.7 Method overloading, overriding, hiding, shadowing and |
obscuring| Lo 112

8.5 Constructors|o 115
8.5.1 Automatic Generation of Constructorsl. 116

[8.5.2 Calling Other Constructors|. 117

[8.5.3 Return Type of Constructor] 117

[8.6 Staticmitialization| o oo 118
[8.7 User-Defined Operators| 119
[8.7.1 ~ Binary Operators| 122

(8.7.2 Unary Operators| 123

[8.7.3 Type Conversions| 124

[8.7.4 Implicit Type Coercions| 125

[8.7.5 Assignment and Application Operators| 126

8.8 Class Guards and Invariants| 127
(8.8.1 Invariants for implements and extends clauses| 128

[8.8.2 Timing of Invariant Checks| 129
Invariants and con r definitions| 129

neric Classes| 131

(8.9.1 Useof Generics| 131

[8.10 Object Imtialization| 132
[8.10.1 Constructors and Non-Escaping Methods| 134
8.10.2 Fine Structure of Constructorsf 138

1 Definite Imtialization 1n Constructors| 141

[8.10.4 Summary of Restrictions on Classes and Constructors| . 141

8.11 Method Resolutionl 143
[8.11.1 ~Space of Methods| 146
[8.11.2 Possible Methodsl. 148

11 Field Resolution| 151

[8.11.4 Other Disambiguations|. 152

.12 Static Nested Classes| 153
813 TInnmerClassesl 154

CONTENTS

9.2 Boxing of structs|

[9.3 Optional Implementation

of Any methods|.

9.4 Primitive Types|

9.4.1 Signed and Unsigned Integers|

9.5 Example structs|

0.6 Nested Structs|
Default Val f Str

9.8 Converting Between Classes And Structs|

[10_Functions|

[11.6.1 super calls| . .
(11.7 Assignment/.

(11.9 Numeric Operations| . .

11.9.1 Nversions an

IC1ons| 000

(11.9.2 Unary plus and unary minus|

(11.10 Bitwise complement| . .

(I1.1T Binary arithmetic operations|.

(11.12 Binary shift operations|

(11.13 Binary bitwise operations|

157
158

160
161
162
162
163
163
163
164
165
165

167
167
169
170
171
172

8 CONTENTS

(11.14 String concatenation| 183
(1T.15 Logical negation| 183
[11.16 Boolean logical operations|. 184
(1T.17 Boolean conditional operations| 184
[11.18 Relational operations|. 184
(11.19 Conditional expressions| 185
[(11.20 Stableequality| 185
(11.20.1 No Implicit Coercions for== 187
(11.20.2 Non-Disjointness Requirement| 188

(121 Allocation| 189
(11.22 Casts and Conversions! v v v v v v v v v v e 190
MI22T Castdlo oo 190
(11.22.2 Explicit Conversions| 192
(11.22.3 Resolving Ambiguity|. 193

(11.23 Coercions and conversions|. v v v v v v v oo 194
11.23.1 ICIONS| .« . v v v v e e e e e 194
(11.23.2 Conversionsl v v v v vt e e 197

(11.24 instanceof|o 199
[11.24.1 Nulls in Constraints in as and instanceof]. 199

[(11.25 Subtyping expressions| 200
(11.26 Array Constructors|. 201
(11.27 Parenthesized Expressions|. 202
12 men 203
(12.1 Empty statement| 203
12.2 Tocal | larationl 204
(12.3 Blockstatementl 206
(12.4 Expression statement|. 206
(12.5 [abeledstatement 207
(12.6 Break statementl, 208
(12.7 Continue statement!. 209
128 1If mentl. 209
29 Switchstatementl 210
(12.10 While statementl 211
I12.11 Do-while statementl 211
(12.12 Forstatement|., 211
(12.13 Return statement! 214

CONTENTS

13 Places|

13.1 The Structure of Places|

(13.3 at: Place Changing|

M33.1

Copying Values|.,

M33.2

How at Copies Values|

334

Copying fromat|

335

Copying and Transient Fields|

M33.6

Copying and GlobalRef]

M3.3.7

Warnings aboutat|

14 Activities

(14.1 The X10 rooted exceptionmodel|

[14.2° async: Spawning an activity|

14.3 Finish

(14.4 Imwial activity]o

(15.1 Clockoperations|

M5.1.1

Creatingnewclocks|

5.1

Registering new activities on clocks|

M5.1.3

Resumingclocks| o 0o,

5.14

Advancing clocks| o000

M5.1.5

Dropping clocks|

215
215
216
217

218
218
219
220
220
221
222
223
224
225
226

227
228
229
230
230
231
232
232
234
235
238

10

(16.2 IntRangel
(16.3 Regions|.
[(16.3.1 Operations onregions|

.A A

[(16.4.1 Array Constructors|
[(16.4.2 Array Operations|

[{16.5.1 PlaceGroups|.
[16.5.2 Operations returning distributions|
[(16.6 Distributed Arrays|
(16.7 Distributed Array Construction|

[16.8 Operations on Arrays and Distributed Arrays|

[(16.8.1 Element operations|
[16.8.2 Arrays of Single Values|
(16.8.3 Restriction of anarray|
[16.8.4 Operations on Whole Arrays|.

(17 _Annotations

(I7.1 Annotation syntax|
17.2 __Annotation larations|

(18 Native Code Integration|

18.2 wve Blocks|o

(18.4.1 Auxibary C++Files|
[18.4.2 C++ System Libraries|

(19 Definite Assignment|

(19.1 Asynchronous Definite Assignment|
(19.2 Characteristics of Definite Assignment|

CONTENTS

260

........ 260
........ 262

263

........ 263
........ 265
........ 266
........ 266
........ 266
........ 267

269

........ 271
........ 271

278

CONTENTS 11

[Alphabetic index of definitions of concepts, keywords, and procedures, 302

A" Deprecations| 314
(B Change Log| 315
[B.1 Changes from X10v2.1| 315
[B.2 Changes from X10v2.0.6| 316
[B.2.1 ObjectModel|. 316

B.22 Constructorsl 317

[B.2.3 Implicit clocks for each finish| 317

[B.2.4" Asynchronous initializationof val| 318

B.25 MammMethod 318

[B.2.6 Assorted Changes| 318

[B.2.7 Safety of atomic and when blocks| 318

[B.2.8 Removed Topics| 319

[B.2.9 Deprecated|, 319

[B.3 Changes from X10v2.0] 320
[B.4 Changes from X1IOvIL.7| 320
C_Options 322
[C.0.1 Compiler Options| 322

(C.0.2 Optimization: -0 or -optimize 322

[C.0.3 Debugging: -DEBUG=boolean|. 322

[C.0.4 Call Style: ~-STATIC_CHECKS, -VERBOSE_CHECKS|. . . 322

[C.0.5 Help: -helpand -- -help| 323

|C.0.6 Source Path: -sourcepath path/. 323

[C.0.7 (Deprecated) Class Path: -classpath path 323

(C.0.8 Output Directory: -d directory/. 323

[C.0.9 Runtime -x10rt impl| 323
|C.0.10 Executable File -o pathl 323

[C. Execution Options: Javal 324
[C.1.1 Class Path: -classpath path 324

(C.1.2 Library Path: -1ibpath pathl 324

[C.1.3 Heap Size: -mx size 324

[C.14 Help:-h 324

(C.2 Running X10[. 324
[C.3 Managed X10[. 325

1 Introduction

Background

The era of the mighty single-processor computer is over. Now, when more com-
puting power is needed, one does not buy a faster uniprocessor—one buys another
processor just like those one already has, or another hundred, or another million,
and connects them with a high-speed communication network. Or, perhaps, one
rents them instead, with a cloud computer. This gives one whatever quantity of
computer cycles that one can desire and afford.

Then, one has the problem of how to use those computer cycles effectively. Pro-
gramming a multiprocessor is far more agonizing than programming a uniproces-
sor. One can use models of computation which give somewhat of the illusion of
programming a uniprocessor. Unfortunately, the models which give the closest
imitations of uniprocessing are very expensive to implement, either increasing the
monetary cost of the computer tremendously, or slowing it down dreadfully.

One response to this problem has been to move to a fragmented memory model.
Multiple processors are programmed largely as if they were uniprocessors, but are
made to interact via a relatively language-neutral message-passing format such as
MPI [9]]. This model has enjoyed some success: several high-performance appli-
cations have been written in this style. Unfortunately, this model leads to a loss
of programmer productivity: the message-passing format is integrated into the
host language by means of an application-programming interface (API), the pro-
grammer must explicitly represent and manage the interaction between multiple
processes and choreograph their data exchange; large data-structures (such as dis-
tributed arrays, graphs, hash-tables) that are conceptually unitary must be thought
of as fragmented across different nodes; all processors must generally execute the
same code (in an SPMD fashion) etc.

One response to this problem has been the advent of the partitioned global address

12

13

space (PGAS) model underlying languages such as UPC, Titanium and Co-Array
Fortran [3,10]. These languages permit the programmer to think of a single com-
putation running across multiple processors, sharing a common address space.
All data resides at some processor, which is said to have affinity to the data. Each
processor may operate directly on the data it contains but must use some indirect
mechanism to access or update data at other processors. Some kind of global
barriers are used to ensure that processors remain roughly synchronized.

X10 is a modern object-oriented programming language in the PGAS family. The
fundamental goal of X10 is to enable scalable, high-performance, high-productivity
transformational programming for high-end computers—for traditional numerical
computation workloads (such as weather simulation, molecular dynamics, particle
transport problems etc) as well as commercial server workloads.

X10 is based on state-of-the-art object-oriented programming ideas primarily to
take advantage of their proven flexibility and ease-of-use for a wide spectrum of
programming problems. X10 takes advantage of several years of research (e.g., in
the context of the Java Grande forum, [/, [1]) on how to adapt such languages to
the context of high-performance numerical computing. Thus X10 provides sup-
port for user-defined struct types (such as Int, Float, Complex etc), supports a
very flexible form of multi-dimensional arrays (based on ideas in ZPL [4]) and
supports IEEE-standard floating point arithmetic. Some capabilities for support-
ing operator overloading are also provided.

X10 introduces a flexible treatment of concurrency, distribution and locality, within
an integrated type system. X10 extends the PGAS model with asynchrony (yield-
ing the APGAS programming model). X10 introduces places as an abstraction for
a computational context with a locally synchronous view of shared memory. An
X10 computation runs over a large collection of places. Each place hosts some
data and runs one or more activities. Activities are extremely lightweight threads
of execution. An activity may synchronously (and atomically) use one or more
memory locations in the place in which it resides, leveraging current symmetric
multiprocessor (SMP) technology. An activity may shift to another place to exe-
cute a statement block. X10 provides weaker ordering guarantees for inter-place
data access, enabling applications to scale. Multiple memory locations in multi-
ple places cannot be accessed atomically. Immutable data needs no consistency
management and may be freely copied by the implementation between places.
One or more clocks may be used to order activities running in multiple places.
DistArrays, distributed arrays, may be distributed across multiple places and
support parallel collective operations. A novel exception flow model ensures that

14 CHAPTER 1. INTRODUCTION

exceptions thrown by asynchronous activities can be caught at a suitable parent
activity. The type system tracks which memory accesses are local. The program-
mer may introduce place casts which verify the access is local at run time. Linking

with native code is supported.

2 Overview of X10

X10 is a statically typed object-oriented language, extending a sequential core
language with places, activities, clocks, (distributed, multi-dimensional) arrays
and struct types. All these changes are motivated by the desire to use the new
language for high-end, high-performance, high-productivity computing.

2.1 Object-oriented features

The sequential core of X10 is a container-based object-oriented language similar
to Java and C++, and more recent languages such as Scala. Programmers write
X10 code by defining containers for data and behavior called classes (§8) and
structs (§9), often abstracted as interfaces (§7). X10 provides inheritance and
subtyping in fairly traditional ways.

Example:

Normed describes entities with a norm() method. Normed is intended to be used
for entities with a position in some coordinate system, and norm() gives the dis-
tance between the entity and the origin. A Slider is an object which can be moved
around on a line; a PlanePoint is a fixed position in a plane. Both Sliders and
PlanePoints have a sensible norm() method, and implement Normed.

interface Normed {
def norm() :Double;
ks
class Slider implements Normed {
var X : Double = 0;
public def norm() = Math.abs(x);
public def move(dx:Double) { x += dx; }

15

16 CHAPTER 2. OVERVIEW OF X10

3
struct PlanePoint implements Normed {
val x : Double; val y:Double;
public def this(x:Double, y:Double) {
this.x = x; this.y = y;
3
public def norm() = Math.sqrt(xX*x+y*y);
ks

Interfaces An X10 interface specifies a collection of abstract methods; Normed
specifies justnorm(). Classes and structs can be specified to implement interfaces,
as Slider and PlanePoint implement Normed, and, when they do so, must
provide all the methods that the interface demands.

Interfaces are purely abstract. Every value of type Normed must be an instance
of some class like Slider or some struct like PlanePoint which implements
Normed; no value can be Normed and nothing else.

Classes and Structs There are two kinds of containers: classes (§8) and structs
(§9). Containers hold data in fields, and give concrete implementations of meth-
ods, as Slider and PlainPoint above.

Classes are organized in a single-inheritance tree: a class may have only a single
parent class, though it may implement many interfaces and have many subclasses.
Classes may have mutable fields, as S1lider does.

In contrast, structs are headerless values, lacking the internal organs which give
objects their intricate behavior. This makes them less powerful than objects (e.g.,
structs cannot inherit methods, though objects can), but also cheaper (e.g., they
can be inlined, and they require less space than objects). Structs are immutable,
though their fields may be immutably set to objects which are themselves mutable.
They behave like objects in all ways consistent with these limitations; e.g., while
they cannot inherit methods, they can have them — as PlanePoint does.

X10 has no primitive classes per se. However, the standard library x10.1lang
supplies structs and objects Boolean, Byte, Short, Char, Int, Long, Float,
Double, Complex and String. The user may defined additional arithmetic structs
using the facilities of the language.

2.1. OBJECT-ORIENTED FEATURES 17

Functions. X10 provides functions (§I0) to allow code to be used as values.
Functions are first-class data: they can be stored in lists, passed between activities,
and so on. square, below, is a function which squares an Int. of4 takes an
Int-to-Int function and applies it to the number 4. So, fourSquared computes
of4(square), which is square (4), which is 16, in a fairly complicated way.

val square = (i:Int) => i*i;
val of4 = (£f: (Int)=>Int) => f(4);
val fourSquared = of4(square);

Functions are used extensively in X10 programs. For example, a common way to
construct and initialize an Array [Int] (1) —thatis, a fixed-length one-dimensional
array of numbers, like an int[] in Java — is to pass two arguments to a factory
method: the first argument being the length of the array, and the second being a
function which computes the initial value of the i** element. The following code
constructs a 1-dimensional array initialized to the squares of 0,1,...,9: r(0) == 0,
r(5)==25, etc.

val r : Array[Int] (1) = new Array[Int] (10, square);

Constrained Types X10 containers may declare properties, which are fields
bound immutably at the creation of the container. The static analysis system un-
derstands properties, and can work with them logically.

For example, an implementation of matrices Mat might have the numbers of rows
and columns as properties. A little bit of care in definitions allows the definition
of a + operation that works on matrices of the same shape, and * that works on
matrices with appropriately matching shapes.

abstract class Mat(rows:Int, cols:Int) {
static type Mat(r:Int, c:Int) = Mat{rows==r&&cols==c};
abstract operator this + (y:Mat(this.rows,this.cols))
:Mat(this.rows, this.cols);
abstract operator this * (y:Mat) {this.cols == y.rows}
:Mat(this.rows, y.cols);

The following code typechecks (assuming that makeMat (m,n) is a function which

o

creates an mxn matrix). However, an attempt to compute axbl + bxc or bxc *
axb1l would result in a compile-time type error:

18 CHAPTER 2. OVERVIEW OF X10

static def example(a:Int, b:Int, c:Int) {
val axbl : Mat(a,b) = makeMat(a,b);
val axb2 : Mat(a,b) = makeMat(a,b);
val bxc : Mat(b,c) = makeMat(b,c);
val axc : Mat(a,c) = (axbl +axb2) * bxc;
//ERROR: val wrongl axbl + bxc;
//ERROR: val wrong2 bxc * axbl;

The “little bit of care” shows off many of the features of constrained types. The

(rows:Int, cols:Int) in the class definition declares two properties, rows
and cols[l]

A constrained type looks like Mat{rows==r && cols==c}: a type name, fol-
lowed by a Boolean expression in braces. The type declaration on the second
line makes Mat (r,c) be a synonym for Mat{rows==r && cols==c}, allowing
for compact types in many places.

Functions can return constrained types. The makeMat(r,c) method returns a
Mat(r,c) — a matrix whose shape is given by the arguments to the method. In
particular, constructors can have constrained return types to provide specific in-
formation about the constructed values.

The arguments of methods can have type constraints as well. The operator
this + line lets A+B add two matrices. The type of the second argument y is
constrained to have the same number of rows and columns as the first argument
this. Attempts to add mismatched matrices will be flagged as type errors at
compilation.

At times it is more convenient to put the constraint on the method as a whole, as
seen in the operator this * line. Unlike for +, there is no need to constrain
both dimensions; we simply need to check that the columns of the left factor match
the rows of the right. This constraint is written in {. ..} after the argument list.
The shape of the result is computed from the shapes of the arguments.

And that is all that is necessary for a user-defined class of matrices to have shape-
checking for matrix addition and multiplication. The example method compiles
under those definitions.

I'The class is officially declared abstract to allow for multiple implementations, like sparse and
band matrices, but in fact is abstract to avoid having to write the actual definitions of + and *.

2.2. THE SEQUENTIAL CORE OF X10 19

Generic types Containers may have type parameters, permitting the definition
of generic types. Type parameters may be instantiated by any X10 type. It is
thus possible to make a list of integers List[Int], a list of non-zero integers
List[Int{self != 0}], oralist of people List[Person]. In the definition of
List, T is a type parameter; it can be instantiated with any type.

class List[T] {
var head: T;
var tail: List[T];
def thisCh: T, t: List[T]) { head = h; tail = t; }
def add(x: T) {
if (this.tail == null)
this.tail = new List[T](x, null);
else
this.tail.add(x);

The constructor (def this) initializes the fields of the new object. The add
method appends an element to the list. List is a generic type. When instances
of List are allocated, the type parameter T must be bound to a concrete type.
List[Int] is the type of lists of element type Int, List[List[String]] is the
type of lists whose elements are themselves lists of string, and so on.

2.2 The sequential core of X10

The sequential aspects of X10 are mostly familiar from C and its progeny. X10 en-
joys the familiar control flow constructs: if statements, while loops, for loops,
switch statements, throw to raise exceptions and try. . .catch to handle them,
and so on.

X10 has both implicit coercions and explicit conversions, and both can be defined
on user-defined types. Explicit conversions are written with the as operation: n

as Int. The types can be constrained: n as Int{self != 0} converts n to a
non-zero integer, and throws a runtime exception if its value as an integer is zero.

20 CHAPTER 2. OVERVIEW OF X10

2.3 Places and activities

The full power of X10 starts to emerge with concurrency. An X10 program is
intended to run on a wide range of computers, from uniprocessors to large clusters
of parallel processors supporting millions of concurrent operations. To support
this scale, X10 introduces the central concept of place (§13). A place can be
thought of as a virtual shared-memory multi-processor: a computational unit with
a finite (though perhaps changing) number of hardware threads and a bounded
amount of shared memory, uniformly accessible by all threads.

An X10 computation acts on values(§8.1)) through the execution of lightweight
threads called activities(§14). An object has a small, statically fixed set of fields,
each of which has a distinct name. A scalar object is located at a single place and
stays at that place throughout its lifetime. An aggregate object has many fields
(the number may be known only when the object is created), uniformly accessed
through an index (e.g., an integer) and may be distributed across many places.
The distribution of an aggregate object remains unchanged throughout the com-
putation, thought different aggregates may be distributed differently. Objects are
garbage-collected when no longer useable; there are no operations in the language
to allow a programmer to explicitly release memory.

X10 has a unified or global address space. This means that an activity can refer-
ence objects at other places. However, an activity may synchronously access data
items only in the current place, the place in which it is running. It may atomically
update one or more data items, but only in the current place. If it becomes neces-
sary to read or modify an object at some other place q, the place-shifting operation
at(q;F) can be used, to move part of the activity to q. F is a specification of what
information will be sent to q for use by that part of the computation. It is easy to
compute across multiple places, but the expensive operations (e.g., those which
require communication) are readily visible in the code.

Atomic blocks. X10 has a control construct atomic S where S is a statement
with certain restrictions. S will be executed atomically, without interruption by
other activities. This is a common primitive used in concurrent algorithms, though
rarely provided in this degree of generality by concurrent programming languages.

More powerfully — and more expensively — X10 allows conditional atomic blocks,
when(B)S, which are executed atomically at some point when B is true. Condi-

2.4. CLOCKS 21

tional atomic blocks are one of the strongest primitives used in concurrent algo-
rithms, and one of the least-often available.

Asynchronous activities. An asynchronous activity is created by a statement
async S, which starts up a new activity running S. It does not wait for the new
activity to finish; there is a separate statement (finish) to do that.

2.4 Clocks

The MPI style of coordinating the activity of multiple processes with a single bar-
rier is not suitable for the dynamic network of heterogeneous activities in an X10
computation. X10 allows multiple barriers in a form that supports determinate,
deadlock-free parallel computation, via the Clock type.

A single Clock represents a computation that occurs in phases. At any given time,
an activity is registered with zero or more clocks. The X10 statement next tells
all of an activity’s registered clocks that the activity has finished the current phase,
and causes it to wait for the next phase. Other operations allow waiting on a single
clock, starting new clocks or new activities registered on an extant clock, and so
on.

Clocks act as barriers for a dynamically varying collection of activities. They gen-
eralize the barriers found in MPI style program in that an activity may use multiple
clocks simultaneously. Yet programs using clocks properly are guaranteed not to
suffer from deadlock.

2.5 Arrays, regions and distributions

X10 provides DistArrays, distributed arrays, which spread data across many
places. An underlying Dist object provides the distribution, telling which ele-
ments of the DistArray go in which place. Dist uses subsidiary Region objects
to abstract over the shape and even the dimensionality of arrays. Specialized X10
control statements such as ateach provide efficient parallel iteration over dis-
tributed arrays.

22 CHAPTER 2. OVERVIEW OF X10

2.6 Annotations

X10 supports annotations on classes and interfaces, methods and constructors,
variables, types, expressions and statements. These annotations may be processed
by compiler plugins.

2.7 Translating MPI programs to X10

While X10 permits considerably greater flexibility in writing distributed programs
and data structures than MPI, it is instructive to examine how to translate MPI
programs to X10.

Each separate MPI process can be translated into an X10 place. Async activities
may be used to read and write variables located at different processes. A single
clock may be used for barrier synchronization between multiple MPI processes.
X10 collective operations may be used to implement MPI collective operations.
X10 is more general than MPI in (a) not requiring synchronization between two
processes in order to enable one to read and write the other’s values, (b) permitting
the use of high-level atomic blocks within a process to obtain mutual exclusion
between multiple activities running in the same node (c) permitting the use of
multiple clocks to combine the expression of different physics (e.g., computa-
tions modeling blood coagulation together with computations involving the flow
of blood), (d) not requiring an SPMD style of computation.

2.8 Summary and future work

2.8.1 Design for scalability

X10 is designed for scalability, by encouraging working with local data, and lim-
iting the ability of events at one place to delay those at another. For example, an
activity may atomically access only multiple locations in the current place. Un-
conditional atomic blocks are dynamically guaranteed to be non-blocking, and
may be implemented using non-blocking techniques that avoid mutual exclusion
bottlenecks. Data-flow synchronization permits point-to-point coordination be-
tween reader/writer activities, obviating the need for barrier-based or lock-based
synchronization in many cases.

2.8. SUMMARY AND FUTURE WORK 23

2.8.2 Design for productivity

X10 is designed for productivity.

Safety and correctness. Programs written in X10 are guaranteed to be statically
type safe, memory safe and pointer safe, with certain exceptions given in §4.15|

Static type safety guarantees that every location contains only values whose dy-
namic type agrees with the location’s static type. The compiler allows a choice of
how to handle method calls. In strict mode, method calls are statically checked to
be permitted by the static types of operands. In lax mode, dynamic checks are in-
serted when calls may or may not be correct, providing weaker static correctness
guarantees but more programming convenience.

Memory safety guarantees that an object may only access memory within its rep-
resentation, and other objects it has a reference to. X10 does not permit pointer
arithmetic, and bound-checks array accesses dynamically if necessary. X10 uses
garbage collection to collect objects no longer referenced by any activity. X10
guarantees that no object can retain a reference to an object whose memory has
been reclaimed. Further, X10 guarantees that every location is initialized at run
time before it is read, and every value read from a word of memory has previously
been written into that word.

Because places are reflected in the type system, static type safety also implies
place safety. All operations that need to be performed locally are, in fact, per-
formed locally. All data which is declared to be stored locally are, in fact, stored
locally.

X10 programs that use only clocks and unconditional atomic blocks are guaran-
teed not to deadlock. Unconditional atomic blocks are non-blocking, hence cannot
introduce deadlocks. Many concurrent programs can be shown to be determinate
(hence race-free) statically.

Integration. A key issue for any new programming language is how well it can
be integrated with existing (external) languages, system environments, libraries
and tools.

We believe that X10, like Java, will be able to support a large number of libraries
and tools. An area where we expect future versions of X10 to improve on Java
like languages is native integration (§18). Specifically, X10 will permit multi-
dimensional local arrays to be operated on natively by native code.

24 CHAPTER 2. OVERVIEW OF X10

2.8.3 Conclusion

X10 is considerably higher-level than thread-based languages in that it supports
dynamically spawning lightweight activities, the use of atomic operations for mu-
tual exclusion, and the use of clocks for repeated quiescence detection.

Yet it is much more concrete than languages like HPF in that it forces the pro-
grammer to explicitly deal with distribution of data objects. In this the language
reflects the designers’ belief that issues of locality and distribution cannot be hid-
den from the programmer of high-performance code in high-end computing. A
performance model that distinguishes between computation and communication
must be made explicit and transparentE] At the same time we believe that the
place-based type system and support for generic programming will allow the X10
programmer to be highly productive; many of the tedious details of distribution-
specific code can be handled in a generic fashion.

2In this X10 is similar to more modern languages such as ZPL [4].

3 Lexical and Grammatical
structure

Lexically a program consists of a stream of white space, comments, identifiers,
keywords, literals, separators and operators, all of them composed of Unicode
characters in the UTF-8 (or US-ASCII) encoding.

3.1 Whitespace

ASCII space, horizontal tab (HT), form feed (FF) and line terminators constitute
white space.

3.2 Comments

All text included within the ASCII characters “/*” and “*/”’ is considered a com-
ment and ignored; nested comments are not allowed. All text from the ASCII
characters “//” to the end of line is considered a comment and is ignored.

3.3 Identifiers

Identifiers consist of a single letter followed by zero or more letters or digits.
The letters are the ASCII characters a through z, A through Z, and _. Digits are
defined as the ASCII characters 0 through 9. Case is significant; a and A are
distinct identifiers, as is a keyword, but As and AS are identifiers. (However, case

25

26 CHAPTER 3. LEXICAL AND GRAMMATICAL STRUCTURE

is insignificant in the hexadecimal numbers, exponent markers, and type-tags of
numeric literals — Oxbabe = 0XBABE.)

In addition, any string of characters may be enclosed in backquotes ‘ to form
an identifier — though the backquote character itself, and the backslash character,
must be quoted by a backslash if they are to be included. This allows, for example,
keywords to be used as identifiers. The following are backquoted identifiers:

‘while‘, “!*, ‘(unbalanced(‘, “\‘\\‘, ‘O

Certain back ends and compilation options do not support all choices of identifier.

3.4 Keywords

X10 uses the following keywords:

abstract as assert async at
athome ateach atomic break case
catch class clocked continue def
default do else extends false
final finally finish for goto
haszero here if implements import
in instanceof interface native new
null offer offers operator package
private property protected public return
self static struct super switch
this throw transient true try
type val var void when
while

Keywords may be used as identifiers by enclosing them in backquotes: ‘new‘ is
an identifier, new is a keyword but not an identifier.

Note that the primitive type names are not considered keywords.

3.5 Literals

Briefly, X10 v2.2 uses fairly standard syntax for its literals: integers, unsigned
integers, floating point numbers, booleans, characters, strings, and null. The

3.5. LITERALS 27

most exotic points are (1) unsigned numbers are marked by a u and cannot have a
sign; (2) true and false are the literals for the booleans; and (3) floating point
numbers are Double unless marked with an f for Float.

Less briefly, we use the following abbreviations:

d = one or more decimal digitsonly starting with 0 if it is O
dg = one or more octal digits

dig = one or more hexadecimal digits, using a-f or A-F for 10-15
1 = d | ®d8 | @de | Qde
s = optional + or -
b = dl|d.|dd]|.d
r = (e|E)sd
f = bx

e true and false are the Boolean literals.
e null is a literal for the null value. It has type Any{self==null}.

e Int literals have the form si; e.g., 123, -321 are decimal Ints, 0123 and
-0321 are octal Ints, and 0x123, -0X321, O0xBED, and OXEBEC are hex-
adecimal Ints.

e Long literals have the form si1 or siL. E.g., 1234567890L and OxBABEL
are Long literals.

e UInt literals have the form 7u or ¢U. E.g., 123u, 0123u, and OxBEAU are
UInt literals.

e ULong literals have the form 7ul or 71u, or capital versions of those. For ex-
ample, 123ul, 0124567012ul, OxFLU, OXbaleful, and 0xDecafCOffeefUL
are ULong literals.

e Short literals have the form sis or s:S. E.g., 414S, OxACES and 7001s are
short literals.

e UShort literals form 7us or ¢su, or capital versions of those. For example,
609US, 107us, and OxBeaus are unsigned short literals.

e Byte literals have the form sty or siY. (The letter B cannot be used for
bytes, as it is a hexadecimal digit.) 50Y and OxBABY are byte literals.

28

CHAPTER 3. LEXICAL AND GRAMMATICAL STRUCTURE

e UByte literals have the form 7uy or ¢yu, or capitalized versions of those.
For example, 9uy and 0xBUY are UByte literals.

e Float literals have the form s f f or s fF. Note that the floating-point marker
letter £ is required: unmarked floating-point-looking literals are Double.

E.g.,

1f, 6.023E+32f, 6.626068E-34F are Float literals.

e Double literals have the form s sfD, and sfd. E.g., 0.0, 0e100, 1.3D,
229792458d, and 314159265e-8 are Double literals.

e Char literals have one of the following forms:

"¢’ where c is any printing ASCII character other than \ or ’, repre-
senting the character c itself; e.g., ! ’;

"\b’, representing backspace;
"\t’, representing tab;

’\n’, representing newline;
"\1f’, representing form feed;
"\r’, representing return;

"\’ ’, representing single-quote;
"\"’, representing double-quote;
"\\’, representing backslash;

’\dd’, where dd is one or more octal digits, representing the one-byte
character numbered dd; it is an error if dd> 0377.

e String literals consist of a double-quote ", followed by zero or more of the
contents of a Char literal, followed by another double quote. E.g., "hi!",

3.6 Separators

X10 has the following separators and delimiters:

)

ty» 01 5

"Except that literals like 1 which match both i and f are counted as integers, not Double;
Doubles require a decimal point, an exponent, or the d marker.

3.7. OPERATORS

3.7 Operators

29

X10 has the following operator, type constructor, and miscellaneous symbols. (?
and : comprise a single ternary operator, but are written separately.)

== = < > <= >=
& || & | 7

<< S>> >>>
+ - * / %
++ -- "

&= |= "=

<<= >>= >>>=

+= -= *= = %=
= ? = ->
< > @

1™ -< >-

The precedence of the operators is as follows. Earlier rows of the table have higher
precedence than later rows, binding more tightly. For example, a+b*c<d parses
as (a+(b*c))<d, and -1 as Byte parses as -(1 as Byte).

postfix ()
as T, postfix ++, postfix --
unary -, unary +, prefix ++, prefix --

unary operators !, 7, ", *, |, & /, and %
/ % #
+ —_
<< >> >>> > >- -<
> >= < <= 1instanceof
== = I 1~
&
|
&&
|l
?

=, *:7 /:7 %:’ +=, =, <<5, >>=, 55>, &:’ ":,

30 CHAPTER 3. LEXICAL AND GRAMMATICAL STRUCTURE

3.8 Grammatical Notation

In this manual, ordinary BNF notation is used to specify grammatical construc-
tions, with a few minor extensions. Grammatical rules look like this:

Adj = Adv’ happy
| Adv' sad
Adv = very
| Adv Adv

Terms in italics are called non-terminals. They represent kinds of phrases; for
example, ForStmt (20.73)f|describes all for statements. Equation numbers refer
to the full X10 grammar, in The small example has two non-terminals, Adv
and Adj.

Terms in fixed-width font are terminals. They represent the words and sym-
bols of the language itself. In X10, the terminals are the words described in this
chapter.

A single grammatical rule has the form A ::= X;X,...X,,, where the X;’s are
either terminals or nonterminals. This indicates that the non-terminal A could be
an instance of X, followed by an instance of Xo, ..., followed by an instance of
X,,. Multiple rules for the same A are allowed, giving several possible phrasings
of A’s. For brevity, two rules with the same left-hand side are written with the
left-hand side appearing once, and the right-hand sides separated by |.

In the Adj example, there are two rules for Adv, Adv ::= very and Adv ::=
Adv Adv. So, an adverb could be very, or (by three uses of the rule) very very,
or, One or more Verys.

The notation A’ indicates an optional A. This is an ordinary non-terminal, defined
by the rules:
AT o=

| A
rule says that A” can amount to nothing; the second, that it can amount to an A.
This concept shows up so often that it is worth having a separate notation for it.
In the Adj example, an adjective phrase may be preceded by an optional adverb.
Thus, it may be happy, or very happy, or very very sad, etc.

The first

2Grammar rules are given in and referred to by equation number in that section.

4 Types

X10 is a strongly typed object-oriented language: every variable and expression
has a type that is known at compile-time. Types limit the values that variables can
hold.

X10 supports four kinds of values, objects, struct values, functions, and null.
Objects are in the grand tradition of object-oriented languages, and the heart of
most X10 computations. They are instances of classes (§8)); they hold zero or
more data fields that may be mutable. They respond to methods, and can inherit
behavior from their superclass.

Struct values are similar to objects, though more restricted in ways that make them
more efficient in space and time. Their fields cannot be mutable, and, although
they respond to methods, they do not inherit behavior. They are instances of struct

types (§9).

Together, objects and struct values are called containers, because they hold data.

Functions, called closures, lambda-expressions, and blocks in other languages,
are instances of function types (§10). A function has zero or more formal param-
eters (or arguments) and a body, which is an expression that can reference the
formal parameters and also other variables in the surrounding block. For instance,
(x:Int)=>x*y is a unary integer function which multiplies its argument by the
variable y from the surrounding block. Functions may be freely copied from place
to place and may be repeatedly applied.

Finally, null is a constant, often found as the default value of variables of object
type. While it is not an object, it may be stored in variables of class type — except
for types which have a constraint (§4.5) which specifically excludes null.

These runtime values are classified by types. Types are used in variable dec-
larations (§12.2)), coercions and explicit conversions (§11.9.1)), object creation

31

32 CHAPTER 4. TYPES

(§11.21)), static state and method accessors (§11.4)), generic classes, structs, inter-
faces, and methods (§4.3), type definitions (§4.4)), closures (§10), class, struct, and
interface declarations (§8.1.2), subtyping expressions (§11.25)), and instanceof
and as expressions (§11.24).

The basic relationship between values and types is the is a value in relation: e is a
value in T. We also often say “e has type T” to or “e is an element of type T”. For
example, 1 has type Int (the type of all integers representible in 32 bits). It has the
more general type Any (since all entitites have type Any). Furthermore, it has such
types as “Nonzero integer” and “Integer equal to one”, and many others. These
types are expressable in X10 using constrained types (4.5). Int{self!=0} is
the type of Ints selfﬂ which are not equal to zero, and Int{self==1} is the
type of the Ints which are equal to one.

The basic relationship between types is subtyping: T <: U holds if every value
in T is also a value ind U. Two important kinds of subtyping are subclassing and
strengthening. Subclassing is a familiar notion from object-oriented program-
ming. Here we use it to refer to the relationship between a class and another
class it extends or an interface (§7) it implements. For instance, in a class hier-
archy with classes Animal and Cat such that Cat extends Mammal and Mammal
extends Animal, every instance of Cat is by definition an instance of Animal
(and Mammal). We say that Cat is a subclass of Animal, or Cat <: Animal by
subclassing. If Animal implements Thing, then Cat also implements Thing, and
we say Cat <: Thing by subclassing.

Strengthening is an equally familiar notion from logic. The instances of Int{self
== 1} are all elements of Int{self != 0} as well, because self == 1 logi-
cally implies self != @;soInt{self == 1} <: Int{self !=0} by strength-
ening. X10 uses both notions of subtyping. See for the full definition of

subtyping in X10.

4.1 Type System

X10 has several sorts of types. In this section, S, T, and T; range over types. X
ranges over type variables, M and x; over identifiers, c over constraint expressions
(§4.5), and e; over expressions. For compactness, slanted brackets are used to

X 10 automatically uses the identifier self for the element of the type being constrained.

4.1. TYPE SYSTEM 33

indicate optional elements. E]

Type = T

T n= M (1)
| X (2)
| M[Ty,...,T,] (3)
I T (4)
| F (5)
| M[[Ty, ..., T,1]Cer, .., er) (6)
| T{c} (7)

F = Ofxy] T, L [x] T) [{c}] = T

| C[xe] Ty, [% 2] T,) [{c}] => void

A type given by (1) is an identifier M, like Point, Int, or int. It refer to a unit
— a class, struct type, or interface, (§4.2). Or, it can refer to a name defined by a

type statement (§4.4));

Example: String refers to the standard class of strings, Int to the standard
struct type of integers, and Any to the interface that describes all X10 values.
int is an alias for the type Int, for the comfort of programmers used to other
languages in the C family.

A type of the form (2), a type variable X, refers to a parameter type of a generic
(parameterized) type, as described in

Example: The class Pair[X] below provides a simplistic way to keep two things
of the same type togetherE] Pair[Int] holds two integers; Pair[Pair[String]]
holds two pairs of strings. Within the definition of Pair, the type variable X is the
parameter type of Pair — that is, the type which this pair is a pair of.

class Pair[X]{

public val first : X;

public val second: X;

public def this(f:X, s:X) {first = f; second = s;}
3

A type of form (3), M[T, U], is a use of a generic type, also described in ora
generic type-defined type without value parameters (§4.4). The types inside the

The actual grammar, as given in is slightly more intricate for technical reasons. The set
of types is the same, however, and this grammar is better for exposition.
3In practice, most people would use an Array rather than making a new Pair class.

34 CHAPTER 4. TYPES

brackets are the actual parameters corresponding to the formal parameters of the
parameterized type M. Pair[Int], above, is an example of a use of the generic
type Pair.

A type of form (4), T.U, is a qualified type: a unit U appearing inside of the unit
T, as described in §8.13]

Example:

class Outer {
class Inner { /* ... */ }

}

then (new Outer()).new Inner() creates a value of type Outer.Inner.

A type of form (5), F, such as (x:Int)=>Int, is a function type. Its values are
functions, e.g., the squaring function taking integers to integers. Function types
are described in and computing with functions is described in

Example: square is the squaring function on integers. It is used in the assert
line.

val square : (x:Int)=>Int
= (x:Int)=>x*x;
assert square(5) == 25;

A term of form (6), such as M[T] (e), is an instance of a parameterized type
definition. Such types may be parameterized by both types and values. This is

described in

Example: Array[Int] (1) is the type of one-dimensional arrays of integers.
It has one type parameter giving the type of element, here Int. It has one value
parameter giving the number of dimensions, here 1. Region(1l) is the type of
one-dimensional regions of points (§16.3)).

In the function types (6), the variable names are bound. As with all bound vari-

ables in X10, they can be renamed. So, for example, the types (x:Int)=>Int{self!=x}
and (y:Int)=>Int{self!=y} are equivalent, as they differ by nothing but the
names of bound variables. This is more visible with types than with, say, methods

or functions, because we can test equality of types.

Furthermore, if a variable x does not appear anywhere in a function type F save as

an argument name, it (and its “:”’) can be omitted. E.g., the types (x:Int)=>Int
and (Int)=>Int are equivalent.

Example:

4.2. UNIT TYPES: CLASSES, STRUCT TYPES, AND INTERFACES 35

val f : (x:Int)=>Int{self!=x}

val g : (y:Int)=>Int{selfl=y} = f;
val t : (x:Int)=>Int = (x:Int) => x;
val u : (Int)=>Int = t;

A term of form (7), T{c}, is a type whose values are the values of type T for which
the constraint c is true. This is described in

Example: A variable of class Point, unconstrained, can contain null:

var gotNPE: Boolean = false;
val p : Point = null;
try {
val q = p * 2; // method invocation, NPE
ks
catch(NullPointerException) {
gotNPE = true;
3
assert gotNPE;

A suitable constraint on that type will prevent a null from ever being assigned
to the variable. The variable self, in a constraint, refers to the value being con-
strained, so the constraint self '= null means “which is not null”. So, adding
a {self!=null} constraint to Point results in a compile-time error, rather than
a runtime null pointer exception.

// ERROR: p : Point{self!=null} = null;

4.2 Unit Types: Classes, Struct Types, and Inter-
faces

Most X10 computation manipulates values via the unit types: classes, struct types,
and interfaces. These types share a great deal of structure, though there are im-
portant differences.

4.2.1 Class types

A class declaration declares a class type (§8), giving its name, behavior, and
data. It may inherit from one parent class, and, if no parent class is specified, it

(x:Int) => (x+1) as Int{self!=x};

36 CHAPTER 4. TYPES

implicitly inherits from x10.1lang.0Object. It may also implement zero or more
interfaces, each one of which becomes a supertype of it.

Example: The Position class below could describe the position of a slider
control. The example method uses Position as a type. Position is a subtype
of the class Object and the type Poser.

interface Poser {
def pos():Int;
3
class Position implements Poser {
private var x : Int = 0;
public def move(dx:Int) { x += dx; }
public def pos() : Int = x;
static def example() {
var p : Position;
}
}

The null value, represented by the literal null, is a value of every class type
C. The type whose values are all instances of C except null can be defined as
C{self != null}.

4.2.2 Struct Types

A struct declaration (§9) introduces a struct type containing all instances of the
struct. Struct types can include nearly all the features that classes have. They can
implement interfaces, which become their supertypes just as for classes; but they
do not have superclasses, and cannot extend anything.

Example: The Coords struct gives an immutable position in 3-space. It is used
as a type in example():

struct Position {
public val x:Double; public val y:Double; public val z:Double;
def this(x:Double, y:Double, z:Double) {
this.x = x; this.y = y; this.z = z;
3
static def example(p: Position, q: Array[Position]) {
var r : Position = p;

4.2. UNIT TYPES: CLASSES, STRUCT TYPES, AND INTERFACES 37

4.2.3 Interface types

An interface declaration (7)) defines an interface type, specifying a set of instance
method signatures and property method signatures which must be provided by any
container declared to implement the interface. They can also declare static val
fields, which are provided to all units implementing or extending the interface.
They do not have code, and cannot implement anything. An interface may extend
multiple interfaces. Each interface it extends becomes one of its superclasses.

Example: Named and Mobile are interfaces, each specifying a single method.
Person and NamedPoint are subtypes of both of them. They are used as types in
the example method.

interface Named {

def name():String;
}
interface Mobile {

def where():Int;

def moveChowFar:Int):void;
ks
interface NamedPoint extends Named, Mobile {}
class Person implements Named, Mobile {

var name:String; var pos: Int;

public def name() = this.name;

public def move(howFar:Int) { pos += howFar; }

public def where() = this.pos;

public def example(putAt:Mobile) {

this.pos = putAt.where();
}

4.2.4 Properties

Classes, interfaces, and structs may have properties, specified in parentheses after
the type name. Properties are much like public val instance fields. They have

38 CHAPTER 4. TYPES

certain restrictions on their use, however, which allows the compiler to understand
them much better than other public val fields. In particular, they can be used in
types. E.g., the number of elements in an array is a property of the array, and an
X10 program can specify that two arrays have the same number of elements.

Example: The following code declares a class named Coords with proper-
ties x and y and a move method. The properties are bound using the property
statement in the constructor.

class Coords(x: Int, y: Int) {
def this(x: Int, y: Int)
Coords{self.x==x, self.y==y} = {
property(x, y);
}

def move(dx: Int, dy: Int) = new Coords(x+dx, y+dy);
}

Properties of self can be used in constraints. This places certain restrictions on
how properties can be used, but allows a great deal of compile-time constraint
checking. For a simple example, new Coords(0,0) is known to be an instance
of Coords{self.x==0}. Details of this substantial topic are found in

4.3 Type Parameters and Generic Types

A class, interface, method, or type definition may have type parameters. Type pa-
rameters can be used as types, and will be bound to types on instantiation. For ex-
ample, a generic stack class may be defined as Stack[T]{...}. Stacks can hold
values of any type; e.g., Stack[Int] is a stack of integers, and Stack[Point

{self!=null}] is a stack of non-null Points. Generics must be instantiated
when they are used: Stack, by itself, is not a valid type. Type parameters may be

constrained by a guard on the declaration (§4.4] §8.4.5/§10.3).

A generic class (or struct, interface, or type definition) is a class (resp. struct,
interface, or type definition) declared with £ > 1 type parameters. A generic class
(or struct, interface, or type definition) can be used to form a type by supplying &
types as type arguments within [...].

Example: Bottle[T] is a generic class. A Bottle[T]can hold a value of

4.4. TYPE DEFINITIONS 39

type T; the variable yup in example() is of type Bottle[Boolean] and thus
canhohiaBoolean.fﬂ%wenBottlezﬂoneisnotalypaﬂ

class Bottle[T] {
var contents : T;
public def this(t:T) { contents = t;
public def putIn(t:T) { contents = t;
public def get() = contents;
static def example() {
val yup : Bottle[Boolean] = new Bottle[Boolean] (true);
//ERROR: var nope : Bottle = null;

}
}

}
}

A class (whether generic or not) may have generic methods.

Example: NonGeneric has a generic method first[T] (x:List[T]). An in-
vocation of such a method may supply the type parameters explicitly (e.g., first[Int] (z)).
In certain cases (e.g., first (z)) type parameters may be omitted and are inferred

by the compiler (§4.12)).

class NonGeneric {
static def first[T](x:List[T]):T = x(0);
def m(z:List[Int]) {
val f = first[Int](2);
val g first(z);
return f == g;

}
}

Limitation: X10 v2.2’s C++ back end requires generic methods to be static or
final; the Java back end can accomodate generic instance methods as well.

4.4 Type definitions

A type definition can be thought of as a type-valued function, mapping type pa-
rameters and value parameters to a concrete type.

“By contrast, in Java, the equivalent of Bottle alone would be a type, via type erasure of
generics.

40 CHAPTER 4. TYPES

TypeDefDecln ::= Mods’ type Id TypeParams’ Guard’ = Type ;
| Mods’ type Id TypeParams’ (FormalList) Guard’ = Type
TypeParams = [TypeParamList]
Formals = (FormalList’)
Guard = DepParams

During type-checking the compiler replaces the use of such a defined type with
its body, substituting the actual type and value parameters in the call for the for-
mals. This replacement is performed recursively until the type no longer contains
a defined type or a predetermined compiler limit is reached (in which case the
compiler declares an error). Thus, recursive type definitions are not permitted.

Type definitions are considered applicative and not generative — they do not define
new types, only aliases for existing types.

Type definitions may have guards: an invocation of a type definition is illegal
unless the guard is satisified when formal types and values are replaced by the
actual parameters.

Type definitions may be overloaded: two type definitions with the same name are
permitted provided that they have a different number of type parameters or differ-
ent number or type of value parameters. The rules for type definition resolution
are identical to those for method resolution.

However, T() is not allowed. If there is an argument list, it must be nonempty.
This avoids a possible confusion between type T = ... and type TQ) =

A type definition for a type T can appear:
e As atop-level definition in a file named T.x10; or

e As a static member in a container definition; or

e In a block statement.

Use of type definitions in constructor invocations If a type definition has no
type parameters and no value parameters and is an alias for a container type, a new
expression may be used to create an instance of the class using the type definition’s
name. Similarly, a parameterless alias for an interface can be used to construct an
instance of an anonymous class. Given the following type definition:

4.4. TYPE DEFINITIONS 41

type A = C[Ty, ..., Tpl{c};
where C[T;, ..., Tx] is a class type, a constructor of C may be invoked with
new A(e;, ..., e,), if the invocation new C[T;, ..., Tp]lCey, ..., e,) is

legal and if the constructor return type is a subtype of A.

Example: The names of the class Cont[X] and the interface Inte[X] can be
used to create an object a of type Cont[Int], and an object b which implements
Inte[Int]. The two types may be given aliases A and B, which may then be used
in more compact expressions to construct objects aa and bb of the same types.

class ConstructorExample {
static class Cont[X]{}
static interface Inte[X]{
def meth(Q:X;
}
public static def example() {
val a = new Cont[Int]();

val b = new Inte[Int] () {public def meth()=3;};
type A = Cont[Int];
val aa = new AQ);
type B = Inte[Int];
val bb = new B {public def meth()=4;};
3
3

Automatically imported type definitions The collection of type definitions in
x10.1lang._ is automatically imported in every compilation unit.

4.4.1 Motivation and use

The primary purpose of type definitions is to provide a succinct, meaningful name
for complex types and combinations of types. With value arguments, type ar-
guments, and constraints, the syntax for X10 types can often be verbose. For
example, a non-null list of non-null strings is
List[String{self!=null}]{self!=null}.

We could name that type:

42 CHAPTER 4. TYPES

static type LnSn = List[String{self!=null}]{self!=null};

Or, we could abstract it somewhat, defining a type constructor Nonnull[T] for
the type of T’s which are not null:

class Example {
static type Nonnull[T]{T <: Object} = T{self!=null};
var example : Nonnull[Example] = new Example();

}

Type definitions can also refer to values, in particular, inside constraints. The type
of n-element Array[Int] (1)sis Array[Int] {self.rank==1 && self.size
== n} but it is often convenient to give a shorter name:

type Vec(n:Int) = Array[Int]{self.rank==1, self.size == n};
var example : Vec(78);

The following examples are legal type definitions,

import x10.util.*;
class TypeExamples {
static type StringSet = Set[String];
static type MapToList[K,V] = Map[K,List[V]];
static type Int(x: Int) = Int{self==x};
static type Dist(r: Int) = Dist{self.rank==r};
static type Dist(r: Region) = Dist{self.region==r};
static type Redund(n:Int, r:Region){r.rank==n}
= Dist{rank==n && region==r};

}

The following code illustrates that type definitions are applicative rather than gen-
erative. B and C are both aliases for String, rather than new types, and so are
interchangeable with each other and with String. Similarly, A and Int are equiv-
alent.

def someTypeDefs () {

type A = Int;
type B = String;
type C = String;
a: A = 3;

b: B = new C("Hi");

4.5. CONSTRAINED TYPES 43

c: C=b + ", Mom!";

}

4.5 Constrained types

Basic types, like Int and List[String], provide useful descriptions of data.

However, one frequently wants to say more. One might want to know that a
String variable is not null, or that a matrix is square, or that one matrix has the
same number of columns as another has rows (so they can be multiplied). In the
multicore setting, one might wish to know that two values are located at the same
processor, or that one is located at the same place as the current computation.

In most languages, there is simply no way to say and check these things statically.
Programmers must made do with comments, assert statements, and dynamic
tests. X10 programs can do better, with constraints on types, and guards on class,
method and type definitions.

A constraint expression is a Boolean expression e of a quite limited form (§4.5.2)).
. A constraint expression ¢ may be attached to a basic type T, giving a constrained
type T{c}. The values of type T{c} are the values of T for which c is true. Con-
straint expressions also serve as guards on methods (§8.4) and functions (§10.3),
and invariants on unit types (§8.8]

When constraining a value of type T, self refers to the object of type T which is
being constrained. For example, Int{self == 4} is the type of Ints which are
equal to 4 — the best possible description of 4, and a very difficult type to express
without using self.

Example:

Int{self != 0} is the type of non-zero Ints.

Int{self == 0} is the type of Ints which are zero.

Int{self != 0, self != 1} is the type of Ints which are neither zero
nor one.

Int{self == 0, self == 1} isthetype of Ints which are both zero and
one. There are no such values, so it is an empty type.

44 CHAPTER 4. TYPES

e String{self != null} is the type of non-null strings.

e Suppose that Matrix is a matrix class with properties rows and cols.
Matrix{self.rows == self.cols} is the type of square matrices.

e One way to say that a has the same number of columns that b has rows (so
that a*b is a valid matrix product), one could say:

val a : Matrix = someMatrix() ;
var b : Matrix{b.rows == a.cols} ;

T{e} is a dependent type, that is, a type dependent on values. The type T is called
the base type and e is called the constraint. If the constraint is omitted, it is
true—that is, the base type is unconstrained.

Constraints may refer to immutable values in the local environment:

val n = 1;
var p : Point{rank == n};

In a val variable declaration, the variable itself is in scope in its type, and can be
used in constraints.

Example: For example, val nz: Int{nz != 0} = 1; declares a non-zero
variable nz. In this case, nz could have been declared as val nz: Int{self
=0} = L

4.5.1 Examples of Constraints

Example of entailment and subtyping involving constraints.

e Int{self == 3} <: Int{self != 14}. The only value of Int{self
==3} is 3. All integers but 14 are members of Int{self != 14}, and in
particular 3 is.

e Suppose we have classes Child <: Person, and Person has a ssn:Long
property. If rhys : Child{ssn == 123456789}, then rhys is also a
Person. rhys’s ssn field is the same, 123456789, whether rhys is re-
garded as aChild oraPerson. Thus, rhys : Person{ssn==123456789}
as well. So,

4.5. CONSTRAINED TYPES 45

Child{ssn == 123456789} <: Person{ssn == 123456789}.

e Furthermore, since 123456789 != 555555555, is is clear that rhys :
Person{ssn != 555555555}. So,

Child{ssn == 123456789} <: Person{ssn != 555555555}.

e T{e} <: T for any type T. That is, if you have a value v of some base
type T which satisfied e, then v is of that base type T (with the constraint
ignored).

e If A <: B, then A{c} <: B{c} for every constraint {c} for which A{c}
and B{c} are defined. That is, if every A is also a B, and a : A{c}, then
ais an A and c is true of it. So a is also a B (and c is still true of it), so
a : B{c}.

Constraints can be used to express simple relationships between objects, enforcing
some class invariants statically. For example, in geometry, a line is determined by
two distinct points; a Line struct can specify the distinctness in a type constraint:E]

struct Position(x: Int, y: Int) {}
struct Line(start: Position, end: Position){start != end}

{}

Extending this concept, a Triangle can be defined as a figure with three line
segments which match up end-to-end. Note that the degenerate case in which
two or three of the triangle’s vertices coincide is excluded by the constraint on
Line. However, not all degenerate cases can be excluded by the type system; in
particular, it is impossible to check that the three vertices are not collinear.

struct Triangle
(a: Line,
b: Line{a.end == b.start},
c: Line{b.end == c.start & c.end == a.start})

{}

SWe call them Position to avoid confusion with the built-in class Point. Also, Position is
a struct rather than a class so that the non-equality test start != end compares the coordinates.
If Position were a class, start != end would check for different Position objects, which
might have the same coordinates.

46 CHAPTER 4. TYPES

The Triangle class automatically gets a ternary constructor which takes suitably
constrained a, b, and c and produces a new triangle.

A constrained type may be constrained further: the type S{c}{d} is the same
as the type S{c,d}. Multiple constraints are equivalent to conjoined constraints:
S{c,d} in turn is the same as S{c && d}.

4.5.2 Syntax of constraints

Only a few kinds of expressions can appear in constraints. For fundamental rea-
sons of mathematical logic, the more kinds of expressions that can appear in con-
straints, the harder it is to compute the essential properties of constrained types
— in particular, the harder it is to compute A{c} <: B{d} oreven E : T{c}. It
doesn’t take much to make this basic fact undecidable. In order to make sure that
it stays decidable, X10 places stringent restrictions on constraints.

Only the following forms of expression are allowed in constraints.

Value expressions in constraints may be:

1. Literal constants, like 3 and true;
2. Accessible, immutable (val) variables and parameters;

3. this, if the constraint is at a point in the program where this is defined,
but not in extends or implements clauses or class invariants;

4. here, if the constraint is at a point in the program where here is defined;
5. self;

6. A field selection expression t. f, where t is a value expression allowed in
constraints, and f is a field of t’s type. If t is self, then f must be a
property, not an arbitrary field.

7. Invocations of property methods, p(a,b,...,c) ora.p(b,c,...d), where
the receiver and arguments must be value expressions acceptable in con-
straints, as long as the expansion (viz., the expression obtained by taking
the body of the definition of p, and replacing the formal parameters by the
actual parameters) of the invocation is allowed as a value expression in con-
straints.

4.5. CONSTRAINED TYPES 47

For an expression self.p to be legal in a constraint, p must be a property. How-
ever terms t.f may be used in constraints (where t is a term other than self and
f is an immutable field.)

Constraints may be any of the following, where all value expressions are of the
forms which may appear in constraints:

1. Equalities e == f;
2. Inequalities of the form e != ff]

3. Conjunctions of Boolean expressions that may appear in constraints (but
only in top-level constraints, not in Boolean expressions in constraints);

4. Subtyping and supertyping expressions: T <: Uand T :> U;
5. Type equalities and inequalities: T == Uand T != U;

6. Invocations of a property method, p(a,b,...,c)ora.p(b,c,...d), where
the receiver and arguments must be value expressions acceptable in con-
straints, as long as the expansion of the invocation is allowed as a constraint.

7. Testing a type for a default: T haszero.

Note that constraints on methods may include private, protected, or package-
protected fields. It is possible to have a method whose guard cannot be directly
checked, or even whose result type cannot be expressed as a clause in the program,
at some call sites. Nonetheless, X10 uses a broader internal type representation,
not limited by access rules, and can work with fields in types even though those
fields cannot be used in executable code.

Example: This phenomenon can be used to implement a form of compile-
type capability checking. We give a minimal example, providing only security by
obscurity: users unaware that the key method returns the required key will be
unable to use the secret method. This approach can be strengthened to provide
better security.

The class Keyed has a private field k. The method secret(q) can only be called
when q==k. In a larger example, secret could be some priveleged behavior or
secret, available only to callers with proper authority.

®Currently inequalities of the form e < f are not supported.

48 CHAPTER 4. TYPES

At the call site in Snooper, keyed.secret() is called. It can’t be called as
keyed.secret(keyed.k), because k is a private field. It can’t be called as
keyed.secret(8), even though keyed.k==8, because there is no proof avail-
able that keyed.k==8 — indeed, at this point in the code, the requirement that
keyed.k==8 cannot even be expressed in X10.

However, the value of keyed.k can be retrieved, using keyed.key(). The type
of kk cannot be expressed in Snooper, because it refers to a private field of
keyed. However, the compiler’s internal representation is not bound by the rules
of privacy, and can track the fact that kk is the same as keyed.k. So, the call
keyed.secret (kk) succeeds.

class Keyed {
private val k : Int;
public def this(k : Int) {
this.k = k;
}
public def secret(q:Int){q==this.k} = 11;
public def key():Int{self==this.k} = this.k;
3
class Snooper {
public static def main(argv:Array[String] (1)) {
val keyed : Keyed = new Keyed(8);
//ERROR: keyed.secret(keyed.k);
//ERROR: keyed.secret(8);
val kk = keyed.key(Q);
keyed.secret (kk);
}
ks

Note: Constraints may not contain casts. In particular, comparisons of values of
incompatible types are not allowed. If i :Int, then i==0 is allowed as a constraint,
but i==0L is an error, and i as Long==0L is outside of the constraint language.

Semantics of constraints

The logic of constraints is designed to allow a common and important X10 idiom:

class Thing(p:Int){}
static def example(){

4.5. CONSTRAINED TYPES 49

var x : Thing{x.p==3} = null;
}

That is, null must be an instance of Thing{x.p==3}. Of course, it cannot be
the case that null.p==3 — nor can it equal anything else. When evaluated at
runtime, null.p must throw a NullPointerException rather than returning
any value at all.

So, X10’s logic of constraints — unlike the logic of runtime — allows x=null to
satisfy x.p==3. Building this logic requires a few definitions.

The property graph, at an instant in an X10 execution, is the graph whose nodes
are all objects in existence at that instance, plus null, with an edge from z to
y if is an object with a property whose value is y. The rules for constructors
guarantee that property graphs are acyclic, which is crucial for decidability.

As is standard in mathematical logic, we introduce the concept of a valuation v,
which is a mapping from variable names to their values — in our case, nodes of
an X10 property graph. A valuation v can be extended to values to all constraint
formulas. The crucial definitions are:

v(a.b....1.m == n.o....y.z) =
a=null V a.b=null VvV ... a.b....1=null
V n=null V n.o=null V ... n.o....y=null
V v(a).b....1.m = ov(n).o....y.

v(a.b....1.m !=n.o....y.z) =
a=null V a.b=null VvV ... a.b....1=null
V n=null V n.o=null V ... n.o....y=null
V v(a).b....1.m # v(n).o....y.

For example, v(a.b==1) is true if either v(a) =null or if v(a) is a container
whose b-field is equal to 1. While such a valuation is perfectly well-defined, it has
properties that need to be understood in light of the fact that == is not mathemat-
ical equality]’] Given any valuation in which v(a) =null, both v(a.b==1 &&

a.b==2) and v(a.b==1 & a.b!=1) are true. This does not contradict logic and
mathematics, it does not imply that v(false) is true (it’s not), and it does not as-
sert that in X10 there is a number which is both 1 and 2. It simply reflects the fact

"No experienced programmer should actually think that == is mathematical equality in any
case. It is quite common for two objects to appear identical but not be ==. X10’s discrepancy
between the two concepts is orthogonal to the familiar one.

50 CHAPTER 4. TYPES

that, while == is similar to mathematical equality in many respects, it is ultimately
a different operation, and in constraints it is given a null-safe interpretation.

From this definition of valuation, we define entailment in the standard way. Given
constraints ¢ and d, we define ¢ entails d, sometimes written ¢ = d, if for all
valuations v such that v(c) is true, v(d) is also true.

Limitation: Although nearly-contradictory conjunctions like x.a==1 && x.a==2
entail x==null, X10’s constraint solver does not currently use this rule. If you
want x==hnull, write x==null.

Subtyping of constrained types is defined in terms of entailment. S[S1,...,
Sm]{c} is a subtype of T[T1,..., Tn]l{d} if S[S1,...,Sm] is a subtype of
T[T1,...,Tn] and c entails d.

For examples of constraints and entailment, see (§4.5.1)

4.5.3 Constraint solver: incompleteness and approximation

The constraint solver is sound in that if it claims that ¢ entails d then in fact it is
the case that every valuation that satisfies c satisfies d.

Limitation: X10’s constraint solver is incomplete. There are situations in which
c entails d but the solver cannot establish it. For instance it cannot establish that a
I=b & a != c & b != centails false if a, b, and c are of type Boolean.
Similarly, although a.b==1 && a.b==2 entails a==null, the constraint solver
does not deduce this fact.

4.5.4 Acyclicity of Properties

To ensure that typechecking is decidable, X 10 requires that the graph whose nodes
are types, with edges from types to the properties of those types, be acyclic. This
is often stated as “properties are acyclic.” That is, given a container type T, T
cannnot have a property of type T, nor a property which has a property of type T,
nor a property which has a property with a property of type T, etc.

Example: The following is forbidden by the acyclicity requirement, as ERRORList [T]
would have a property, tail, which is also an ERRORList[T].

class ERRORList[T] (head:T, tail: ERRORList[T]) {}

Without this restriction, typechecking becomes undecidable.

4.5. CONSTRAINED TYPES 51

4.5.5 Limitation: Generics and Constraints at Runtime

The X10 runtime does not maintain a representation of constraints as part of the
runtime representation of a type. While there various approaches which could be
used, they would require far higher prices in space or time than they are worth. A
representation suitable for one use of types (such as keeping a closure for testing
membership in the type) is unsuitable for others (such as determining if one type is
a subtype of another). Furthermore, it would be necessary to compute entailment
at runtime, which is currently impractical.

Rather than pay the runtime costs for keeping and manipulating constraints (which
can be considerable), X10 omits them. However, this renders certain type checks
uncertain: X10 needs some information at runtime, but does not have it. In partic-
ular, casts to instances of generic types, and to type variables, are potentially
troublesome.

Example: The following code illustrates the dangers of casting to generic types.
It constructs an array a of Int{self==3}"s — integers which are statically known
to be 3. The only number that can be stored into a is 3. Then it tricks the ocmpiler
into thinking that it is an array of Int, without restriction on the elements, giving
it the name b at that type. The cast aa as Array[Int] is a cast to an instance
of a generic type, which is the problem.

But, itc an store any Int into the elements of b, thereby violating the invariant
that all the elements of the array are 3. This could lead to program failures, as
illustrated by the failing assertion.

With the -VERBOSE compiler option, X10 prints a warning about the declaration
of b.

val a = new Array[Int{self==3}](0..10, 3);
// a(®) = 1; would be illegal

a(®) = 3; // LEGAL

val aa = a as Any;

val b = aa as Array[Int](1); // WARNED with -VERBOSE

b(®) = 1;
val x : Int{self==3} = a(0);
assert x == : "This fails at runtime.";

Since constraints are not preserved at runtime, instanceof and as cannot pay
attention to them. When types are used generically, they may not behave as one

52 CHAPTER 4. TYPES

would expect were one to imagine that their constraints were kept. Specifically,
constraints at runtime are, in effect, simply replaced by true.

Example: The following code defines generic methods inst and cast, which
look like generic versions of instanceof and as. The example() code shows
that inst and cast behave quite differently from instanceof and as, due to the
loss of constraint information.

The first section of asserts shows the behavior of instanceof and at. We have
a value pea, such that pea.p==1. It behaves as if its p field were 1: it answers
true to self.p==1, and false to self.p==2. This is entirely as desired.

The following section of assert and val statements does the analogous thing,
but using the generic methods inst and cast rather than the built-in opera-
tions instanceof and cast. pea answers true to inst checks concerning both
Pea{p==1} and Pea{p==2}, and can be cast () into both these types. This be-
havior is not what one would expect from runtime types that keep constraint infor-
mation. It is, however, precisely what one would expect from runtime types that
have their constraints replaced by true.

The cast2 line shows how to use this fact to violate the constraint system at
runtime. This dynamic cast produces an object of type Pea{p==2} for which
p!=2.

Note that the -VERBOSE compiler flag will produce a warning that cast is un-
sound.

class Generic {
public static def inst[T](x:Any):Boolean = x instanceof T;
// With -VERBOSE, the following line gets a warning
public static def cast[T](x:Any):T = x as T;
ks
class Pea(p:Int) {}
class Example{
static def example() {
val pea : Pea = new Pea(l);
// These are what you’d expect:
assert (pea instanceof Pea{p==1});
assert (pea as Pea{p==1}).p == 1;
assert ! (pea instanceof Pea{p==2});
// ’val x = pea as Pea{p==2};’
// throws a FailedDynamicCheckException.

4.6. FUNCTION TYPES 53

// But the genericized versions don’t do the same thing:
assert Generic.inst[Pea{p==1}](pea);

assert Generic.inst[Pea{p==2}](pea);

// No exception here!
val castl: Pea{p==1}
val cast2: Pea{p==2}
assert cast2.p == 1;
assert !(cast2 instanceof Pea{p==21});

Generic.cast[Pea{p==1}] (pea);
Generic.cast[Pea{p==2}](pea);

}
}

While in some cases it would be possible to keep constraints around at runtime
and operate efficiently on them, in other cases it would not.

4.6 Function types
FunctionType = TypeParams’ (FormalList’) Guard® => Type

For every sequence of types T1, ..., Tn,T, and n distinct variables x1,...,xn
and constraint c, the expression (x1:T1,...,xn:Tn){c}=>T is a function type.
It stands for the set of all functions £ which can be applied to a list of val-
ues (vl1,...,vn) provided that the constraint c[v1l,...,vn,p/x1,...,xn] is
true, and which returns a value of type T[vl,...vn/x1,...,xn]. When c is
true, the clause {c} can be omitted. When x1,...,xn do not occur in c or T,
they can be omitted. Thus the type (T1,...,Tn)=>T is actually shorthand for
(x1:T1,...,xn:Tn) {true}=>T, for some variables x1,...,xn.

Limitation: Constraints on closures are not supported. They parse, but are not
checked.

X10 functions, like mathematical functions, take some arguments and produce a
result. X10 functions, like other X10 code, can change mutable state and throw
exceptions. Closures (§10) are of function type — and so are arrays.

Example: Typical functions are the reciprocal function:

val recip = (x : Double) => 1/x;

54 CHAPTER 4. TYPES

and a function which increments element i of an array r, or throws an exception
if there is no such element, where, for the sake of example, we constrain the type
of 1 to avoid one of the many integers which are not possible subscripts:

val inc = (r:Array[Int](1), i: Int{i != r.size}) => {
if (A <0 || 1 >= r.size) throw new DoomExn();
r(i)++;

}s

In general, a function type needs to list the types T; of all the formal parameters,
and their distinct names x; in case other types refer to them; a constraint c on the
function as a whole; a return type T.

(x1: Ty, ..., X, T){c} =T

The names of the formal parameters, x;, are bound in the type. As usual with
bound variables, they can be given new names without changing the meaning of
the type. In particular, the names of formals in a function type do not need to be
the same as the names in the function in a value of that type.

Example: The type of id uses the bound variable x. The type of ie uses the
bound variable z, but is otherwise identical to that of id. The two types are the
same, as shown by the assignment of id to ie. Also, id’s type uses x, and id’s
value uses' y.

val id : (x:Int) => Int{self==x}

= (y:Int) =>y;
val ie : (z:Int) => Int{self==z}
= id;

Limitation: Function types differing only in the names of bound variables may
wind up being considered different in X10 v2.2, especially if the variables appear
in constraints.

The formal parameter names are in scope from the point of definition to the end of
the function type—they may be used in the types of other formal parameters and
in the return type. Value parameters names may be omitted if they are not used;
the type of the reciprocal function can be written as (Double)=>Double.

A function type is covariant in its result type and contravariant in each of its
argument types. That is, let S1,...,Sn,S,T1,...Tn,T be any types satisfy-
ing Si <: Tiand S <: T. Then (x1:T1,...,xn:Tn){c}=>S is a subtype of
(x1:S1,...,xn:Sn){c}=>T.

4.7. DEFAULT VALUES 55

A class or struct definition may use a function type

F=(x1:T1,...,xn:Tn) {c}=>T

in its implements clause; this is equivalent to implementing an interface requiring
the single operator

public operator this(xl1:T1,...,xn:Tn){c}:T

Similarly, an interface definition may specify a function type F in its extends
clause. Values of a class or struct implementing F can be used as functions of type
F in all ways. In particular, applying one to suitable arguments calls the apply
method.

Limitation: A class or struct may not implement two different instantiations of a
generic interface. In particular, a class or struct can implement only one function

type.

A function type F is not a class type in that it does not extend any type or im-
plement any interfaces, or support equality tests. F may be implemented, but not
extended, by a class or function type. Nor is it a struct type, for it has no predefined
notion of equality.

4.7 Default Values

Some types have default values, and some do not. Default values are used in sit-
uations where variables can legitimately be used without having been initialized;
types without default values cannot be used in such situations. For example, a
field of an object var x:T can be left uninitialized if T has a default value; it can-
not be if T does not. Similarly, a transient (§8.2.3) field transient val x:Tis
only allowed if T has a default value.

Default values, or lack of them, is defined thus:

e The fundamental numeric types (Int, UInt, Long, ULong, Short, UShort,
Byte, UByte, Float, Double) all have default value O.

e Boolean has default value false.

o Char has default value *\0’.

56 CHAPTER 4. TYPES

o If every field of a struct type T has a default value, then T has a default value.
If any field of T has no default value, then T does not. (§9.7)

o A function type has a default value of null.
e A class type has a default value of null.

e The constrained type T{c} has the same default value as T if that default
value satisfies c. If the default value of T doesn’t satisfy c, then T{c} has
no default value.

Example: var x: Int{x != 4} hasdefault value 0, which is allowed because
0 != 4 satisfies the constraint on x. var y : Int{y==4} has no default value,
because 0 does not satisfy y==4. The fact that Int{y==4} has precisely one value,
viz. 4, doesn’t matter; the only candidate for its default value, as for any subtype
of Int, is 0. y must be initialized before it is used.

The predicate T haszero tells if the type T has a default value. haszero may be
used in constraints.

Example: The following code defines a sort of cell holding a single value of
type T. The cell is initially empty — that is, has T’s zero value — but may be filled
later.

class CellO[T]{T haszero} {

public var contents : T;

public def put(t:T) { contents = t; }
ks

The built-in type Zero has the method get [T] () which returns the default value
of type T.

Example: As a variation on a theme of Cell®, we define a class Cell1[T]
which can be initialized with a value of an arbitrary type T, or, if T has a default
value, can be created with the default value. Note that T haszero is a constraint
on one of the constructors, not the whole type:

class Celll[T] {
public var contents: T;
def this(t:T) { contents = t; }
def this(Q{T haszero} { contents = Zero.get[T](Q; }
public def put(t:T) {contents = t;}
3

4.8. ANNOTATED TYPES 57

4.8 Annotated types

Any X10 type may be annotated with zero or more user-defined type annotations
({TD.

Annotations are defined as (constrained) interface types and are processed by
compiler plugins, which may interpret the annotation symbolically.

A type T is annotated by interface types A4, ..., A, using the syntax @A; ... @A,
T.

4.9 Subtyping and type equivalence

Intuitively, type T; is a subtype of type To, written T; <: Ts, if every instance of
T, is also an instance of Ty. For example, Child is a subtype of Person (assuming
a suitably defined class hierarchy): every child is a person. Similarly, Int{self
I= 0} is a subtype of Int — every non-zero integer is an integer.

This section formalizes the concept of subtyping. Subtyping of types depends on
a type context, viz.. a set of constraints on type parameters and variables that occur
in the type. For example:

class ConsTy[T,U] {
def upcast(t:T){T <: U} :U = t;
}

Inside upcast, T is constrained to be a subtype of U, and so T <: Uis true, and t
can be treated as a value of type U. Outside of upcast, there is no reason to expect
any relationship between them, and T <: U may be false. However, subtyping of
types that have no free variables does not depend on the context. Int{self !=
0} <: Intis always true.

Limitation: Subtyping of type variables does not work under all circumstances
in the X10 2.2 implementation.

o Reflexivity: Every type T is a subtype of itself: T <: T.

e Transitivity: If T <: UandU <: V,thenT <: V.

58 CHAPTER 4. TYPES

e Direct Subclassing: Let X be a (possibly empty) vector of type variables,
and Y Y be vectors of type terms over X. Let T be an instantiation of X,
and U, U, the corresponding instantiation of Y, Y.. Let c be a constraint,
and ¢’ be the corresponding instantiation. We elide properties, and interpret
empty vectors as absence of the relevant clauses. Suppose that C is declared
by one of the forms:

1. class C[X']{c}qextends D[?]gd}
implements I;[Yi|{ii},...,I,[Vu]{i,}{

2. interface C[X]{c} extends 11[371]{11},
3. struct C[)Z'] {c} implements Il[ﬁ]{il},.

o[Yol{in}
n[Yo]{in 3

I—|I—|

Then:

1. C[f] <: D[ﬁ]{d} for a class
2. C[f] <: Ii[[fi]{ii} for all cases.
3. C[f] <: C[f]{c’} for all cases.

e Function types:
(xi: Ty, oo, %, T D{c} =T
is a subtype of
&): Ty, ..., X TD{} =T
if:
1. EachT; <: Tj;
2. clxy, ..., %, / %1, ..., x,] entails c/;
3.7 <: T;
e Constrained types: T{c} is a subtype of T{d} if c entails d.
e Any: Every type T is a subtype of x10.1ang.Any.
e Type Variables: Inside the scope of a constraint ¢ which entails A <: B,

we have A <: B. e.g., upcast above.

Two types are equivalent, T == U,if T <: UandU <: T.

4.10. COMMON ANCESTORS OF TYPES 59

4.10 Common ancestors of types

There are several situations where X 10 must find a type T that describes values of
two or more different types. This arises when X10 is trying to find a good type
for:

e Conditional expressions, like test ? ® : "non-zero" or even
test 7 0 : 1;

e Array construction, like [®, "non-zero"] and [0,1];

e Functions with multiple returns, like

def f(a:Int) {
if (a == 0) return 0;
else return "non-zero";

}

In some cases, there is a unique best type describing the expression. For example,
if B and C are direct subclasses of A, pick will have return type A:

static def pick(t:Boolean, b:B, c:C) =t ? b : c;

However, in many common cases, there is no unique best type describing the
expression. For example, consider the expression F

b?20:1 // Call this expression F

The best type of 0 is Int{self==0}, and the best type of 1 is Int{self==1}.
Certainly £ could be given the type Int, or even Any, and that would describe all
possible results. However, we actually know more. Int{self != 2} is a better
description of the type of F/—certainly the result of £ can never be 2. Int{self
I= 2, self != 3} is an even better description; £ can’t be 3 either. We can
continue this process forever, adding integers which £ will definitely not return
and getting better and better approximations. (If the constraint sublanguage had
| |, we could give it the type Int{self == 0 || self == 1} , which would
be nearly perfect. But | | makes typechecking far more expensive, so it is ex-
cluded.) No X10 type is the best description of E; there is always a better one.

Similarly, consider two unrelated interfaces:

60

CHAPTER 4. TYPES

interface I1 {}
interface I2 {}
class A implements I1, I2 {}
class B implements I1, I2 {}
class C {
static def example(t:Boolean, a:A, b:B) =t ? a : b;
ks

I1 and I2 are both perfectly good descriptions of t ? a : b, but neither one is
better than the other, and there is no single X10 type which is better than both.
(Some languages have conjunctive types, and could say that the return type of
example was I1 && I2. This, too, complicates typechecking.)

So, when confronted with expressions like this, X10 computes some satisfactory
type for the expression, but not necessarily the best type. X10 provides certain
guarantees about the common type V{v} computed for T{t} and U{u}:

If T{t} == U{u}, then V{v} == T{t} == U{u}. So, if X10’s algorithm
produces an utterly untenable type fora ? b : c, and you want the result
to have type T{t}, you can (in the worst case) rewrite it to

a ?bas T{t} : c as T{t}

If T == U, then V == T == U. For example, X10 will compute the type
ofb ? 0 : 1as Int{c} for some constraint c—perhaps simply picking
Int{true}, viz., Int.

X10 preserves place information about GlobalRefs, because it is so im-
portant. If both t and u entail self.home==p, then v will also entail
self.home==p.

X10 similarly preserves nullity information. If t and u both entail x ==
null or x !'= null for some variable x, then v will also entail it as well.

The computed upper bound of function types with the same argument types
is found by computing the upper bound of the result types. If T = (T,

.oy Tp) = T’andU = (Ty, ..., T,) => U’,and V'’ is the computed
upper bound of T’ and U’, then the computed upper bound of T and U is
U= (Ty, ..., T,) => V’. (But, if the argument types are different, the

computed upper bound may be Any.)

4.11. FUNDAMENTAL TYPES 61

4.11 Fundamental types

Certain types are used in fundamental ways by X10.

4.11.1 The interface Any

It is quite convenient to have a type which all values are instances of; that is, a
supertype of all typesﬂ X10’s universal supertype is the interface Any.

package x10.lang;

public interface Any {
def toString():String;
def typeName():String;
def equals(Any) :Boolean;
def hashCode():Int;

}

Any provides a handful of essential methods that make sense and are useful for ev-
erything. a.toString () produces a string representation of a, and a. typeName ()
the string representation of its type; both are useful for debugging. a.equals(b)
is the programmer-overridable equality test, and a.hashCode () an integer useful
for hashing.

4.11.2 The class Object

The class x10.1lang.Object is the supertype of all classes. A variable of this
type can hold a reference to any object. Object implements Any.

4.12 Type inference

X10 v2.2 supports limited local type inference, permitting certain variable types
and return types to be elided. It is a static error if an omitted type cannot be
inferred or uniquely determined. Type inference does not consider coercions.

8Java, for one, suffers a number of inconveniences because some built-in types like int and
char aren’t subtypes of anything else.

62 CHAPTER 4. TYPES

4.12.1 Variable declarations

The type of a val variable declaration can be omitted if the declaration has an
initializer. The inferred type of the variable is the computed type of the initializer.
For example, val seven = 7; is identical to

val seven: Int{self==7} = 7;

Note that type inference gives the most precise X10 type, which might be more
specific than the type that a programmer would write.

Limitation: At the moment, var declarations may not have their types elided in
this way.

4.12.2 Return types

The return type of a method can be omitted if the method has a body (i.e., is
not abstract or native). The inferred return type is the computed type of
the body. In the following example, the return type inferred for isTriangle
is Boolean{self==false}

class Shape {
def isTriangle() = false;
ks

Note that, as with other type inference, methods are given the most specific type.
In many cases, this interferes with subtyping. For example, if one tried to write:

class Triangle extends Shape {
def isTriangle() = true;

}

the compiler would reject this program for attempting to override isTriangle ()
by a method with the wrong type, viz., Boolean{self==true}. In this case,
supply the type that is actually intended for isTriangle:

def isTriangle() : Boolean =false;
The return type of a closure can be omitted. The inferred return type is the com-
puted type of the body.

The return type of a constructor can be omitted if the constructor has a body.
The inferred return type is the enclosing class type with properties bound to the

4.12. TYPE INFERENCE 63

arguments in the constructor’s property statement, if any, or to the unconstrained
class type. For example, the Spot class has two constructors, the first of which
has inferred return type Spot{x==0} and the second of which has inferred return
type Spot{x==xx}.

class Spot(x:Int) {

def this() {property(0®);}

def this(xx: Int) { property(xx); }
}

A method or closure that has expression-free return statements (return; rather
than return e;) is said to return void. void is not a type; there are no void
values, nor can void be used as the argument of a generic type. However, void
takes the syntactic place of a type in a few contexts. A method returning void can
be specified by def m() :void, and similarly for a closure:

def m():void {return;}
val £ : O => void =) => {return;};

By a convenient abuse of language, void is sometimes lumped in with types; e.g.,
we may say “return type of a method” rather than the formally correct but rather
more awkward “return type of a method, or void”. Despite this informal usage,
void is not a type. For example, given

static def eval[T] (£f:O=>T):T = £Q;

The call eval [void] (£) does not typecheck; void is not a type and thus cannot
be used as a type argument. There is no way in X10 to write a generic function
which works with both functions which return a value and functions which do not.
In most cases, functions which have no sensible return value can be provided with
a dummy return value.

X10 preserves known information when computing return types. A constraint on
a method induces a corresponding constraint on its return type.

Example: In the following code, the type inferred for x is Numb{self.p==n,
n!=0, self!=null}. In particular, the conjunctn != 0 is preserved from the
castofnto Int{self '= 0}.

class Numb(p:Int){
static def dup(n:Int){n != 0} = new Numb(n);
public static def example(n:Int) {

64 CHAPTER 4. TYPES

val x = dup(n as Int{self != 0});
val y : Numb{self.p==n, n!=0, self!=null} = x;
}
}

4.12.3 Inferring Type Arguments

A call to a polymorphic method may omit the explicit type arguments. X10 will
compute a type from the types of the actual arguments.

(As an exception of sorts, it is an error if the method call provides no information
about a type parameter that must be inferred. For example, given the method
definition def m[T] () {. ..}, an invocation m() is considered a static error. The
compiler has no idea what T the programmer intends.)

Example: Consider the following method, which chooses one of its arguments.
(A more sophisticated one might sometimes choose the second argument, but that
does not matter for the sake of this example.)

static def choose[T](a: T, b: T): T = a;

The type argument T can always be supplied: choose[Int](1l, 2) picks an
integer, and choose[Any] (1, "yes") picks a value that might be an integer or
a string. However, the type argument can be elided. Suppose that Sub <: Super;
then the following compiles:

static def choose[T](a: T, b: T): T = a;
static val j : Any = choose("string", 1);
static val k : Super = choose(new Sub(), new Super());

The type parameter doesn’t need to be the type of a variable. It can be found
inside of the type of a variable; X10 can extract it.

Example: The first method below returns the first element of a one-dimensional
array. The type parameter T represents the type of the array’s elements. There is
no parameter of type T. There is one of type Array[T]{c}. When doing type
inference, X10 strips off the constraint {c} and the Array[...] type to get at the
T inside.

static def first[T](x:Array[T](1)) = x(0);
static def example() {

4.12. TYPE INFERENCE 65

val ss <: Array[String] = ["X10", "Scala", "Thorn"];
val sl = first(ss);
assert sl.equals("X10");

}

Sketch of X10 Type Inference for Method Calls

When the X10 compiler sees a method call
a.m(by, ...,b,)

and attempts to infer type parameters to see if it could be a use of a method

def m[Xy, ..., X, 1Cyi: Si, ..., ¥n:S,),

it reasons as follows.
Let
T; be the type of b;

Then, X10 is seeking a set B of type bindings
B:{ X1 = Ul,..., xt:Ut}

such that T; <: S7 for 1 < ¢ < n, where S* is S with each type variable X;
replaced by the corresponding U;. If it can find such a B, it has a usable choice of
type arguments and can do the type inference. If it cannot find B, then it cannot
do type inference. (Note that X10’s type inference algorithm is incomplete — there
may be such a B that X10 cannot find. If this occurs in your program, you will
have to write down the type arguments explicitly.)

Let By be the set {7; <: S;|1 < i < n}. Let B, be B, with one element
F <: Gor F = G removed, and Strip(F <: G) or Strip(F = G), where Strip is
defined below, added. Repeat this until B,, consists entirely of comparisons with
type variables (viz., Y; = U, Y; <: U, and Y; :> U), or until some n exceeds a
predefined compiler limit.

The candidate inferred types may be read off of B,,. The guessed binding for X;
is:

o If there is an equality X;=W in B, then guess the binding X;=W. Note that
there may be several such equalities with different choices of W; pick any

66 CHAPTER 4. TYPES

one. If the chosen binding does not equal the others, the candidate binding
will be rejected later and type inference will fail.

e Otherwise, if there is one or more upper bounds X; <: V. in B, guess the
binding X; = V., where V is the computed lower bound of all the V;’s.

e Otherwise, if there is one or more lower bounds R, <: X;, guess that X; =
R, , where R, is the computed upper bound of all the R;,’s.

If this does not yield a binding for some variable X;, then type inference fails.
Furthermore, if every variable X; is given a binding U;, but the bindings do not
work — that is, if a.m[Uy, ..., UJ(by, ...,b,) is not a well-typed call of
the original method def m[X;, ..., X;J(yi: S1, ..., ¥.:S,) — then type
inference also fails.

Computation of the Replacement Elements Given a type relation r of the
form F' <: G or F' = GG, we compute the set Strip(r) of replacement constraints.
There are a number of cases; we present only the interesting ones.

e If F has the form F'{c}, then Strip(r) is defined to be F’ = G if r is an
equality, or F’ <: G if r is a subtyping. That is, we erase type constraints.
Validity is not an issue at this point in the algorithm, as we check at the end
that the result is valid. Note that, if the equation had the form Z{c} = A, it
could be solved by either Z=A or by Z = A{c}. By dropping constraints in
this rule, we choose the former solution, which tends to give more general
types in results.

e Similarly, we drop constraints on GG as well.

e If F' has the form K[F;, ..., F.] and G has the form K[G;, ..., G.],
then Strip(r) has one type relation comparing each parameter of F' with the
corresponding one of G

Strip(r) = {F7 = Gi|1 <1 < k}

For example, the constraint List[X] = List[Y] induces the constraint
X=Y. List[X] <: List[Y] also induces the same constraint. The only
way that List [X] could be a subtype of List[Y] in X10 is if X=Y. List of
different types are incomparableﬂ

The situation would be more complex if X10 had covariant and contravariant types.

4.12. TYPE INFERENCE 67

e Other cases are fairly routine. E.g., if F'is a type-defined abbreviation, it
is expanded.

Example: Consider the program:

import x10.util.*;
class C1[C1, C2, C3]{}
class Example {
static def me[X1, X2](Cl[Int, X1, X2]) =
new Cl[X1, X2, Point](Q);
static def example() {
val a = new Cl[Int, Boolean, String](Q);
val b : Cl[Boolean, String, Point]
me[Boolean, String](a);
val ¢ : Cl[Boolean, String, Point]
me (a) ;

}
}

The method call for b has explicit type parameters. The call for c infers the
parameters. The computation starts with one equation, saying that the formal
parameter of me has to be able to accept the actual parameter a:

Cl[Int, Boolean, String] <: Cl[Int, X1, X2]

Note that both terms are C1 of three things. This is broken into three equations:
Int = Int

which is easy to satisfy,

X1 = Boolean

which suggests a possible value for X1, and

X2 = String
which suggests a value for X2. All of these equations are simple enough, so the
algorithm terminates.

Then, X10 confirms that the binding X1=Boolean, X2=String actually generates
a correct call, which it does.

Example: When there is no way to infer types correctly, the type inference
algorithm will fail. Consider the program:

68 CHAPTER 4. TYPES

public class Failsome {
static def fail[X](a:Array[X], b:Array[X]):void {}
public static def main(argv:Array[String] (1)) {

val aint : Array[Int] = [1,2,3];
val abool : Array[Boolean] = [true, false];
fail(aint, abool); // THIS IS WRONG

b

}

The type inference computation starts, as always, by insisting that the types of the
formals to fail are capable of accepting the actuals:

By = {Array[Int] <: Array[X], Array[Boolean] <: Array[X]}

Arbitrarily picking the first relation to Strip first, we get:

B, = {Int = X, Array[Boolean] <: Array[X] }

and then
By = {Int = X, Boolean = X }
(At this point it is clear to a human that B is inconsistent, but the algorithm’s

check comes a bit later.) By consists entirely of comparisons with type variables,
so the loop is over. Arbitrarily picking the first equality, it guesses the binding

B ={X = Int}.

In the validation step, it checks that
fail[Int] (aint, abool)
is a well-typed call to fail. Of course it is not; abool would have to be a value

of type Array[Int], which it is not. So type inference fails at this point. In this
case it is correct: there is no way to give a proper type to this program.m

10 1n particular, X=Any doesn’t work either. An Array[Int] is not an Array[Any] — and it
must not be, for you can put a boolean value into an Array[Any], but you cannot put a boolean
value into an Array[Int]. However, if the types of the arguments had simply been X rather than
Array[X], then type inference would correctly infer X=Any.

4.13. TYPE DEPENDENCIES 69

4.13 Type Dependencies

Type definitions may not be circular, in the sense that no type may be its own
supertype, nor may it be a container for a supertype. This forbids interfaces like
interface Loop extends Loop, andindirect self-references such as interface

A extends B.C where interface B extends A. The formal definition of
this is based on Java’s.

An entity type is a class, interface, or struct type.

Entity type E directly depends on entity type F' if F'is mentioned in the extends
or implements clause of I, either by itself or as a qualifier within a super-entity-
type name.

Example: In the following, A directly depends on B, C, D, E, and F. It does not
directly depend on G.

class A extends B.C implements D.E, F[G] {}

It is an ordinary programming idiom to use A as an argument to a generic interface
that A implements. For example, ComparableTo[T] describes things which can
be compared to a value of type T. Saying that A implements ComparableTo[A]
means that one A can be compared to another, which is reasonable and useful:

interface ComparableTo[T] {
def eq(T):Boolean;
3

class A implements ComparableTo[A] {
public def eq(other:A) = this.equals(other);

}

Entity type E depends on entity type F' if either £ directly depends on F', or
E directly depends on an entity type that depends on F'. That is, the relation
“depends on” is the transitive closure of the relation “directly depends on”.

It is a static error if any entity type £ depends on itself.

4.14 Typing of Variables and Expressions

Variable declarations, field declarations, and some other expressions introduce
constraints on their types. These extra constraints represent information that is

70 CHAPTER 4. TYPES

known at the point of declaration. They are used in deductions and type inference
later on — as indeed all constraints are, but the automatically-added constraints are
added because they are particularly useful.

Any variable declaration of the form
val x : A ...
results in declaring x to have the type A{self==x}, rather than simply A. (var
declarations get no such addition, because vars cannot appear in constraints.)
A field or property declaration of the form:
class A {

val £ : B
}

results in declaring f to be of type B{self==this.f}. And, if y has type A{c},
then the type for y. f has a constraint sel f==y . f, and, additionally, preserves the
information from c.

Example:

The following code uses a method typels[T] (X) to confirm, statically, that the
type of X is T (or a subtype of T).

On line (A) we confirm that the type of X has a self==x constraint. The error
line ('A) confirms that a different variable doesn’t have the self==x constraint.
(B) shows the extra information carried by a field’s type.

(C) shows the extra information carried by a field’s type when the object’s type
is constrained. Note that the constraint ExtraConstraint{self.n==8} on the
type of y has to be rewritten for y. £, since the constraint Long{self.n==8} is
not correct or even well-typed. In this case, the ExtraConstraint whose n-field
is 8 has the name y, so we can write the desired type with a conjunct y . n::S.E

Note that we use one of the extra constraints here — this reasoning requires the in-
formation that the type of y has the constraint self==y, so X10 can infer y .n==8

Tf y were an expression rather than a variable, there would be no good way to express its type
in X10’s type system. (The compiler has a more elaborate internal representation of types, not all
of which are expressible in X10 version 2.2.)

4.14. TYPING OF VARIABLES AND EXPRESSIONS 71

from self.n==8. This sort of inference is the reason why XI10 adds these con-
straints in the first place: without them, even the simplest data flows would be
beyond the ability of the type system to detect.

class Extra(n:Int) {
val f : Long;
def this(n:Int, f:Long) { property(n); this.f = f; }
static def typeIs[T](val x:T) {}
public static def main(argv:Array[String] (1)) {
val x : Extra = new Extra(l,2L);
typels[Extra{self==x}] x); // (A)
val nx: Extra = new Extra(l,2L);
// ERROR: typels[Extra{self==x}] (nx); //C1A)
typeIs[Long{self == x.f}] x.DH; //@B)
val y : Extra{self.n==8} = new Extra(8, 4L);
typeIs[Long{self == y.f, y.n == 8}] (y.f); //(O
}
ks

Once in a while, the additional information will interfere with other typechecking
or type inference. In this case, use as (§11.23) to erase it, using expressions like
X as A

Example: The following code creates a one-element array (§11.26)) containing
X

If the ERROR line were to be used, X10 would infer that the type of this array were
Array[T], where T is the type of x — that is, Array[Extra{self==x}]. [x] is
an array of xX’s, not an array of Extras. Since Array[Extra{self==x}] is not
a subtype of Array[Extral], the array [x] cannot be used in a place where an
Array[Extra] is called for.

The expression [x as Extra] uses a type cast to erase the automatically-added
extra information about Xx. x as Extra simply has type Extra, and thus [x as
Extra] is an Array[Extra] as desired.

class Extra {
static def useArray(Array[Extra]l]) {}
public static def main(argv:Array[String] (1)) {
val x : Extra = new Extra(Q);
//ERROR: useArray([x]);

72 CHAPTER 4. TYPES

useArray([x as Extral);

4.15 Limitations of Strict Typing

X10’s type checking provides substantial guarantees. In most cases, a program
that passes the X10 type checker will not have any runtime type errors. However,
there are a modest number of compromises with practicality in the type system:
places where a program can pass the typechecker and still have a type error.

1. As seen in generic types do not have constraint information at run-
time. This allows one to write code which violates constraints at runtime,
as seen in the example in that section.

2. The library type x10.util.IndexedMemoryChunk provides a low-level
interface to blocks of memory. A few methods on that class are not type-
safe. See the API if you must.

3. Custom serialization (§13.3.2) allows user code to construct new objects in
ways that can subvert the type system.

4. Code written to use the underlying Java or C++ (§18)) can break X10’s guar-
antees.

5 Variables

A variable is an X10 identifier associated with a value within some context. Vari-
able bindings have these essential properties:

e Type: What sorts of values can be bound to the identifier;

e Scope: The region of code in which the identifier is associated with the
entity;

e Lifetime: The interval of time in which the identifier is associated with the
entity.

e Visibility: Which parts of the program can read or manipulate the value
through the variable.

X10 has many varieties of variables, used for a number of purposes.

e Class variables, also known as the static fields of a class, which hold their
values for the lifetime of the class.

e Instance variables, which hold their values for the lifetime of an object;

e Array elements, which are not individually named and hold their values for
the lifetime of an array;

e Formal parameters to methods, functions, and constructors, which hold their
values for the duration of method (etc.) invocation;

e [ocal variables, which hold their values for the duration of execution of a
block.

73

74 CHAPTER 5. VARIABLES

e Exception-handler parameters, which hold their values for the execution of
the exception being handled.

A few other kinds of things are called variables for historical reasons; e.g., type
parameters are often called type variables, despite not being variables in this sense
because they do not refer to X10 values. Other named entities, such as classes and
methods, are not called variables. However, all name-to-whatever bindings enjoy
similar concepts of scope and visibility.

Example: [In the following example, n is an instance variable, and nxt is a local
variable defined within the method bump ||

class Counter {
private var n : Int = 0;
public def bump() : Int {
val nxt = n+1;

n = nxt;
return nxt;
3

}

Both variables have type Int (or perhaps something more specific). The scope of
n is the body of Counter; the scope of nxt is the body of bump. The lifetime of n
is the lifetime of the Counter object holding it; the lifetime of nxt is the duration
of the call to bump. Neither variable can be seen from outside of its scope.

Variables whose value may not be changed after initialization are said to be im-
mutable, or constants (§5.1]), or simply val variables. Variables whose value may
change are mutable or simply var variables. var variables are declared by the
var keyword. val variables may be declared by the val keyword; when a vari-
able declaration does not include either var or val, it is considered val.

A variable—even a val — can be declared in one statement, and then initialized
later on. It must be initialized before it can be used (§19)).

Example: The following example illustrates many of the variations on variable
declaration:

val a : Int = O; // Full ’val’ syntax
b : Int = 0; // ’val’ implied

I'This code is unnecessarily turgid for the sake of the example. One would generally write
public def bump() = ++n;.

5.1. IMMUTABLE VARIABLES 75

val ¢ = 0; // Type inferred

var d : Int = 0; // Full ’var’ syntax
var e : Int; // Not initialized
var £ : Int{self != 100} = 0; // Constrained type
val g : Int; // Init. deferred

if (a>b) g=1; else g 2; // Init. done here.

5.1 Immutable variables

LocVarDeclnStmt LocVarDecln ;

LocVarDecln ::= Mods’® VarKeyword VariableDeclrs
| Mods" VarDeclsWType
| Mods® VarKeyword FormalDeclrs

An immutable (val) variable can be given a value (by initialization or assign-
ment) at most once, and must be given a value before it is used. Usually this
is achieved by declaring and initializing the variable in a single statement, such
as val x = 3, with syntax using the VariableDeclarators or VarDelc-
sWType alternatives.

Example: After these declarations, a and b cannot be assigned to further, or
even redeclared:

val a : Int = 10;

val b = (a+1)*(a-1);

// ERROR: a = 11; // vals cannot be assigned to.
// ERROR: val a = 11; // no redeclaration.

In two special cases, the declaration and assignment are separate. One case is how
constructors give values to val fields of objects. In this case, production (20.105)
is taken, with the FormalDeclarators option, such as var n:Int;.

Example: The Example class has an immutable field n, which is given different
values depending on which constructor was called. n can’t be given its value by
initialization when it is declared, since it is not knowable which constructor is
called at that point.

class Example {
val n : Int; // not initialized here

20.106

20.105]

76 CHAPTER 5. VARIABLES

def this() { n = 1; }
def this(dummy:Boolean) { n = 2;}
ks

The other case of separating declaration and assignment is in function and method
call, described in The formal parameters are bound to the corresponding
actual parameters, but the binding does not happen until the function is called.

Example: [In the code below, x is initialized to 3 in the first call and 4 in the
second.

val sq = (x:Int) => x*X;
x10.i0.Console.OUT.println("3 squared
x10.i0.Console.OUT.println("4 squared

"+ sa(3));
"+ sq(4));

5.2 Initial values of variables

Every assignment, binding, or initialization to a variable of type T{c} must be an
instance of type T satisfying the constraint {c}. Variables must be given a value
before they are used. This may be done by initialization — giving a variable a value
as part of its declaration.

Example: These variables are all initialized:

val immut : Int = 3;
var mutab : Int = immut;
val use = immut + mutab;

Or, a variable may be given a value by an assignment. var variables may be
assigned to repeatedly. val variables may only be assigned once; the compiler
will ensure that they are assigned before they are used.

Example: The variables in the following example are given their initial values
by assignment. Note that they could not be used before those assignments, nor
could immu be assigned repeatedly.

var muta : Int;

// ERROR: println(muta);
muta = 4;

val use2A = muta * 10;

5.3. DESTRUCTURING SYNTAX 77

val immu : Int;

// ERROR: println(immu);
if (cointoss()) {immu
else {immu
val use2B = immu * 10;
// ERROR: immu = 5;

1;}
use2A;}

Every class variable must be initialized before it is read, through the execution of
an explicit initializer. Every instance variable must be initialized before it is read,
through the execution of an explicit or implicit initializer or a constructor. Implicit
initializers initialize vars to the default values of their types (§4.7). Variables of
types which do not have default values are not implicitly initialized.

Each method and constructor parameter is initialized to the corresponding argu-
ment value provided by the invoker of the method. An exception-handling param-
eter is initialized to the object thrown by the exception. A local variable must be
explicitly given a value by initialization or assignment, in a way that the compiler
can verify using the rules for definite assignment (§19).

5.3 Destructuring syntax

X10 permits a destructuring syntax for local variable declarations with explicit
initializers, and for formal parameters, of type Point, and Array, A
point is a sequence of zero or more Int-valued coordinates; an array is an indexed
collection of data. It is often useful to get at the coordinates or elements directly,
in variables.
VariableDeclr ::= Id HasResultType® = Variablelnitializer
| [IdList] HasResultType? = Variablelnitializer
| Id [IdList] HasResultType® = Variablelnitializer

The syntax val [a;, ..., a,] = e;, where e is a Point, declares n Int vari-
ables, bound to the precisely n components of the Point value of e; it is an error
if e is not a Point with precisely n components. The syntax val p[a;, ...,
a,] = e; is similar, but also declares the variable p to be of type Point (n).

The syntax val [a;, ..., a,] = e;, where e is an Array[T] for some type
T, declares n variables of type T, bound to the precisely n components of the
Array[T] value of e; it is an error if e is not a Array[T] with rank==1 and

20.178

78 CHAPTER 5. VARIABLES

size==n. The syntax val p[a;, ..., a,] = e; is similar, but also declares
the variable p to be of type Array[T] {rank==1,size==n}.

Example: The following code makes an anonymous point with one coordinate
11, and binds 1 to 11. Then it makes a point with coordinates 22 and 33, binds p
to that point, and j and k to 22 and 33 respectively.

val [i] : Point = Point.make(11);
assert i == 11;

val p[j,k] = Point.make(22,33);
assert j == 22 && k == 33;

val q[l,m] = [44,55] as Point;
assert 1 == 44 & & m == 55;
//ERROR: val [n] = p;

Destructuring is allowed wherever a Point or Array[T] variable is declared,
e.g., as the formal parameters of a method. Example: The methods below take
a single argument each: a three-element point for examplel, a three-element
array for example2. The argument itself is bound to x in both cases, and its
elements are bound to a, b, and c.

static def examplel(x[a,b,c]:Point){}
static def example2(x[a,b,c]:Array[String]{rank==1,size==3}){}

5.4 Formal parameters

Formal parameters are the variables which hold values transmitted into a method
or function. They are always declared with a type. (Type inference is not available,
because there is no single expression to deduce a type from.) The variable name
can be omitted if it is not to be used in the scope of the declaration, as in the type
of the method static def main(Array[String]) :void executed at the start
of a program that does not use its command-line arguments.

var and val behave just as they do for local variables, §5.5] In particular, the
following inc method is allowed, but, unlike some languages, does not increment
its actual parameter. inc(j) creates a new local variable i for the method call,
initializes i with the value of j, increments i, and then returns. j is never changed.

static def inc(var i:Int) { i += 1; }

5.5. LOCAL VARIABLES AND TYPE INFERENCE 79

static def example() {
var j : Int = 0;

assert j == 0;
inc(j);
assert j == 0;

5.5 Local variables and Type Inference

Local variables are declared in a limited scope, and, dynamically, keep their values
only for so long as the scope is being executed. They may be var or val. They
may have initializer expressions: var i:Int = 1; introduces a variable i and
initializes it to 1. If the variable is immutable (val) the type may be omitted and
inferred from the initializer type (§4.12).

The variable declaration val x:T=e; confirms that e’s value is of type T, and
then introduces the variable x with type T. For example, consider a class Tub with

a property p.

class Tub(p:Int){
def this(pp:Int):Tub{self.p==pp} {property(pp);}
def example() {
val t : Tub = new Tub(3);
}
3

produces a variable t of type Tub, even though the expression new Tub(3) pro-
duces a value of type Tub{self.p==3} — that is, a Tub whose p field is 3. This
can be inconvenient when the constraint information is required.

Including type information in variable declarations is generally good program-
ming practice: it explains to both the compiler and human readers something of
the intent of the variable. However, including types in val t:T=e can obliterate
helpful information. So, X10 allows a documentation type declaration, written

val t <: T = e

This has the same effect as val t = e, giving t the full type inferred from e; but
it also confirms statically that that type is at least T.

80 CHAPTER 5. VARIABLES

Example: The following gives t the type Tub{self.p==3} as desired. However,
a similar declaration with an inappropriate type will fail to compile.

val t <: Tub = new Tub(3);
// ERROR: val u <: Int = new Tub(3);

5.6 Fields

FieldDeclrs := FieldDeclr
| FieldDeclrs , FieldDeclr
FieldDecln ::= Mods’ VarKeyword FieldDeclrs ;
| Mods"® FieldDeclrs ;
FieldDeclr ::= Id HasResultType
| Id HasResultType® = Variablelnitializer
HasResultType ::= ResultType
| <: Dype
Mod = abstract
| Annotation
| atomic
| final
| native
| private
| protected
| public
| static
| transient
| clocked

Like most other kinds of variables in X10, the fields of an object can be either val
or var. val fields can be static (§8.2). Field declarations may have optional
initializer expressions, as for local variables, §5.5| var fields without an initializer
are initialized with the default value of their type. val fields without an initializer
must be initialized by each constructor.

For val fields, as for val local variables, the type may be omitted and inferred
from the initializer type (§4.12). var fields, like var local variables, must be
declared with a type.

0.69

E

)
S
o\

NS}
S
DN
Co

DO
S
Co
[

DO
S
~
~
W

6 Names and packages

6.1 Names

An X10 program consists largely of giving names to entities, and then manip-
ulating the entities by their names. The entities involved may be compile-time
constructs, like packages, types and classes, or run-time constructs, like numbers
and strings and objects.

X10 names can be simple names, which look like identifiers: vj, x10, AndSoOn.
Or, they can be qualified names, which are sequences of two or more identifiers
separated by dots: x10.lang.String, somePack.someType, a.b.c.d.e.f.
Some entities have only simple names; some have both simple and qualified
names.

Every declaration that introduces a name has a scope: the region of the program
in which the named entity can be referred to by a simple name. In some cases,
entities may be referred to by qualified names outside of their scope. E.g., a
public class C defined in package p can be referred to by the simple name C
inside of p, or by the qualified name p.C from anywhere.

Many sorts of entities have members. Packages have classes, structs, and inter-
faces as members. Those, in turn, have fields, methods, types, and so forth as
members. The member x of an entity named E (as a simple or qualified name) has
the name E. x; it may also have other names.

6.1.1 Shadowing

One declaration d may shadow another declaration d’ in part of the scope of d’, if
d and d’ declare variables with the same simple name n. When d shadows d’, a

81

82 CHAPTER 6. NAMES AND PACKAGES

use of n might refer to d’s n (unless some d” in turn shadows d), but will never
refer to d’’s n.

X10 has four namespaces:

e Types: for classes, interfaces, structs, and defined types.

e Values: for val- and var-bound variables; fields; and formal parameters of
all sorts.

e Methods: for methods of classes, interfaces, and structs.

e Packages: for packages.

A declaration d in one namespace, binding a name n to an entity e, shadows
all other declarations of that name n in scope at the point where d is declared.
This shadowing is in effect for the entire scope of d. Declarations in different
namespaces do not shadow each other. Thus, a local variable declaration may
shadow a field declaration, but not a class declaration.

Declarations which only introduce qualified names — in X10, this is only package
declarations — cannot shadow anything.

The rules for shadowing of imported names are given in

6.1.2 Hiding

Shadowing is ubiquituous in X10. Another, and considerably rarer, way that one
definition of a given simple name can render another definition of the same name
unavailable is hiding. If a class Super defines a field named x, and a subclass Sub
of Super also defines a field named x, and b:Sub, then b.x is Sub’s x field, not
Super’s. In this case, Super’s x is said to be hidden.

Hiding is technically different from shadowing, because hiding applies in more
circumstances: a use of class Sub, such as sub. x, may involve hiding of name x,
though it could not involve shadowing of x because x need not be declared as a
name at that point.

6.1. NAMES 83

6.1.3 Obscuring

The third way in which a definition of a simple name may become unavailable is
obscuring. This well-named concept says that, if n can be interpreted as two or
more of: a variable, a type, and a package, then it will be interpreted as a variable
if that is possible, or a type if it cannot be interpreted as a variable. In this case,
the unavailable interpretations are obscured.

Example: [In the example method of the following code, both a struct and a
local variable are named eg. Following the obscuring rules, the call eg.ow() in
the first assert uses the variable rather than the struct. As the second assert
demonstrates, the struct can be accessed through its fully-qualified name. Note
that none of this would have happened if the coder had followed the convention
that structs have capitalized names, Eg, and variables have lower-case ones, eg.

package obscuring;
struct eg {
static def ow()= 1;
static struct Bite {
def ow() = 2;
}
def example() {
val eg = Bite();
assert eg.ow() == 2;
assert obscuring.eg.ow() == 1;

}

Due to obscuring, it may be impossible to refer to a type or a package via a simple
name in some circumstances. Obscuring does not block qualified names.

6.1.4 Ambiguity and Disambiguation

Neither simple nor qualified names are necessarily unique. There can be, in gen-
eral, many entities that have the same name. This is perfectly ordinary, and, when
done well, considered good programming practice. Various forms of disambigua-
tion are used to tell which entity is meant by a given name; e.g., methods with the
same name may be disambiguated by the types of their arguments (§8.1T]).

84 CHAPTER 6. NAMES AND PACKAGES

Example: In the following example, there are three static methods with qual-
ified name DisambEx.Example.m; they can be disambiguated by their different
arguments. Inside the body of the third, the simple name i refers to both the Int
formal of m, and to the static method DisambEx.Example.i.

package DisambEx;
class Example {
static def m() = 1;
static def m(Boolean) = 2;
static def i() = 3;
static def m(i:Int) {
if (A > 10) {
return i) + 1;
}
return ij;
}
static def example() {
assert m() == 1;
assert m(true) == 2;
assert m(3) == 3;
assert m(20) == 4;

6.2 Access Control

X10 allows programmers access control, that is, the ability to determine statically
where identifiers of most sorts are visible. In particular, X10 allows information
hiding, wherein certain data can be accessed from only limited parts of the pro-
gram.

There are four access control modes: public , protected, private and un-
inflected package-specific scopes, much like those of Java. Most things can be
public or private; a few things (e.g., class members) can also be protected or
package-scoped.

Accessibility of one X10 entity (package, container, member, etc.) from within a
package or container is defined as follows:

6.2. ACCESS CONTROL 85

e Packages are always accessible.

e If a container C is public, and, if it is inside of another container D, container
D is accessible, then C is accessible.

e A member m of a container C is accessible from within another container E
if C is accessible, and:

— mis declared public; or
— Cis an interface; or

— mis declared protected, and either the access is from within the same
package that C is defined in, or from within the body of a subclass of
C (but see for some fine points); or

— m is declared private, and the access is from within the top-level
class which contains the definition of C — which may be C itself, or,
if C is a nested container, an outer class around C; or

— mhas no explicit class declaration (hence using the implicit “package”-
level access control), and the access occurs from the same package that
Cis declared in.

6.2.1 Details of protected

protected access has a few fine points. Within the body of a subclass D of the
class C containing the definition of a protected member m,

e Anaccess e.fldtoafield, ore.m(...) to amethod, is permitted precisely
when the type of e is either D or a subtype of D. For example, the access
to that. f in the following code is acceptable, but the access to xhax. f is
not.

class C {
protected var f : Int = 0;
}
class X extends C {}
class D extends C {
def usef(that:D, xhax:X) {
this.f += that.f;

86 CHAPTER 6. NAMES AND PACKAGES

// ERROR: this.f += xhax.f;
}
ks

Limitation: The X10 compiler improperly allows access to xhax — as,
indeed, some Java compilers do, despite Java having the analogous rule.
The compiler allows you to do everything the spec says and a bit more.

e An access through a qualified name Q.N is permitted precisely when the
type of Q is D or a subtype of D.

Qualified access to a protected constructor is subtle. Let C be a class with a
protected constructor ¢, and let S be the innermost class containing a use u
of c. There are three cases for u:

e Superclass construction invocations, super(...) or E.super(...), are
permitted.

e Anonymous class instance creations, of the forms new C(...){...} and
E.new C(...){...}, are permitted.

e No other accesses are permitted.

6.3 Packages

A package is a named collection of top-level type declarations, viz., class, inter-
face, and struct declarations. Package names are sequences of identifiers, like
x10.lang and com. ibm.museum. The multiple names are simply a convenience,
though there is a tenuous relationship between packages a, a.b, and a.c. Pack-
ages can be accessed by name from anywhere: a package may contain private
elements, but may not itself be private.

Packages and protection modifiers determine which top-level names can be used
where. Only the public members of package pack.age can be accessed outside
of pack.age itself.

package pack.age;
class Deal {
public def make() {}

6.4. IMPORT DECLARATIONS 87

3

public class Stimulus {
private def taxCut() = true;
protected def benefits() = true;
public def jobCreation() = true;
/*package*/ def jumpstart() = true;

ks

The class Stimulus can be referred to from anywhere outside of pack.age by its
full name of pack.age.Stimulus, or can be imported and referred to simply as
Stimulus. The public jobCreation() method of a Stimulus can be referred
to from anywhere as well; the other methods have smaller visibility. The non-
public class Deal cannot be used from outside of pack.age.

6.3.1 Name Collisions

It is a static error for a package to have two members with the same name. For
example, package pack.age cannot define two classes both named Crash, nor a
class and an interface with that name.

Furthermore, pack.age cannot define a member Crash if there is another pack-
age named pack.age.Crash, nor vice-versa. (This prohibition is the only actual
relationship between the two packages.) This prevents the ambiguity of whether
pack.age.Crash refers to the class or the package. Note that the naming con-
vention that package names are lower-case and package members are capitalized
prevents such collisions.

6.4 import Declarations

Any public member of a package can be referred to from anywhere through a
fully-qualified name: pack.age.Stimulus.

Often, this is too awkward. X10 has two ways to allow code outside of a class
to refer to the class by its short name (Stimulus): single-type imports and on-
demand imports.

Imports of either kind appear at the start of the file, immediately after the package
directive if there is one; their scope is the whole file.

88 CHAPTER 6. NAMES AND PACKAGES

6.4.1 Single-Type Import

The declaration import TypeName ; imports a single type into the current names-
pace. The type it imports must be a fully-qualified name of an extant type, and it
must either be in the same package (in which case the import is redundant) or be
declared public.

Furthermore, when importing pack.age. T, there must not be another type named
T at that point: neither a T declared in pack.age, nor a inst.ant.T imported
from some other package.

The declaration import E.n;, appearing in file f of a package named P, shadows
the following types named n when they appear in f:

e Top-level types named n appearing in other files of P, and

e Types named n imported by automatic imports (§6.4.2)) in f.

6.4.2 Automatic Import

The automatic import import pack.age.*;, loosely, imports all the public mem-
bers of pack.age. In fact, it does so somewhat carefully, avoiding certain errors
that could occur if it were done naively. Types defined in the current package, and
those imported by single-type imports, shadow those imported by automatic im-
ports. If two automatic imports provide the same short name n, it is an error to use
n — but it is not an error if no conflicting name is ever used. Names automatically
imported never shadow any other names.

6.4.3 Implicit Imports

The packages x10.1lang, x10.array are automatically imported in all files with-
out need for further specification. Furthermore, the public static members of the
class named _ in x10.1lang are imported everywhere as well. This provides a
number of aliases, such as Console and int for x10.i0.Console and Int.

6.5. CONVENTIONS ON TYPE NAMES 89

6.5 Conventions on Type Names

TypeName = Id
| TypeName . Id
PackageName ::= Id

| PackageName . Id

While not enforced by the compiler, classes and interfaces in the X10 library
follow the following naming conventions. Names of types—including classes,
type parameters, and types specified by type definitions—are in CamelCase and
begin with an uppercase letter. (Type variables are often single capital letters,
such as T.) For backward compatibility with languages such as C and Java, type
definitions are provided to allow primitive types such as int and boolean to be
written in lowercase. Names of methods, fields, value properties, and packages
are in camelCase and begin with a lowercase letter. Names of static val fields
are in all uppercase with words separated by _’s.

7 Interfaces

An interface specifies signatures for zero or more public methods, property meth-
ods, static vals, classes, structs, interfaces, types and an invariant.

The following puny example illustrates all these features:

interface Pushable{prio() != 0} {

}

def push(): void;

static val MAX_PRIO = 100;
abstract class Pushedness{}
struct Pushy{}

interface Pushing{}

static type Shove = Int;
property text():String;
property prio():Int;

class MessageButton(text:String)

}

implements Pushable{self.prio()==Pushable.MAX_PRIO} {
public def push() {

x10.i0.Console.OUT.println(text + " pushed");
}
public property text()
public property prio(Q)

text;
Pushable.MAX_PRIO;

Pushable defines two property methods, one normal method, and a static value.
It also establishes an invariant, that prio() != 0. MessageButton implements
a constrained version of Pushable, viz. one with maximum priority. It defines the
push() method given in the interface, as a public method—interface methods
are implicitly public.

90

91

Limitation: X10 may not always detect that type invariants of interfaces are
satisfied, even when they obviously are.

A container—a class or struct—can implement an interface, typically by having
all the methods and property methods that the interface requires, and by providing
a suitable implements clause in its definition.

A variable may be declared to be of interface type. Such a variable has all the
property and normal methods declared (directly or indirectly) by the interface;
nothing else is statically available. Values of any concrete type which implement
the interface may be stored in the variable.

Example: The following code puts two quite different objects into the variable
star, both of which satisfy the interface Star.

interface Star { def rise():void; }
class AlphaCentauri implements Star {
public def rise() {}
3
class ElvisPresley implements Star {
public def rise() {}
3
class Example {
static def example() {
var star : Star;
star = new AlphaCentauri(Q);
star.rise();
star = new ElvisPresley();
star.rise();

}

An interface may extend several interfaces, giving X10 a large fraction of the
power of multiple inheritance at a tiny fraction of the cost.

Example:

interface Star{}
interface Dog{}
class Sirius implements Dog, Star{}
class Lassie implements Dog, Star{}

92 CHAPTER 7. INTERFACES

7.1 Interface Syntax

InterfaceDecln = Mods’ interface Id TypeParamsl’ Properties’ Guard’
ExtendsInterfaces’ InterfaceBody

TypeParamsl ::= [TypeParamlList]
Guard ::= DepParams
ExtendslInterfaces := extends Type

| ExtendsInterfaces , Type
InterfaceBody = { InterfaceMemberDeclns? }
InterfaceMemberDecln ::= MethodDecln

| PropMethodDecln

| FieldDecln

| TypeDecln

The invariant associated with an interface is the conjunction of the invariants as-
sociated with its superinterfaces and the invariant defined at the interface.

A class Cimplements an interface I if I, or a subtype of I, appears in the implements
list of C. In this case, C implicitly gets all the methods and property methods of

I, as abstract public methods. If C does not declare them explicitly, then they
are abstract, and C must be abstract as well. If C does declare them all, C may
be concrete.

If C implements I, then the class invariant Ei for C, inv(C), implies the class
invariant for I, inv(I). That is, if the interface I specifies some requirement, then
every class C that implements it satisfies that requirement.

7.2 Access to Members

All interface members are public, whether or not they are declared public. There
is little purpose to non-public methods of an interface; they would specify that
implementing classes and structs have methods that cannot be seen.

7.3 Member Specification

An interface can specify that all containers implementing it must have certain
instance methods. It cannot require constructors or static methods, though.

20.96

20.171)

20.82

20.6)5|

20.9)5|

20.97

7.4. PROPERTY METHODS 93

Example: The Stat interface requires that its implementers provide an ick
method. It can’t insist that implementations provide a static method like meth, or
a nullary constructor.

interface Stat {
def ick():void;
// ERROR: static def meth():Int;
// ERROR: static def this(Q);
}
class Example implements Stat {
public def ick() {}
def example() {
this.ick(Q);
}
}

7.4 Property Methods

An interface may declare property methods. All non-abstract containers im-
plementing such an interface must provide all the property methods specified.

7.5 Field Definitions

An interface may declare a val field, with a value. This field is implicitly public
static val. In particular, it is not an instance field.

interface KnowsPi {
PI = 3.14159265358;

}

Classes and structs implementing such an interface get the interface’s fields as
public static fields. Unlike methods, there is no need for the implementing
class to declare them.

class Circle implements KnowsPi {
static def area(r:Double) = PI * r * r;

}

94 CHAPTER 7. INTERFACES

class UsesPi {
def circumf(r:Double) = 2 * r * KnowsPi.PI;

}

7.5.1 Fine Points of Fields

If two parent interfaces give different static fields of the same name, those fields
must be referred to by qualified names.

interface E1 {static val a 1;%
interface E2 {static val a = 2;}
interface E3 extends E1, E2{}
class Example implements E3 {
def example() = El.a + E2.a;

}

If the same field a is inherited through many paths, there is no need to disam-
biguate it:

interface Il1 { static val a = 1;}

interface I2 extends I1 {}

interface I3 extends I1 {}

interface I4 extends I2,I3 {}

class Example implements I4 {
def example() = a;

ks

The initializer of a field in an interface may be any expression. It is evaluated
under the same rules as a static field of a class.

Example: [In this example, a class TheOne is defined, with an inner interface
WelshOrFrench, whose field UN (named in either Welsh or French) has value
1. Note that WelshOrFrench does not define any methods, so it can be trivially
added to the implements clause of any class, as it is for Onesome. This al-
lows the body of Onesome to use UN through an unqualified name, as is done in
example().

class TheOne {
static val ONE = 1;
interface WelshOrFrench {

7.6. GENERIC INTERFACES 95

val UN = 1;

3

static class Onesome implements WelshOrFrench {
static def example() {

assert UN == ONE;

}

h

ks

7.6 Generic Interfaces

Interfaces, like classes and structs, can have type parameters. The discussion of
generics in applies to interfaces, without modification.

Example:

interface ListOfFuns[T,U] extends x10.util.List[(T)=>U] {}

7.7 Interface Inheritance

The direct superinterfaces of a non-generic interface I are the interfaces (if any)
mentioned in the extends clause of I’s definition. If I is generic, the direct
superinterfaces are of an instantiation of I are the corresponding instantiations of
those interfaces. A superinterface of I is either I itself, or a direct superinterface
of a superinterface of I, and similarly for generic interfaces.

T inherits the members of all of its superinterfaces. Any class or struct that has I
in its implements clause also implements all of I’s superinterfaces.

Classes and structs may be declared to implement multiple interfaces. Seman-
tically, the interface type is the set of all objects that are instances of classes or
structs that implement the interface. A class or struct implements an interface if
it is declared to and if it concretely or abstractly implements all the methods and
properties defined in the interface. For example, Kim implements Person, and
hence Named and Mobile. It would be a static error if Kim had no name method,
unless Kim were also declared abstract.

96 CHAPTER 7. INTERFACES

class Kim implements Person {
var pos : Int = 0;
public def name() = "Kim (" + pos + ")";
public def move(dPos:Int) { pos += dPos; }

7.8 Members of an Interface

The members of an interface I are the union of the following sets:

1. All of the members appearing in I’s declaration;

2. All the members of its direct super-interfaces, except those which are hidden

(§6.1.2) by I

3. The members of Any.

Overriding for instances is defined as for classes, §8.4.7

8 Classes

8.1 Principles of X10 Objects

8.1.1 Basic Design

Objects are instances of classes: the most common and most powerful sort of
value in X10. The other kinds of values, structs and functions, are more special-
ized, better in some circumstances but not in all. x10.1lang.Object is the most
general class; all other classes inherit from it, directly or indirectly.

Classes are structured in a single-inheritance code hierarchy. They may have any
or all of these features:

e Implementing any number of interfaces;

Static and instance val fields;

Instance var fields;

Static and instance methods;

Constructors;

Properties;

Static and instance nested containers.

Static type definitions

97

98 CHAPTER 8. CLASSES

X10 objects (unlike Java objects) do not have locks associated with them. Pro-
grammers may use atomic blocks (§14.7) for mutual exclusion and clocks (§I3))
for sequencing multiple parallel operations.

An object exists in a single location: the place that it was created. One place
cannot use or even directly refer to an object in a different place. A special type,
GlobalRef[T], allows explicit cross-place references.

The basic operations on objects are:

e Construction (§8.10). Objects are created, their var and val fields initial-
ized, and other invariants established.

e Field access (§11.4). The static, instance, and property fields of an object
can be retrieved; var fields can be set.

e Method invocation (§11.6). Static, instance, and property methods of an
object can be invoked.

e Casting (§11.22) and instance testing with instanceof (§11.24) Objects
can be cast or type-tested.

e The equality operators == and !=. Objects can be compared for equality
with the == operation. This checks object identity: two objects are == iff
they are the same object.

8.1.2 Class Declaration Syntax

The class declaration has a list of type parameters, a list of properties, a con-
straint (the class invariant), a single superclass, zero or more interfaces that it
implements, and a class body containing the the definition of fields, properties,
methods, and member types. Each such declaration introduces a class type (§4.2)).

8.2. FIELDS

ClassDecln

TypeParamsl
TypeParamlList

Properties
PropList

Prop

Guard

Super

Interfaces
InterfaceTypelList

ClassBody
ClassMemberDeclns

ClassMemberDecln

8.2 Fields

99

Mods® class Id TypeParamsIl’ Properties’ Guard® Super’
Interfaces’ ClassBody

[TypeParamlList]

TypeParam

TypeParamlList , TypeParam
TypeParamlList ,

(PropList)

Prop

PropList , Prop

Annotations’ Id ResultType

DepParams

extends ClassType

implements InterfaceTypeList

Type

InterfaceTypelList , Type

{ ClassMemberDeclns’ }
ClassMemberDecln
ClassMemberDeclns ClassMemberDecln
InterfaceMemberDecln

CtorDecln

Objects may have instance fields, or simply fields (called “instance variables” in
C++ and Smalltalk, and “slots” in CLOS): places to store data that is pertinent to
the object. Fields, like variables, may be mutable (var) or immutable (val).

Class may have static fields, which store data pertinent to the entire class of ob-
jects. See for more information. X10 does not permit mutable static state. A
fundamental principle of the X10 model of computation is that all mutable state be
local to some place (§13)), and, as static variables are globally available, they can-
not be mutable. When mutable global state is necessary, programmers should use
singleton classes, putting the state in an object and using place-shifting commands

(413.3)) and atomicity (§14.7)) as necessary to mutate it safely.

No two fields of the same class may have the same name. A field may have the
same name as a method, although for fields of functional type there is a subtlety

(§8.114).

20.34

20.171

20.168

100 CHAPTER 8. CLASSES

8.2.1 Field Initialization

Fields may be given values via field initialization expressions: val f£1 = E; and
var f2 : Int = F;. Other fields of this may be referenced, but only those
that precede the field being initialized.

Example: The following is correct, but would not be if the fields were reversed:

class F1ld{
val a = 1;
val b = 2+a;
}

8.2.2 Field hiding

A subclass that defines a field £ hides any field £ declared in a superclass, regard-
less of their types. The superclass field £ may be accessed within the body of the
subclass via the reference super. f.

With inner classes, it is occasionally necessary to write C1s.super. f to get at a
hidden field £ of an outer class Cls.

Example: The £ field in Sub hides the £ field in Super The superf method
provides access to the £ field in Super.

class Super{
public val f = 1;
ks
class Sub extends Super {
val f = true;
def superf() : Int = super.f; // 1
3

Example: Hidden fields of outer classes can be accessed by suitable forms:

class A {
val £ = 3;

3

class B extends A {
val f = 4;
class C extends B {

8.2. FIELDS 101

// C is both a subclass and inner class of B

val £ = 5;

def example() {
assert f == 5 : "field of C";
assert super.f == 4 : "field of superclass";
assert B.this.f == 4 : "field of outer instance";
assert B.super.f == : "super.f of outer instance";

ks

}

8.2.3 Field qualifiers

The behavior of a field may be changed by a field qualifier, such as static or
transient.

static qualifier

A val field may be declared to be static, as described in

transient Qualifier

A field may be declared to be transient. Transient fields are excluded from the
deep copying that happens when information is sent from place to place in an at
statement. The value of a transient field of a copied object is the default value of
its type, regardless of the value of the field in the original. If the type of a field has
no default value, it cannot be marked transient.

class Trans {
val copied = "copied";
transient var transy : String = "a very long string";
def example() {
at (here) { // causes copying of ’this’
assert(this.copied.equals("copied"));
assert(this.transy == null);

102 CHAPTER 8. CLASSES

8.3 Properties

The properties of an object (or struct) are a restricted form of public val ﬁelds
For example, every array has a rank telling how many subscripts it takes. User-
defined classes can have whatever properties are desired.

Properties differ from public val fields in a few ways:

1. Property references are allowed on self in constraints: self.prop. Field
references are not.

2. Properties are in scope for all instance initialization expressions. val fields
are not.

3. The graph of values reachable from a given object by following only prop-
erty links is acyclic. Conversely, it is possible (and routine) for two objects
to point to each other with val fields.

4. Properties are declared in the class header; val fields are defined in the class
body.

5. Properties are set in constructors by a property statement. val fields are
set by assignment.

Properties are defined in parentheses, after the name of the class. They are given
values by the property command in constructors.

Example: Proper has a single property, t. new Proper(4) creates a Proper
object with t==4.

class Proper(t:Int) {
def this(t:Int) {property(t);}
}

'In many cases, a val field can be upgraded to a property, which entails no compile-time or
runtime cost. Some cannot be, e.g., in cases where cyclic structures of val fields are required.

8.3. PROPERTIES 103

It is a static error for a class defining a property x: T to have a subclass class that
defines a property or a field with the name x.

A property x:T induces a field with the same name and type, as if defined with:

public val x : T;

Properties are initialized in a constructor by the invocation of a special property
statement. The requirement to use the property statement means that all proper-
ties must be given values at the same time: a container either has its properties or
it does not.

property(el,..., en);

The number and types of arguments to the property statement must match the
number and types of the properties in the class declaration, in order. Every con-
structor of a class with properties must invoke property(. . .) precisely once; it
is a static error if X10 cannot prove that this holds.

By construction, the graph whose nodes are values and whose edges are properties
is acyclic. E.g., there cannot be values a and b with properties ¢ and d such that
a.c == bandb.d == a.

Example:

class Proper(a:Int, b:String) {

def this(a:Int, b:String) {
property(a, b);

}

def this(z:Int) {
val theA = z+5;
val theB = "X"+z;
property(theA, theB);

}

static def example() {
val p = new Proper(l, "one");
assert p.a == 1 & p.b.equals("one");
val q = new Proper(10);
assert g.a == 15 && q.b.equals("X10");

104 CHAPTER 8. CLASSES

8.3.1 Properties and Field Initialization

Fields with explicit initializers are evaluated immediately after the property
command, and all properties are in scope when initializers are evaluated.

Example: Class Init initializes the field a to be an array of n elements, where
n is a property. When new Init(4) is executed, the constructor first sets n to 4
via the property statement, and then initializes a to a 4-element array.

However, Outit uses a field rather than a property for n. If the ERROR line were
present, it would not compile. n has not been definitely assigned (at this point,
and n has not been given its value, so a cannot be computed. (If one insisted that
n be a property, a would have to be initialized in the constructor, rather than by
an initialization expression.)

class Init(n:Int) {
val a = new Array[String](0..n, "");
def this(n:Int) { property(n); }
3
class Outit {
val n : Int;
//ERROR: val a = new Array[String](0..n, "");
def this(m:Int) { this.n = m; }
ks

8.3.2 Properties and Fields

A container with a property named p, or a nullary property method named p(),
cannot have a field named p — either defined in that container, or inherited from
a superclass.

8.3.3 Acyclicity of Properties

X10 has certain restrictions that, ultimately, require that properties are simpler
than their containers. For example, class A(a:A){} is not allowed. Formally,
this requirement is that there is a total order < on all classes and structs such that,
if A extends B, then A < B, and if A has a property of type B, then A < B,
where A < B means A < B and A # B. For example, the preceding class

8.4. METHODS 105

A is ruled out because we would need A<A, which violates the definition of <.
The programmer need not (and cannot) specify =<, and rarely need worry about its
existence.

Similarly, the type of a property may not simply be a type parameter. For example,
class A[X](x:X){} isillegal.

8.4 Methods

As is common in object-oriented languages, objects can have methods, of two
sorts. Static methods are functions, conceptually associated with a class and de-
fined in its namespace. Instance methods are parameterized code bodies associ-
ated with an instance of the class, which execute with convenient access to that
instance’s fields.

Each method has a signature, telling what arguments it accepts, what type it re-
turns, and what precondition it requires. Method definitions may be overridden
by subclasses; the overriding definition may have a declared return type that is a
subtype of the return type of the definition being overridden. Multiple methods
with the same name but different signatures may be provided on a class (called
“overloading” or “ad hoc polymorphism™). Methods may be declared public,
private, protected, or given default package-level access rights.

106

MethMods

MethodDecln

TypeParams
Formals
FormalList

HasResultType

MethodBody

BinOpDecln

PrefixOpDecln

ApplyOpDecln

ConversionOpDecln

A formal parameter may have a val or var modifier; val is the default. The body

CHAPTER 8. CLASSES

Mods®

MethMods property
MethMods Mod

MethMods def Id TypeParams’
HasResultType’ MethodBody
BinOpDecln

PrefixOpDecln
ApplyOpDecin

SetOpDecln
ConversionOpDecln

[TypeParamlList]

(FormalList’)

Formal

FormalList , Formal
ResultType

<: Type

= LastExp ;

= Annotations’ { BlockStmts’ LastExp }

= Annotations’ Block
Annotations’ Block

MethMods operator TypeParams’ (Formal) BinOp (For-

Formals

mal) Guard® HasResultType® MethodBody
MethMods operator TypeParams’® this BinOp (Formal)

Guard® HasResultType® MethodBody

MethMods operator TypeParams’ (Formal) BinOp this

Guard’ HasResultType’ MethodBody

Guard’

MethMods operator TypeParams® PrefixOp (Formal)

Guard® HasResultType® MethodBody

MethMods operator TypeParams® PrefixOp this Guard’

HasResultType’ MethodBody

MethMods operator this TypeParams’ Formals Guard’

HasResultType® MethodBody
ExplConvOpDecin
ImplConvOpDecln

20.110

20.112

20.1 76|)

20.79

20.78

[N}
S
Co
[

20.111

20.24,

20.131

8.4. METHODS 107

of the method is executed in an environment in which each formal parameter cor-
responds to a local variable (var iff the formal parameter is var) and is initialized
with the value of the actual parameter.

8.4.1 Forms of Method Definition

There are several syntactic forms for definining methods. The forms that include
a block, such as def m() {S}, allow an arbitrary block. These forms can define a
void method, which does not return a value.

The forms that include an expression, such as def m()=E, require a syntactically
and semantically valid expression. These forms cannot define a void method,
because expressions cannot be void.

There are no other semantic differences between the two forms.

8.4.2 Method Return Types

A method with an explicit return type returns that type. A method without an
explicit return type is given a return type by type inference. A call to a method
has type given by substituting information about the actual val parameters for the
formals.

Example:

In the example below, metl has an explicit return type Ret{n==a}. met2 does
not, so its return type is computed, also to be Ret{n==a}, because that’s what the
implicitly-defined constructor returns.

use3 requires that its argument have n==3. example shows that both metl and
met2 can be used to produce such an object. In both cases, the actual argument
3 is substituted for the formal argument a in the return type expression for the
method Ret{n==a}, giving the type Ret{n==3} as required by use3.

class Ret(n:Int) {
static def metl(a:Int) : Ret{n==a}
static def met2(a:Int)
static def use3(Ret{n==3}) {}
static def example() {
use3(metl1(3));

new Ret(a);
new Ret(a);

108 CHAPTER 8. CLASSES

use3(met2(3));

8.4.3 Final Methods

An instance method may be given the final qualifier. final methods may not
be overridden.

8.4.4 Generic Instance Methods

Limitation: In X10, an instance method may be generic:

class Example {
def example[T](t:T) = "I like " + t;
}

However, the C++ back end does not currently support generic virtual instance
methods like example. It does allow generic instance methods which are final
or private, and it does allow generic static methods.

8.4.5 Method Guards

Often, a method will only make sense to invoke under certain statically-determinable
conditions. These conditions may be expressed as a guard on the method.

Example: For example, example (x) is only well-defined when x '= null, as
null.toString() throws a null pointer exception, and returns nothing:

class Example {
var £ : String = "";
def setF(x:0bject){x != null} : void = {
this.f = x.toString(Q);
}

8.4. METHODS 109

(We could have used a constrained type Object{self!=null} for x instead;
in most cases it is a matter of personal preference or convenience of expression
which one to use.)

The requirement of having a method guard is that callers must demonstrate to
the X10 compiler that the guard is satisfied. With the STATIC_CHECKS compiler
option in force (§C.0.4), this is checked at compile time. As usual with static con-
straint checking, there is no runtime cost. Indeed, this code can be more efficient
than usual, as it is statically provable that x != null.

When STATIC_CHECKS is not in force, dynamic checks are generated as needed;
method guards are checked at runtime. This is potentially more expensive, but
may be more convenient.

Example: The following code fragment contains a line which will not compile
with STATIC_CHECKS on (assuming the guarded example method above). (X10’s
type system does not attempt to propagate information from ifs.) It will compile
with STATIC_CHECKS off, but it may insert an extra null-test for x.

def exam(e:Example, x:0Object) {
if x !'= null)
e.example(x as Object{x != null});
// If STATIC_CHECKS is in force:
// ERROR: if (x != null) e.example(x);
}

The guard {c} in a guarded method def m(){c} = E; specifies a constraint c
on the properties of the class C on which the method is being defined. The method,
in effect, only exists for those instances of C which satisfy c. It is illegal for code
to invoke the method on objects whose static type is not a subtype of C{c}.

Specifically: the compiler checks that every method invocation o.m(e;, ...,
e,) is type correct. Each argument e; must have a static type S; that is a subtype
of the declared type T; for the ith argument of the method, and the conjunction
of the constraints on the static types of the arguments must entail the guard in the
parameter list of the method.

The compiler checks that in every method invocationo.m(e;, ..., e,) the static
type of o, S, is a subtype of C{c}, where the method is defined in class C and the
guard for m is equivalent to c.

Finally, if the declared return type of the method is D{d}, the return type com-
puted for the call is D{a: S; x;: Sy; ...; X,: S,; d[a/this]}, where a is

110 CHAPTER 8. CLASSES

a new variable that does not occurind, S, S;, ..., S,,and Xy, ..., X, are
the formal parameters of the method.

Limitation: Using a reference to an outer class, Outer. this, in a constraint, is
not supported.

8.4.6 Property methods

PropMethodDecln ::= MethMods Id TypeParams’ Formals Guard® HasResultType®

MethodBody
| MethMods Id Guard® HasResultType’ MethodBody

Property methods are methods that can be evaluated in constraints, as properties
can. They provide a means of abstraction over properties; e.g., interfaces can
specify property methods that implementing containers must provide, but, just as
they cannot specify ordinary fields, they cannot specify property fields. Property
methods are very limited in computing power: they must obey the same restric-
tions as constraint expressions. In particular, they cannot have side effects, or even
much code in their bodies.

Example: The eq() method below tells if the x and y properties are equal; the
is(z) method tells if they are both equal to z. The eq and is property methods
are used in types in the example method.

class Example(x:Int, y:Int) {

def this(x:Int, y:Int) { property(x,y); }

property eq() = (x==y);

property is(z:Int) = x==z && y==z;

def example(a : Example{eq()}, b : Example{is(3)}) {}
3

A property method declared in a class must have a body and must not be void.
The body of the method must consist of only a single return statement with an
expression, or a single expression. It is a static error if the expression cannot
be represented in the constraint system. Property methods may be abstract in
abstract classes, and may be specified in interfaces, but are implicitly final in
non-abstract classes.

The expression may contain invocations of other property methods. The compiler
ensures that there are no circularities in property methods, so property method
evaluations always terminate.

20.135

8.4. METHODS 111

Property methods in classes are implicitly final; they cannot be overridden. It is
a static error if a superclass has a property method with a given signature, and a
subclass has a method or property method with the same signature. It is a static
error if a superclass has a property with some name p, and a subclass has a nullary
method of any kind (instance, static, or property) also named p.

A nullary property method definition may omit the def keyword. That is, the
following are equivalent:

property def rail(): Boolean =
rect & & onePlace == here && zeroBased;

and
property rail(): Boolean =
rect && onePlace == here && zeroBased;

Similarly, nullary property methods can be inspected in constraints without ().
If ob’s type has a property p, then ob.p is that property. Otherwise, if it has a
nullary property method p(), ob.p is equivalent to ob.p(). As a consequence, if
the type provides both a property p and a nullary method p(), then the property
can be accessed as ob.p and the method as ob.p() E]

w.rail, with either definition above, is equivalent to w.rail)

Limitation of Property Methods

Limitation: Currently, X10 forbids the use of property methods which have all
the following features:

e they are abstract, and
e they have one or more arguments, and

e they appear as subterms in constraints.

2This only applies to nullary property methods, not nullary instance methods. Nullary property
methods perform limited computations, have no side effects, and always return the same value,
since they have to be expressed in the constraint sublanguage. In this sense, a nullary property
method does not behave hugely different from a property. Indeed, a compilation scheme which
cached the value of the property method would all but erase the distinction. Other methods may
have more behavior, e.g., side effects, so we keep the () to make it clear that a method call is
potentially large.

112 CHAPTER 8. CLASSES

Any two of these features may be combined, but the three together may not be.

Example: The constraint in examplel is concrete, not abstract. The constraint
in example?2 is nullary, and has no arguments. The constraint in example3 ap-
pears at the top level, rather than as a subterm (cf. the equality expressions A==B
in the other examples). However, example4 combines all three features, and is
not allowed.

class Cls {
property concrete(a:Int) = 7;

ks

interface Inf {
property nullary(): Int;
property topLevel(z:Int):Boolean;
property allThree(z:Int):Int;

ks

class Example{
def examplel(Cls{self.concrete(3)==7})
def example2(Inf{self.nullary()==7})
def example3(Inf{self.topLevel(3)})
//ERROR: def example4(Inf{self.allThree(3)==7}) = "fails";

1;
2;
3.

8.4.7 Method overloading, overriding, hiding, shadowing and
obscuring

The definitions of method overloading, overriding, hiding, shadowing and ob-
scuring in X10 are familiar from languages such as Java, modulo the following
considerations motivated by type parameters and dependent types.

Two or more methods of a class or interface may have the same name if they have
a different number of type parameters, or they have formal parameters of different
constraint-erased types (in some instantiation of the generic parameters).

Example: The following overloading of m is unproblematic.

class Mful{
def m(OO = 1;
def m[T]10O

= 2,
def m(x:Int) =

3;

8.4. METHODS 113

def m[T](x:Int) = 4;
}

A class definition may include methods which are ambiguous in some generic
instantiation. (It is a compile-time error if the methods are ambiguous in every
generic instantiation, but excluding class definitions which are are ambiguous in
some instantiation would exclude useful cases.) It is a compile-time error to use
an ambiguous method call.

Example: The following class definition is acceptable. However, the marked
method calls are ambiguous, and hence not acceptable.

class Two[T,U]{
def m(x:T)=1;
def m(x:Int)=2;
def m[X](x:X)=3;
def m(x:U)=4;
static def example() {
val t12 = new Two[Int, Any]Q);
// ERROR: t12.m(2);
val t13 = new Two[String, Any](Q);
t13.m("ferret");
val tl14 = new Two[Boolean,Boolean]();
// ERROR: tl4.m(true);
3
ks

The call t12.m(2) could refer to either the 1 or 2 definition of m, so it is not
allowed. The call 114 .m(true) could refer to either the 1 or 4 definition, so it
too, is not allowed.

The call t13.m("ferret") refers only to the 1 definition. If the 1 definition were
absent, type argument inference would make it refer to the 3 definition. However,
X10 will choose a fully-specified call if there is one, before trying type inference,
so this call unambiguously refers to 1.

X10 v2.2 does not permit overloading based on constraints. That is, the following
is not legal, although either method definition individually is legal:

def n(x:Int){x==1} = "one";
def n(x:Int){x!=1} = "not";

114 CHAPTER 8. CLASSES

The definition of a method declaration m; “having the same signature as” a method
declaration my involves identity of types.

The constraint erasure of a type T, ce(T), is obtained by removing all the con-
straints outside of functions in T, specificially:

ce(T) = TifTis a container or interface (8.1)

ce(T{c}) = ce(T) (8.2)
ce(T[S,...,S,]) = ce(T)[ce(Sq1),. .. ,ce(Sn)] (8.3)
ce((Sy, .-+,) >T) = (ce(S1),...,ce(Sn)) =>ce(T) (8.4)

Two methods are said to have erasedly equivalent signatures if (a) they have the
same number of type parameters, (b) they have the same number of formal (value)
parameters, and (c) for each formal parameter the constraint erasure of its types
are erasedly equivalent. It is a compile-time error for there to be two methods with
the same name and erasedly equivalent signatures in a class (either defined in that
class or in a superclass), unless the signatures are identical (without erasures)
and one of the methods is defined in a superclass (in which case the superclass’s
method is overridden by the subclass’s, and the subclass’s method’s return type
must be a subtype of the superclass’s method’s return type).

In addition, the guard of an overridden method must entail the guard of the over-
riding method. This ensures that any virtual call to the method satisfies the guard
of the callee.

Example: [In the following example, the call to s.recip(3) in example () will
invoke Sub.recip(n). The call is legitimate because Super.recip’s guard, n

= 0, is satisfied by 3. The guard on Sub.recip(n) is simply true, which
is also satisfied. However, if we had used the ERROR line’s definition, the guard
on Sub.recip(n) would be n '= 0, n != 3, which is not satisfied by 3, so
— despite the call statically type-checking — at runtime the call would violate its
guard and (in this case) throw an exception.

class Super {
def recip(n:Int){n != 0} = 1.0/n;

ks

class Sub extends Super{
//ERROR: def recip(n:Int){n != 0, n != 3} = 1.0/(n * (n-3));
def recip(m:Int){true} = 1.0/m;

}

8.5. CONSTRUCTORS 115

class Example{
static def example() {
val s : Super = new Sub();
s.recip(3);
b
3

If a class C overrides a method of a class or interface B, the guard of the method
in B must entail the guard of the method in C.

A class C inherits from its direct superclass and superinterfaces all their methods
visible according to the access modifiers of the superclass/superinterfaces that are
not hidden or overridden. A method M; in a class C overrides a method M, in a su-
perclass D if M; and M, have erasedly equivalent signatures. Methods are overriden
on a signature-by-signature basis. It is a compile-time error if an instance method
overrides a static method. (But is it permitted for an instance field to hide a static
field; that’s hiding (§8.2.2)), not overriding, and hence totally different.)

8.5 Constructors

Instances of classes are created by the new expression:
ObCreationExp = new TypeName TypeArgs® (ArgumentList’) ClassBody’ 20.120
| Primary . new Id TypeArgs’ (ArgumentList’) ClassBody’
| FullyQualifiedName . new Id TypeArgs’ (ArgumentList®)
ClassBody’

This constructs a new object, and calls some code, called a constructor, to initial-
ize the newly-created object properly.

Constructors are defined like methods, except that they must be named this and
ordinary methods may not be. The content of a constructor body has certain ca-
pabilities (e.g., val fields of the object may be initialized) and certain restrictions
(e.g., most methods cannot be called); see for the details.

Example:

The following class provides two constructors. The unary constructor def this(b

: Int) allows initialization of the a field to an arbitrary value. The nullary
constructor def this() gives it a default value of 10. The example method
illustrates both of these calls.

116 CHAPTER 8. CLASSES

class C {
public val a : Int;
def this(b : Int) { a
def this(Q { a
static def example() {
val two = new C(2);

b; }
10; 1}

assert two.a == 2;
val ten = new CQ);
assert ten.a == 10;
}
3

8.5.1 Automatic Generation of Constructors

Classes that have no constructors written in the class declaration are automatically
given a constructor which sets the class properties and does nothing else. If this
automatically-generated constructor is not valid (e.g., if the class has val fields
that need to be initialized in a constructor), the class has no constructor, which is
a static error.

Example: The following class has no explicit constructor. Its implicit construc-
torisdef this(x:Int){property(x);} Thisimplicit constructor is valid, and
so is the class.

class C(x:Int) {
static def example() {
val ¢ : C = new C(4);
assert c.x == 4;
}
ks

The following class has the same default constructor. However, that constructor
does not initialize d, and thus is invalid. This class does not compile; it needs an
explicit constructor.

// THIS CODE DOES NOT COMPILE
class Cfail(x:Int) {

val d: Int;

static def example() {

8.5. CONSTRUCTORS 117

val wrong = new Cfail(40);
}
}

8.5.2 Calling Other Constructors

The first statement of a constructor body may be a call of the form this(a,b,c)
or super(a,b,c). The former will execute the body of the matching construc-
tor of the current class; the latter, of the superclass. This allows a measure of
abstraction in constructor definitions; one may be defined in terms of another.

Example: The following class has two constructors. new Ctors(123) con-
structs a new Ctors object with parameter 123. new Ctors() constructs one
whose parameter has a default value of 100:

class Ctors {
public val a : Int;
def this(a:Int) { this.a = a; }
def this(Q { this(160); 1}
3

In the case of a class which implements operator () — or any other constructor
and application with the same signature — this can be ambiguous. If this()
appears as the first statement of a constructor body, it could, in principle, mean
either a constructor call or an operator evaluation. This ambiguity is resolved so
that this() always means the constructor invocation. If, for some reason, it is
necessary to invoke an application operator as the first meaningful statement of a
constructor, write the target of the application as (this), e.g., (this) (a,b);.

8.5.3 Return Type of Constructor

A constructor for class C may have a return type C{c}. The return type specifies a
constraint on the kind of object returned. It cannot change its class — a construc-
tor for class C always returns an instance of class C. If no explicit return type is
specified, the constructor’s return type is inferred.

Example: The constructor (A) below, having no explicit return type, has its
return type inferred. n is set by the property statement to 1, so the return type is

118 CHAPTER 8. CLASSES

inferred as Ret{self.n==1}. The constructor (B) has Ret{n==self.n} asan
explicit return type. The example () code shows both of these in action.

class Ret(n:Int) {

def thisQ { property(1); 1} // (A)

def this(n:Int) : Ret{n==self.n} { // (B)
property(n);

}

static def typeIs[T](x:T){}

static def example() {
typeIs[Ret{self.n==1}] (new Ret()); // uses (A)
typeIs[Ret{self.n==3}](new Ret(3)); // uses (B)

}

8.6 Static initialization

The X10 runtime implements the following procedure to ensure reliable initial-
ization of the static state of classes.

Execution (of an entire X10 program) commences with a single thread execut-
ing the initialization phase of an X10 computation at place 0. This phase must
complete successfully before the body of the main method is executed.

The initialization phase should be thought of as if it is implemented in the follow-
ing fashion. (The implementation may do something more efficient as long as it
is faithful to this semantics.)
finish
for every static field f of every class C
(with type T and initializer e):
async {
val 1 = e;
ateach (Dist.makeUnique()) {
assign 1 to the static f field of
the local C class object;
mark the f field of the local C
class object as initialized;

8.7. USER-DEFINED OPERATORS 119

}

During this phase, any read of a static field C. £ (where f is of type T) is replaced
by a call to the method C.read_£() : T defined on class C as follows

def read_f(Q:T {
when (initialized(C.£)){};
return C.f;

}

If all these activities terminate normally, all static fields have values of their de-
clared types, and the £inish terminates normally. If any activity throws an excep-
tion, the finish throws an exception. Since no user code is executing which can
catch exceptions thrown by the finish, such exceptions are printed on the console,
and computation aborts.

If the activities deadlock, the implementation deadlocks.

In all cases, the main method is executed only once all static fields have been
initialized correctly.

Since static state is immutable and is replicated to all places via the initialization
phase as described above, it can be accessed from any place.

8.7 User-Defined Operators

MethodDecln ::= MethMods def Id TypeParams’ Formals Guard’
HasResultType® MethodBody
| BinOpDecln
| PrefixOpDecln
| ApplyOpDecin
| SetOpDecin
| ConversionOpDecln

It is often convenient to have methods named by symbols rather than words. For
example, suppose that we wish to define a Poly class of polynomials — for the sake
of illustration, single-variable polynomials with Int coefficients. It would be very
nice to be able to manipulate these polynomials by the usual operations: + to add,
* to multiply, - to subtract, and p(x) to compute the value of the polynomial at
argument x. We would like to write code thus:

20.112

120 CHAPTER 8. CLASSES

public static def main(Array[String] (1)) :void {
val X = new Poly([0,1]);
val t <: Poly =7 * X + 6 * X * X * X;
val u <: Poly = 3 + 5*%X - 7*X*X;
val v <: Poly t*u-1;
for(i in -3 .. 3) {
x10.i0.Console.OUT.println(
" i+ " X"+ X@) + "ot o+ ()

+ u:" + u(i) + v:" + v(i)

);

}

Writing the same code with method calls, while possible, is far less elegant:

public static def uglymain() {
val X = new UglyPoly([0,1]);
val t <: UglyPoly
X.mult(7) .plus(
X.mult(X) .mult(X).mult(6));
val u <: UglyPoly
const(3).plus(
X.mult(5)) . minus(X.mult(X) .mult(7));
val v <: UglyPoly = t.mult(u).minus(1l);
for(i in -3 .. 3) {
x10.i0.Console.OUT.println(
" i o+ " X"+ X.oapply@) + " t:" + t.apply(i)
+ " u:" + u.apply(i) + " v:" + v.apply(i)
);

}
The operator-using code can be written in X10, though a few variations are nec-
essary to handle such exotic cases as 1+X.

Most X 10 operators can be given deﬁnitions (However, & and | | are only short-
circuiting for Boolean expressions; user-defined versions of these operators have

3Indeed, even for the standard types, these operators are defined in the library. Not even as
basic an operation as integer addition is built into the language. Conversely, if you define a full-
featured numeric type, it will have most of the privileges that the standard ones enjoy. The missing

8.7. USER-DEFINED OPERATORS 121

no special execution behavior.)

The user-definable operations are (in order of precedence):
implicit type coercions

postfix ()
as T
these unary operators: - + ! 7 | & / 7 * %
/ % *%
+ —_
<< >> >>> -> <- >- -< !
> >= < <= - 1~
I
&&

Several of these operators have no standard meaning on any library type, and are
included purely for programmer convenience.

Many operators may be defined either in static or instance forms. Those defined
in instance form are dynamically dispatched, just like an instance method. Those
defined in static form are statically dispatched, just like a static method. Operators
are scoped like methods; static operators are scoped like static methods.

Example:

static class Trace(n:Int){
public static operator !(f:Trace)
= new Trace(10 * f.n + 1);
public operator -this = new Trace (10 * this.n + 2);
ks

static class Brace extends Trace{

priveleges are (1) literals; (2) the . . operator won’t compute the zeroBased and rail properties
as it does for Int ranges; (3) * won’t track ranks, as it does for Regions; (4) & and || won’t
short-circuit, as they do for Booleans, (5) the built-in notion of equality a==b will only coincide
with the programmible notion a.equals(b), as they do for most library types, if coded that way;
and (6) it is impossible to define an operation like String.+ which converts both its left and right
arguments from any type. For example, a Polar type might have many representations for the
origin, as radius O and any angle; these will be equals(), but will not be ==; whereas for the
standard Complex type, the two equalities are the same.

122 CHAPTER 8. CLASSES

def this(n:Int) { super(n); }
public operator -this = new Brace (10 * this.n + 3);
static def example() {

val t = new Trace(l);

assert (!t).n == 11;

assert (-t).n == 12 && (-t instanceof Trace);

val b = new Brace(l);

assert (!b).n == 11;

assert (-b).n == 13 & & (-b instanceof Brace);

8.7.1 Binary Operators

Binary operators, illustrated by +, may be defined statically in a container A as:

static operator (b:B) + (c:Q) = ...;

Or, it may be defined as as an instance operator by one of the forms:

operator this + (b:B) = ...;
operator (b:B) + this -

Example:

Defining the sum P+Q of two polynomials looks much like a method definition. It

uses the operator keyword instead of def, and this appears in the definition in

the place that a Poly would appear in a use of the operator. So, operator this
+ (p:Poly) explains how to add this to a Poly value.

class Poly {

public val coeff : Array[Int](1l);

public def this(coeff: Array[Int] (1)) {
this.coeff = coeff;}

public def degree() = coeff.size-1;

public def a(i:Int)
= (i<® || i>this.degree()) ? 0 : coeff(i);

public operator this + (p:Poly) = new Poly(
new Array[Int](

Math.max(this.coeff.size, p.coeff.size),

8.7. USER-DEFINED OPERATORS 123

(i:Int) => this.a(i) + p.a(i)
D)
// ...

The sum of a polynomial and an integer, P+3, looks like an overloaded method
definition.

public operator this + (n : Int)
= new Poly([n as Int]) + this;

However, we want to allow the sum of an integer and a polynomial as well: 3+P.
It would be quite inconvenient to have to define this as a method on Int; changing
Int is far outside of normal coding. So, we allow it as a method on Poly as well.

public operator (n : Int) + this
= new Poly([n as Int]) + this;

Furthermore, it is sometimes convenient to express a binary operation as a static
method on a class. The definition for the sum of two Polys could have been
written:

public static operator (p:Poly) + (q:Poly) = new Poly(
new Array[Int](
Math.max(q.coeff.size, p.coeff.size),
(i:Int) => g.a(i) + p.a(i)
));

When X10 attempts to typecheck a binary operator expression like P+Q, it first
typechecks P and Q. Then, it looks for operator declarations for + in the types of
P and Q. If there are none, it is a static error. If there is precisely one, that one will
be used. If there are several, X10 looks for a best-matching operation, viz. one
which does not require the operands to be converted to another type. For example,
operator this + (n:Long) and operator this + (n:Int) both apply to
p+1, because 1 can be converted from an Int to a Long. However, the Int version
will be chosen because it does not require a conversion. If even the best-matching
operation is not uniquely determined, the compiler will report a static error.

8.7.2 Unary Operators

Unary operators, illustrated by !, may be defined statically in container A as

124 CHAPTER 8. CLASSES

static operator !(x:A) = ...;

or as instance operators by:
operator !this = ...;
The rules for typechecking a unary operation are the same as for methods; the
complexities of binary operations are not needed.
Example: The operator to negate a polynomial is:

public operator - this = new Poly(
new Array[Int] (coeff.size, (i:Int) => -coeff(i))
);

8.7.3 Type Conversions

Explicit type conversions, e as A, can be defined as operators on class A, or on
the container type of e. These must be static operators.

To define an operator in class A (or struct A) converting values of type B into
type A, use the syntax:

static operator (x:B) as ? {c} = ...

The ? indicates the containing type A. The guard clause {c} may be omitted.
Example:

class Poly {
public val coeff : Array[Int](1);

public def this(coeff: Array[Int] (1)) { this.coeff = coeff;}
public static operator (a:Int) as ? = new Poly([a as Int]);

public static def main(Array[String] (1)) :void {
val three : Poly = 3 as Poly;
}
ks

The ? may be given a bound, such as as ? <: Caster, if desired.

There is little difference between an explicit conversion e as T and a method call
e.asT(). The explicit conversion does say undeniably what the result type will

8.7. USER-DEFINED OPERATORS 125

be. However, as described in §11.22.3] sometimes the built-in meaning of as as a
cast overrides the user-defined explicit conversion.

Explicit casts are most suitable for cases which resemble the use of explicit casts
among the arithmetic types, where, for example, 1.0 as Int is a way to turn a
floating-point number into the corresponding integer. While there is nothing in
X10 which requires it, e as T has the connotation that it gives a good approxi-
mation of e in type T, just as 1 is a good (indeed, perfect) approximation of 1.0
in type Int.

8.7.4 Implicit Type Coercions

An implicit type conversion from U to T may be specified in container T. The
syntax for it is:

static operator (u:U) : T = e;

Implicit coercions are used automatically by the compiler on method calls (§8.11))
and assignments (§11.7). Implicit coercions may be used when a value of type T
appears in a context expecting a value of type U. If T <: U, no implicit coercion is
needed; e.g., a method m expecting an Int argument may be called as m(3), with
an argument of type Int{self==3}, which is a subtype of m’s argument type Int.
However, if it is not the case that T <: U, but there is an implicit coercion from T
to U defined in container U, then this implicit coercion will be applied.

Example: We can define an implicit coercion from Int to Poly, and avoid
having to define the sum of an integer and a polynomial as many special cases. In
the following example, we only define + on two polynomials. The calculation 1+x
coerces 1 to a polynomial and uses polynomial addition to add it to x.

public static operator (c : Int) : Poly
= new Poly([c as Int]);

public static operator (p:Poly) + (g:Poly) = new Poly(
new Array[Int](
Math.max(p.coeff.size, g.coeff.size),
(i:Int) => p.a(i) + q.a(i)
));

public static def main(Array[String] (1)) :void {

126 CHAPTER 8. CLASSES

val x = new Poly([0,1]1);
x10.i0.Console.OUT.printIn("1+x=" + (1+x));

8.7.5 Assignment and Application Operators

X10 allows types to implement the subscripting / function application operator,
and indexed assignment. The Array-like classes take advantage of both of these
ina(i) = a(i) + 1.

a(b,c,d) is an operator call, to an operator defined with public operator
this(b:B, c:C, d:D). It may be overloaded. For example, an ordered dic-
tionary structure could allow subscripting by numbers with public operator
this(i:Int), and by strings with public operator this(s:String).

a(i,j)=bis an operator as well, with zero or more indices i, j. It may also be
overloaded.

The update operations a(i) += b (for all binary operators in place of +) are de-
fined to be the same as the corresponding a(i) = a(i) + b. This applies for
all arities of arguments, and all types, and all binary operations. Of course to use
this, the +, application and assignment operators must be defined.

Example:
The Oddvec class of somewhat peculiar vectors illustrates this.

a () returns a string representation of the oddvec, which ordinarily would be done
by toString() instead. a(i) sensibly picks out one of the three coordinates of a.
a()=b sets all the coordinates of a tob. a(i)=b assigns to one of the coordinates.
a(i, j)=b assigns different values to a(i) and a(j).

class Oddvec {
var v : Array[Int] (1) = new Array[Int](3, (Int)=>0);
public operator this () =
""" v@® + ", v+ ", v(@@2) + "M
public operator this () = (newval: Int) {
for(p in v) v(p) = newval;
3
public operator this(i:Int) = v(i);
public operator this(i:Int, j:Int) = [v(i),v(j)];

8.8. CLASS GUARDS AND INVARIANTS 127

public operator this(i:Int) (newval:Int)
= {v(i) = newval;}
public operator this(i:Int, j:Int) = (newval:Int)
= { v(i) = newval; v(j) newval+1;}
public def example() {
this(1l) = 6; assert this(l) == 6;
this(l) += 7; assert this(l) == 13;

}

8.8 Class Guards and Invariants

Classes (and structs and interfaces) may specify a class guard, a constraint which
must hold on all values of the class. In the following example, a Line is defined
by two distinct Pt{r]

class Pt(x:Int, y:Int){}
class Line(a:Pt, b:Pt){a != b} {}

In most cases the class guard could be phrased as a type constraint on a property
of the class instead, if preferred. Arguably, a symmetric constraint like two points
being different is better expressed as a class guard, rather than asymmetrically as
a constraint on one type:

class Line(a:Pt, b:Pt{a != b}) {}

With every container or interface T we associate a type invariant inv(T), which
describes the guarantees on the properties of values of type T.

Every value of T satisfies inv(T) at all times. This is somewhat stronger than the
concept of type invariant in most languages (which only requires that the invariant
holds when no method calls are active). X10 invariants only concern properties,
which are immutable; thus, once established, they cannot be falsified.

The type invariant associated with x10.1lang.Any is true.

The type invariant associated with any interface or struct I that extends interfaces
I,, ..., I, and defines properties x;: Py, ..., X,: P, and specifies a guard
C is given by:

“We use Pt to avoid any possible confusion with the built-in class Point.

128 CHAPTER 8. CLASSES

mv(I) && ... && v (I;) &&
self.x; instanceof P; && ... & self.x, instanceof P,
&& ¢

Similarly the type invariant associated with any class C that implements interfaces
I,, ..., I, extends class D and defines properties x;: Py, ..., X,: P, and
specifies a guard c is given by the same thing with the invariant of the superclass
D conjoined:

mu(I]) && ... && inv (1)

&& self.x; instanceof P; && ... && self.x, instanceof P,
&& ¢

&& 1nv (D)

Note that the type invariant associated with a class entails the type invariants of
each interface that it implements (directly or indirectly), and the type invariant of
each ancestor class. It is guaranteed that for any variable v of type T{c} (where
T is an interface name or a class name) the only objects o that may be stored in v
are such that o satisfies inv(T[o/this]) A c[o/self].

8.8.1 Invariants for implements and extends clauses

Consider a class definition

ClassModifiers?

class C(xy: Py, ..., X,: P,){c} extends D{d}
implements I;{c;}, ..., I.{c.}

ClassBody

These two rules must be satisfied:

e The type invariant snv(C) of C must entail c;[this/self] for each 7 in

(1. .k}

e The return type c of each constructor in a class C must entail the invariant
v (C).

8.8. CLASS GUARDS AND INVARIANTS 129

8.8.2 Timing of Invariant Checks

The invariants for a container are checked immediately after the property state-
ment in the container’s constructor. This is the earliest that the invariant could
possibly be checked. Recall that an invariant can mention the properties of the
container (which are set, forever, at that point in the code), but cannot mention the
val or var fields (which might not be set at that point), or this (which might not
have been fully initialized).

If X10 can prove that the invariant always holds given the property statement
and other known information, it may omit the actual check.

8.8.3 Invariants and constructor definitions

A constructor for a class C is guaranteed to return an object of the class on suc-
cessful termination. This object must satisfy inv (C), the class invariant associated
with C (§8.8). However, often the objects returned by a constructor may satisfy
stronger properties than the class invariant. X10’s dependent type system per-
mits these extra properties to be asserted with the constructor in the form of a
constrained type (the “return type” of the constructor):

CtorDecln ::= Mods’ def +this TypeParams’ Formals Guard’
HasResultType® CtorBody

The parameter list for the constructor may specify a guard that is to be satisfied
by the parameters to the list.

Example: Here is another example, constructed as a simplified version of
x10.array.Region. The mockUnion method has the type, though not the value,
that a true union method would have.

class MyRegion(rank:Int) {

static type MyRegion(n:Int)=MyRegion{rank==n};

def this(r:Int):MyRegion(r) {
property(r);

3

def this(diag:Array[Int] (1)) :MyRegion(diag.size){
property(diag.size);

}

def mockUnion(r:MyRegion(rank)) :MyRegion(rank) = this;

20.53

130 CHAPTER 8. CLASSES

def example() {
val R1 : MyRegion(3) new MyRegion([4,4,4 as Int]);
val R2 : MyRegion(3) new MyRegion([5,4,1]);
val R3 = Rl.mockUnion(R2); // inferred type MyRegion(3)
3

}

The first constructor returns the empty region of rank r. The second constructor
takes a Array[Int] (1) of arbitrary length n and returns a MyRegion(n) (in-
tended to represent the set of points in the rectangular parallelopiped between the
origin and the diag.)

The code in example typechecks, and R3’s type is inferred as MyRegion(3).

Let C be a class with properties p;: Py, ..., pn: P,, and invariant c extending
the constrained type D{d} (where D is the name of a class).

For every constructor in C the compiler checks that the call to super invokes a
constructor for D whose return type is strong enough to entail d. Specifically, if

the call to super is of the form super(e;, ..., e;) and the static type of each
expression e; is S;, and the invocation is statically resolved to a constructor def
this(xi: Ty, ..., Xp: Tp){c}: D{d;} then it must be the case that

X1: S1, ..., X1 S; entails x;: T, (for ie {1,...,k})

X1 Sy, ..., Xp: S, entails c

di[a/self], x;: Sy, ..., Xip: S; entails d[a/self]
where a is a constant that does not appearinx;: S; A ... A Xx: Sj.

The compiler checks that every constructor for C ensures that the properties p; , . . .

p,, are initialized with values which satisfy inv(T), and its own return type c’
as follows. In each constructor, the compiler checks that the static types T; of the
expressions e; assigned to p; are such that the following is true:

pi: Ty, ..., pu: T, entails inu(T) A c’

(Note that for the assignment of e; to p, to be type-correct it must be the case that
pi: T: A pit Pi)

The compiler must check that every invocation C(e;, ..., e,) to a constructor
is type correct: each argument e; must have a static type that is a subtype of the
declared type T; for the ith argument of the constructor, and the conjunction of
static types of the argument must entail the constraint in the parameter list of the
constructor.

8.9. GENERIC CLASSES 131

8.9 Generic Classes

Classes, like other units, can be generic. They can be parameterized by types. The
parameter types are used just like ordinary types inside the body of the generic
class — with a few exceptions.

Example: A Colorized[T] holds a thing of type T, and a string which is
intended to represent its color. Any type can be used for T, the example method
shows Int and Boolean. The thing() method retrieves the thing; note that its
return type is the generic type variable T. X10 is aware that colInt.thing() is
an Int and colTrue.thing () is a Boolean, and uses those typings in example.

class Colorized[T] {
private var thing:T;
private var color:String;
def this(thing:T, color:String) {
this.thing = thing;
this.color color;

3
public def thing():T = thing;
public def color():String = color;
public static def example() {
val colInt : Colorized[Int]
= new Colorized[Int](3, "green");
assert colInt.thing() ==
&& collInt.color().equals("green");
val colTrue : Colorized[Boolean]
= new Colorized[Boolean] (true, "blue");
assert colTrue.thing()
&& colTrue.color().equals("blue");

8.9.1 Use of Generics

An unconstrained type variable X can be instantiated by any type. All the opera-
tions of Any are available on a variable of type X. Additionally, variables of type
X may be used with ==, !=, in instanceof, and casts.

132 CHAPTER 8. CLASSES

If a type variable is constrained, the operations implied by its constraint are avail-
able as well.

Example: The interface Named describes entities which know their own name.
The class NameMap[T] is a specialized map which stores and retrieves Named
entities by name. The call t .name () in put () is only valid because the constraint
{T <: Named} implies that T is a subtype of Named, and hence provides all the
operations of Named.

interface Named { def name():String; }
class NameMap[T]{T <: Named} {
val m = new HashMap[String, T]1Q);
def put(t:T) { m.put(t.name(), t); }
def get(s:String):T = m.getOrThrow(s);

8.10 Object Initialization

X10 does object initialization safely. It avoids certain bad things which trouble
some other languages:

1. Use of a field before the field has been initialized.
2. A program reading two different values from a val field of a container.

3. this escaping from a constructor, which can cause problems as noted be-
low.

It should be unsurprising that fields must not be used before they are initialized.
At best, it is uncertain what value will be in them, as in x below. Worse, the value
might not even be an allowable value; y, declared to be nonzero in the following
example, might be zero before it is initialized.

// Not correct X10
class ThisIsWrong {
val x : Int;
val y : Int{y != 0};
def this({
x10.i0.Console.OUT.println("x=" + x + "; y='

+Y);

8.10. OBJECT INITIALIZATION 133

One particularly insidious way to read uninitialized fields is to allow this to
escape from a constructor. For example, the constructor could put this into a
data structure before initializing it, and another activity could read it from the data
structure and look at its fields:

class Wrong {
val shouldBe8 : Int;
static Cell[Wrong] wrongCell = new Cell[Wrong](Q);
static def doItWrong() {
finish {
async { new Wrong(Q; } // (A)
assert(wrongCell() .shouldBe8 == 8); // (B)
}
3
def this({
wrongCell.set(this); // (C) - ILLEGAL
this.shouldBe8 = 8; // (D)
}
3

In this example, the underconstructed Wrong object is leaked into a storage cell
at line (C), and then initialized. The doItWrong method constructs a new Wrong
object, and looks at the Wrong object in the storage cell to check on its shouldBe8
field. One possible order of events is the following:

1. doItlWrong() is called.

2. (A) is started. Space for a new Wrong object is allocated. Its shouldBe8
field, not yet initialized, contains some garbage value.

3. (Q) is executed, as part of the process of constructing a new Wrong object.
The new, uninitialized object is stored in wrongCell.

4. Now, the initialization activity is paused, and execution of the main activity
proceeds from (B).

134 CHAPTER 8. CLASSES

5. The value in wrongCell is retrieved, and is shouldBe8 field is read. This
field contains garbage, and the assertion fails.

6. Now let the initialization activity proceed with (D), initializing shouldBe8
— too late.

The at statement (§13.3)) introduces the potential for escape as well. The follow-
ing class prints an uninitialized value:

// This code violates this chapter’s constraints
// and thus will not compile in X10.
class Example {
val a: Int;
def this(Q {
at Chere.next()) {
// Recall that ’'this’ is a copy of ’this’ outside ’at’.
Console.OUT.println("this.a = " + this.a);
}
this.a = 1;
}
ks

X10 must protect against such possibilities. The rules explaining how construc-
tors can be written are somewhat intricate; they are designed to allow as much
programming as possible without leading to potential problems. Ultimately, they
simply are elaborations of the fundamental principles that uninitialized fields must
never be read, and this must never be leaked.

8.10.1 Constructors and Non-Escaping Methods

In general, constructors must not be allowed to call methods with this as an
argument or receiver. Such calls could leak references to this, either directly
from a call to cell.set(this), or indirectly because toString leaks this,
andtheconcMBnaﬁon"T%caper=’q¢hm‘caHstoStringE

// This code violates this chapter’s constraints
// and thus will not compile in X10.

3This is abominable behavior for toString, but it cannot be prevented — save by a scheme
such as we present in this section.

8.10. OBJECT INITIALIZATION 135

class Escaper {
static val Cell[Escaper] cell = new Cell[Escaper]();
def toString() {
cell.set(this);
return "Evil!";
3
def this({
cell.set(this);
x10.i0.Console.OUT.println("Escaper = " + this);
}
3

However, it is convenient to be able to call methods from constructors; e.g., a
class might have eleven constructors whose common behavior is best described
by three methods. Under certain stringent conditions, it is safe to call a method:
the method called must not leak references to this, and must not read vals or
vars which might not have been assigned.

So, X10 performs a static dataflow analysis, sufficient to guarantee that method
calls in constructors are safe. This analysis requires having access to or guarantees
about all the code that could possibly be called. This can be accomplished in two
ways:

1. Ensuring that only code from the class itself can be called, by forbidding
overriding of methods called from the constructor: they can be marked
final or private, or the whole class can be final.

2. Marking the methods called from the constructor by @NonEscaping or
@NoThisAccess

Non-Escaping Methods

A method may be annotated with @NonEscaping. This imposes several restric-
tions on the method body, and on all methods overriding it. However, it is the
only way that a method can be called from constructors. The @NonEscaping
annotation makes explicit all the X10 compiler’s needs for constructor-safety.

A method can, however, be safe to call from constructors without being marked
@NonEscaping. We call such methods implicitly non-escaping. Implicitly non-
escaping methods need to obey the same constraints on this, super, and variable

136 CHAPTER 8. CLASSES

usage as @NonEscaping methods. An implicitly non-escaping method could be
marked as @NonEscaping; the compiler, in effect, infers the annotation. In addi-
tion, all non-escaping methods must be private or final or members of a final
class; this corresponds to the hereditary nature of @NonEscaping (by forbidding
inheritance of implicitly non-escaping methods).

We say that a method is non-escaping if it is either implicitly non-escaping, or
annotated @NonEscaping.

The first requirement on non-escaping methods is that they do not allow this to
escape. Inside of their bodies, this and super may only be used for field access
and assignment, and as the receiver of non-escaping methods.

The following example uses the possible variations. aplomb () explicitly forbids
reading any field but a. boric() is called after a and b are set, but c is not.
The @NonEscaping annotation on boric() is optional, but the compiler will
print a warning if it is left out. cajoled() is only called after all fields are set,
so it can read anything; its annotation, too, is not required. SeeAlso is able to
override aplomb (), because aplomb () is @NonEscaping; it cannot override the
final method boric() or the private one cajoled().

import x10.compiler.*;

final class C2 {
protected val a:Int; protected val b:Int; protected val c:Int;
protected var x:Int; protected var y:Int; protected var z:Int;
def this({
a=1;
this.aplomb();
b = 2;
this.boric();
c = 3;
this.cajoled();
3
@NonEscaping def aplomb() {
X = a;
// this.boric(); // not allowed; boric reads b.
// z =b; // not allowed -- only ’a’ can be read here
3
@NonEscaping final def boric() {
y = b;

8.10. OBJECT INITIALIZATION 137

this.aplomb(); // allowed;
// a is definitely set before boric is called
// z = c; // not allowed; c is not definitely written
}
@NonEscaping private def cajoled() {
Z = C;

}

NoThisAccess Methods

A method may be annotated @NoThisAccess. @NoThisAccess methods may be
called from constructors, and they may be overridden in subclasses. However,
they may not refer to this in any way — in particular, they cannot refer to fields
of this, nor to super.

Example:

The class IDed has an Float-valued id field. The method count () is used to
initialize the id. For IDed objects, the id is the count of IDeds created with the
same parity of its kind. Note that count () does not refer to this, though it does
refer to a static field counts.

The subclass SubIDed has ids that depend on kind%3 as well as the parity of
kind. It overrides the count () method. The body of count () still cannot refer
to this. Nor can it refer to super (which is self under another name). This
precludes the use of a super call. This is why we have separated the body of
count out as the static method kind2count — without that, we would have had to
duplicate its body, as we could not call super .count (kind) in a NoThisAccess
method, as is shown by the ERROR line (A).

Note that NoThisAccess is in x10. compiler and must be imported, and that the
overriding method SubIDed. count must be declared @loThisAccess as well as
the overridden method. Line (B) is not allowed because code is a field of this,
and field accesses are forbidden. Line (C) references this directly, which, of
course, is forbidden by @NoThisAccess.

import x10.compiler.*;
class UseNoThisAccess {
static class IDed {

138 CHAPTER 8. CLASSES

protected static val counts = [0 as Int,0];
protected var code : Int;
val id: Float;
public def this(kind:Int) {
code = kind;
this.id = this.count(kind);
}
protected static def kind2count(kind:Int)
@NoThisAccess def count(kind:Int) : Float
3
static class SubIDed extends IDed {
protected static val subcounts = [0 as Int, 0, 0];
public static val all = new x10.util.ArrayList[SubIDed]();
public def this(kind:Int) {
super (kind) ;

++counts(kind % 2);
kind2count (kind) ;

}

@NoThisAccess

def count(kind:Int) : Float {
val subcount <: Int = ++subcounts(kind % 3);
val supercount <: Float = kind2count(kind);
//ERROR: val badSuperCount = super.count(kind); //(A)
//ERROR: code = kind; //(B)
//ERROR: all.add(this); //(C)
return supercount + 1.80f / subcount;

8.10.2 Fine Structure of Constructors

The code of a constructor consists of four segments, three of them optional and
one of them implicit.

1. The first segment is an optional call to this(...) or super(...). If this
is supplied, it must be the first statement of the constructor. If it is not
supplied, the compiler treats it as a nullary super-call super();

8.10. OBJECT INITIALIZATION 139

2. If the class or struct has properties, there must be a single property(...)
command in the constructor, or a this(...) constructor call. Every exe-
cution path through the constructor must go through this property(...)
command precisely once. The second segment of the constructor is the code
following the first segment, up to and including the property () statement.

If the class or struct has no properties, the property () call must be omit-
ted. If it is present, the second segment is defined as before. If it is absent,
the second segment is empty.

3. The third segment is automatically generated. Fields with initializers are
initialized immediately after the property statement. In the following ex-
ample, b is initialized to y*9000 in segment three. The initialization makes
sense and does the right thing; b will be y*9000 for every Overdone ob-
ject. (This would not be possible if field initializers were processed earlier,
before properties were set.)

4. The fourth segment is the remainder of the constructor body.

The segments in the following code are shown in the comments.

class Overlord(x:Int) {
def this(x:Int) { property(x); }
}//0Overlord
class Overdone(y:Int) extends Overlord {
val a : Int;
val b = y * 9000;
def this(r:Int) {
super(r); // (1)
x10.i0.Console.OUT.println(r); // (2)
val rpl = r+l;

property(rpl); // (2)
// field initializations here // (3)
a=r+ 2 + b; // (4)
}
def this(Q {
this(10); // (1),), (3
val x = a + b; // (4
}

}//0verdone

140 CHAPTER 8. CLASSES

The rules of what is allowed in the three segments are different, though unsurpris-
ing. For example, properties of the current class can only be read in segment 3 or
4—naturally, because they are set at the end of segment 2.

Initialization and Inner Classses

Constructors of inner classes are tantamount to method calls on this. For ex-
ample, the constructor for Inner is acceptable. It does not leak this. It leaks
Outer.this, which is an utterly different object. So, the call to this.new
Inner() in the Outer constructor is illegal. It would leak this. There is no
special rule in effect preventing this; a constructor call of an inner class is no
different from a method as far as leaking is concerned.

class Outer {
static val leak : Cell[Outer] = new Cell[Outer] (null);
class Inner {
def this() {Outer.leak.set(Outer.this);?}
}
def /*Outer*/this() {
//ERROR: val inner = this.new Inner();
}
3

Initialization and Closures

Closures in constructors may not refer to this. They may not even refer to fields
of this that have been initialized. For example, the closure bad1 is not allowed
because it refers to this; bad2 is not allowed because it mentions a — which is,
of course, identical to this.a.

class C {
val a:Int;
def this(Q {
this.a = 1;
//ERROR: val badl = () => this;
//ERROR: val bad2 = () => a*10;

}
}

8.10. OBJECT INITIALIZATION 141

8.10.3 Definite Initialization in Constructors

An instance field var x:T, when T has a default value, need not be explicitly
initialized. In this case, x will be initialized to the default value of type T. For
example, a Score object will have its currently field initialized to zero, below:

class Score {
public var currently : Int;

}

All other sorts of instance fields do need to be initialized before they can be used.
val fields must be initialized in the constructor, even if their type has a default
value. It would be silly to have a field val z : Int that was always given default
value of @ and, since it is val, can never be changed. var fields whose type has no
default value must be initialized as well, such as var y : Int{y != 0}, since
it cannot be assigned a sensible initial value.

The fundamental principles are:

1. val fields must be assigned precisely once in each constructor on every
possible execution path.

2. var fields of defaultless type must be assigned at least once on every possi-
ble execution path, but may be assigned more than once.

3. No variable may be read before it is guaranteed to have been assigned.

4. Initialization may be by field initialization expressions (val x : Int =
y+z), or by uninitialized fields val x : Int; plus an initializing assign-
ment x = y+z. Recall that field initialization expressions are performed
after the property statement, in segment 3 in the terminology of

8.10.4 Summary of Restrictions on Classes and Constructors

The following table tells whether a given feature is (yes), is not (no) or is with
some conditions (note) allowed in a given context. For example, a property
method is allowed with the type of another property, as long as it only mentions
the preceding properties. The first column of the table gives examples, by line of
the following code body.

142 CHAPTER 8. CLASSES

Example | Prop. | self==this(1) | Prop.Meth. | this | fields
Type of property (A) yes (2) no no no no
Class Invariant (B) yes yes yes yes no
Supertype (3) (©), (D) yes yes yes no no
Property Method Body | (E) yes yes yes yes no
Static field (4)) (G) no no no no no
Instance field (5) (H), (D) yes yes yes yes yes
Constructor arg. type | (J) no no no no no
Constructor guard (K) no no no no no
Constructor ret. type (L) yes yes yes yes yes
Constructor segment 1 | (M) no yes no no no
Constructor segment 2 | (N) no yes no no no
Constructor segment 4 | (O) yes yes yes yes yes
Methods (P) yes yes yes yes yes
Details:

e (1) Top-level self only.

e (2) The type of the i** property may only mention properties 1 through .

e (3) Super-interfaces follow the same rules as supertypes.

e (4) The same rules apply to types and initializers.

The example indices refer to the following code:

class Example (
prop : Int,
prog : Int{prop != prog},
pror : Int
)
{prop '= 0}
extends Supertype[Int{self != prop}]

/7 (A)

// (B
()

implements SuperInterface[Int{self != prop}] // (D)

property def propmeth() = (prop == pror);
static staticField
: Cell[Int{self != 0}]

// (E)

/7 (F)

8.11. METHOD RESOLUTION

= new Cell[Int{self != 0}](D); //
var instanceField

: Int {self != prop} //

= (prop + 1) as Int{self != prop}; //
def this(

a : Int{a != 0},

b : Int{b != a} //

)

{a !'= b} //

: Example{self.prop == a && self.proq==b} //
{

super(); //

property(a,b,a); //

// fields initialized here
instanceField = b as Int{self != prop}; //
}

def someMethod() =
prop + staticField() + instanceField; //

8.11 Method Resolution

(®
(D
(I
@))

€9
@

an
N

©)

P

143

Method resolution is the problem of determining, statically, which method (or
constructor or operator) should be invoked, when there are several choices that
could be invoked. For example, the following class has two overloaded zap
methods, one taking an Object, and the other a Resolve. Method resolution
will figure out that the call zap (1. .4) should call zap(Object), and zap (new

Resolve()) should call zap(Resolve).
Example:

class Res {
public static interface Surface {}
public static interface Deface {}

public static class Ace implements Surface {

144 CHAPTER 8. CLASSES

public static operator (Boolean) : Ace = new Ace();
public static operator (Place) : Ace = new Ace();

}

public static class Face implements Surface, Deface{}

public static class A {}
public static class B extends A {}
public static class C extends B {}

def m(x:A) = 0;
def m(x:Int) = 1;
def m(x:Boolean) = 2;
def m(x:Surface) = 3
def m(x:Deface) = 4;

def example() {

assert m(100) == : "Int";

assert m(new C(Q)) == N G

// An Ace is a Surface, unambiguous best choice
assert m(new Ace()) == 3 : "Ace";

// ERROR: m(new Face());

// The match must be exact.
// ERROR: assert mChere) == 3 : "Place";

// Boolean could be handled directly, or by
// implicit coercion Boolean -> Ace.

// Direct matches always win.

assert m(true) == : "Boolean";

In the "Int" line, there is a very close match. 100 is an Int. In fact, 100 is
an Int{self==100}, so even in this case the type of the actual parameter is not
precisely equal to the type of the method.

In the "C" line of the example, new C() is an instance of C, which is a subtype of
A, so the A method applies. No other method does, and so the A method will be
invoked

8.11. METHOD RESOLUTION 145

Similarly, in the "Ace" line, the Ace class implements Surface, and so new
Ace () matches the Surface method.

However, a Face is both a Surface and a Deface, so there is no unique best
match for the invocation m(new Face()). This invocation would be forbidden,
and a compile-time error issued.

The match must be exact. There is an implicit coercion from Place to Ace, and
Ace implements Surface, so the code

val ace : Ace = here;
assert m(ace) == 3;

works, by using the Surface form of m. But doing it in one step requires a deeper
search than X10 performsﬁ and is not allowed.

For m(true), both the Boolean and, with the implicit coercion, Ace methods
could apply. Since the Boolean method applies directly, and the Ace method
requires an implicit coercion, this call resolves to the Boolean method, without
an error.

The basic concept of method resolution is:

1. List all the methods that could possibly be used, inferring generic types but
not performing implicit coercions.

2. If one possible method is more specific than all the others, that one is the
desired method.

3. If there are two or more methods neither of which is more specific than the
others, then the method invocation is ambiguous. Method resolution fails
and reports an error.

4. Otherwise, no possible methods were found without implicit coercions. Try
the preceding steps again, but with coercions allowed: zero or one implicit
coercion for each argument. If a single most specific method is found with
coercions, it is the desired method. If there are several, the invocation is
ambiguous and erronious.

5. If no methods were found even with coercions, then the method invocation
is undetermined. Method resolution fails and reports an error.

®In general this search is unbounded, so X10 can’t perform it.

146 CHAPTER 8. CLASSES

After method resolution is done, there is a validation phase that checks the legality
of the call, based on the STATIC_CHECKS compiler flag. With STATIC_CHECKS,
the method’s constraints must be satisfied; that is, they must be entailed (
by the information in force at the point of the call. With DYNAMIC_CHECKS, if the
constraint is not entailed at that point, a dynamic check is inserted to make sure
that it is true at runtime.

In the presence of X10’s highly-detailed type system, some subtleties arise. One
point, at least, is not subtle. The same procedure is used, mutatis mutandis for
method, constructor, and operator resolution.

8.11.1 Space of Methods

X10 allows some constructs, particularly operators, to be defined in a number
of ways, and invoked in a number of ways. This section specifies which forms of
definition could correspond to a given definiendum.

Method invocations a.m(b), where a is an expression, can be either of the fol-
lowing forms. There may be any number of arguments.

e An instance method on a, of the form def m(B).

e A static method on a’s class, of the form static def m(B).

The meaning of an invocation of the form m(b), with any number of arguments,
depends slightly on its context. Inside of a constraint, it might mean self.m(b).
Outside of a constraint, there is no self defined, so it can’t mean that. The first
of these that applies will be chosen.

1. Invoke a method on this, viz. this.m(b). Inside a constraint, it may also
invoke a property method on self, viz.. self.m(b). It is an error if both
this.m(b) and self.m(b) are possible.

2. Invoke a function named m in a local or field.

3. Construct a structure named m.

Static method invocations, A.m(b), where A is a container name, can only be
static. There may be any number of arguments.

8.11. METHOD RESOLUTION 147

e A static method on A, of the form static def m(B).

Constructor invocations, new A(b), must invoke constructors. There may be any
number of arguments.

e A constructor on A, of the form def this(B).
A unary operator x a may be defined as:

e An instance operator on A, defined as operator = this().

e A static operator on A, defined as operator x(a:A).
A binary operator a * b may be defined as:

e An instance operator on A, defined as operator this «(b:B);or
e A right-hand operator on B, defined as operator (a:A) x this;or
e A static operator on A, defined as operator (a:A) = (b:B),;or

e A static operator on B, if A and B are different classes, defined as operator
(a:A) % (b:B)

If none of those resolve to a method, then either operand may be implicitly coerced
to the other. If one of the following two situations obtains, it will be done; if both,
the expression causes a static error.

e An implicit coercion from A to B, and an operator B x B can be used, by
coercing a to be of type B, and then using B’s .

e An implicit coercion from B to A, and an operator A x A can be used, co-
ercing b to be of type A, and then using A’s *.

An application a(b), for any number of arguments, can come from a number of
things.

e an application operator on a, defined as operator this(b:B);

e If a is an identifier, a(b) can also be a method invocation equivalent to
this.a(b), which invokes a as either an instance or static method on this

148 CHAPTER 8. CLASSES

e If a is a qualified identifier, a(b) can also be an invocation of a struct con-
structor.

An indexed assignment, a(b)=c, for any number of b’s, can only come from an
indexed assignment definition:

e operator this(b:B)=(c:O {...}

An implicit coercion, in which a value a:A is used in a context which requires a
value of some other non-subtype B, can only come from implicit coercion opera-
tion defined on B:

e an implicit coercion in B: static operator (a:A):B;

An explicit conversion a as B can come from an explicit conversion operator, or
an implicit coercion operator. X10 tries two things, in order, only checking 2 if 1
fails:

1. An as operator in B: static operator (a:A) as 7?;

2. or, failing that, an implicit coercion in B: static operator (a:A):B.

8.11.2 Possible Methods

This section describes what it means for a method to be a possible resolution of a
method invocation.

Generics introduce several subtleties, especially with the inference of generic
types. For the purposes of method resolution, all that matters about a method, con-
structor, or operator M — we use the word “method” to include all three choices for
this section — is its signature, plus which method it is. So, a typical M might look
like def m[Gy,..., Gy1(x1:Ty,..., X¢:Tg){c} =.... The code body ... is
irrelevant for the purpose of whether a given method call means M or not, so we
ignore it for this section.

All that matters about a method definition, for the purposes of method resolution,
is:

1. The method name m;

8.11. METHOD RESOLUTION 149

2. The generic type parameters of the method m, G;,..., G,. If there are no
generic type parameters, g = 0.

3. The types x1:Ty,..., Xy:T; of the formal parameters. If there are no for-
mal parameters, f = 0. In the case of an instance method, the receiver will
be the first formal parameter

4. A unique identifier id, sufficient to tell the compiler which method body is
intended. A file name and position in that file would suffice. The details of
the identifier are not relevant.

For the purposes of understanding method resolution, we assume that all the ac-
tual parameters of an invocation are simply variables: x1.meth(x2,x3). This is
done routinely by the compiler in any case; the code tb1l (i) .meth(true, a+1)
would be treated roughly as

val x1 tbl(i);
val x2 = true;
val x3 = a+l;
x1.meth(x2,x3);

All that matters about an invocation I is:

1. The method name n';

2. The generic type parameters G, .. ., G’g. If there are no generic type pa-
rameters, g = 0.

3. The names and types x;:T},..., X f:T’f of the actual parameters. If there
are no actual parameters, f = 0. In the case of an instance method, the
receiver is the first actual parameter.

The signature of the method resolution procedure is: resolve(invo : Invocation,
context: Set[Method]) : MethodID. Given a particular invocation and the

set context of all methods which could be called at that point of code, method

resolution either returns the unique identifier of the method that should be called,

or (conceptually) throws an exception if the call cannot be resolved.

The procedure for computing resolve(invo, context) is:

"The variable names are relevant because one formal can be mentioned in a later type, or even
a constraint: def f(a:Int, b:Point{rank==a})=....

150 CHAPTER 8. CLASSES

1. Eliminate from context those methods which are not acceptable; viz.,
those whose name, type parameters, and formal parameters do not suitably
match invo. In more detail:

e The method name m must simply equal the invocation name m’;
e X10 infers type parameters, by an algorithm given in §4.12.3

e The method’s type parameters are bound to the invocation’s for the
remainder of the acceptability test.

e The actual parameter types must be subtypes of the formal parameter
types, or be coercible to such subtypes. Parameter i is a subtype if T;
<: T,. Itis implicitly coercible to a subtype if either it is a subtype, or
if there is an implicit coercion operator defined from T, to some type
U, and U <: T;. . If coercions are used to resolve the method, they
will be called on the arguments before the method is invoked.

2. Eliminate from context those methods which are not available; viz., those
which cannot be called due to visibility constraints, such as methods from
other classes marked private. The remaining methods are both acceptable
and available; they might be the one that is intended.

3. If the method invocation is a super invocation appearing in class C1, meth-
ods of C1 and its subclasses are considered unavailable as well.

4. From the remaining methods, find the unique ms which is more specific
than all the others, viz., for which specific(ms,mo) = true for all other
methods mo. The specificity test specific is given next.

e If there is a unique such ms, then resolve(invo, context) returns
the id of ms.

e If there is not a unique such ms, then resolve reports an error.

The subsidiary procedure specific(ml, m2) determines whether method m1 is
equally or more specific than m2. specific is not a total order: is is possible
for each one to be considered more specific than the other, or either to be more
specific. specific is computed as:

1. Construct an invocation invol based on m1:

e invol’s method name is m1’s method name;

8.11. METHOD RESOLUTION 151

e invol’s generic parameters are those of m1— simply some type vari-
ables.

e invol’s parameters are those of m1.

2. If m2 is acceptable for the invocation invol, specific(ml,m2) returns
true;

3. Construct an invocation invo2p, which is invol with the generic param-
eters erased. Let invo2 be invo2p with generic parameters as inferred by
X10’s type inference algorithm. If type inference fails, specific(ml,m2)
returns false.

4. If m2 is acceptable for the invocation invo2, specific(ml,m2) returns
true;

5. Otherwise, specific(ml,m2) returns false.

8.11.3 Field Resolution

An identifier p can refer to a number of things. The rules are somewhat different
inside and outside of a constraint.

Outside of a constraint, the compiler chooses the first one from the following list
which applies:

1. A local variable named p.

2. Afield of this, viz. this.p.

3. A nullary property method, this.p()
4. A member type named p.

5. A package named p.

Inside of a constraint, the rules are slightly different, because self is available,
and packages cannot be used per se.

1. A local variable named p.

152 CHAPTER 8. CLASSES

2. A property of this or of self, viz. this.p or self.p. If both are avail-
able, report an error.

3. A nullary property method, this.p()

4. A member type named p.

8.11.4 Other Disambiguations

It is possible to have a field of the same name as a method. Indeed, it is a common
pattern to have private field and a public method of the same name to access it:
Example:

class Xhaver {
private var x: Int = 0;
public def x() = x;
public def bumpX() { x ++; }
ks

Example: However, this can lead to syntactic ambiguity in the case where the
field £ of object a is a function, array, list, or the like, and where a has a method
also named f. The term a.£(b) could either mean “call method £ of a uponb”,
or “apply the function a. f to argument b”.

class Ambig {
public val £ : (Int)=>Int = x:Int) => x*X;
public def f(y:int) = y+1;
public def example() {
val v = this.f(10);
// is v 100, or 117
}
}

In the case where a syntactic form E.m(F;, ..., F,) could be resolved as either
amethod call, or the application of a field E.m to some arguments, it will be treated
as a method call. The application of E.m to some arguments can be specified by
adding parentheses: (E.m) (Fy, ..., F;).

Example:

8.12. STATIC NESTED CLASSES 153

class Disambig {
public val f : (Int)=>Int = (x:Int) => x*Xx;
public def f(y:int) = y+1;
public def example() {
assert(this.f(10) == 11);
assert((this.f)(10) == 100);

Similarly, it is possible to have a method with the same name as a struct, say
ambig, giving an ambiguity as to whether ambig() is a struct constructor invoca-
tion or a method invocation. This ambiguity is resolved by treating it as a method
invocation. If the constructor invocation is desired, it can be achieved by including
the optional new. That is, new ambig() is struct constructor invocation; ambig()
is a method invocation.

8.12 Static Nested Classes

One class (or struct or interface) may be nested within another. The simplest way
to do this is as a static nested class, written by putting one class definition at
top level inside another, with the inner one having a static modifier. For most
purposes, a static nested class behaves like a top-level class. However, a static
nested class has access to private static fields and methods of its containing class.

Nested interfaces and static structs are permitted as well.

class Outer {
private static val priv = 1;
private static def special(n:Int) = n*n;
public static class StaticNested {
static def reveal(n:Int) = special(n) + priv;
}
ks

154 CHAPTER 8. CLASSES

8.13 Inner Classes

Non-static nested classes are called inner classes. An inner class instance can
be thought of as a very elaborate member of an object — one with a full class
structure of its own. The crucial characteristic of an inner class instance is that it
has an implicit reference to an instance of its containing class.

Example: This feature is particularly useful when an instance of the inner class
makes no sense without reference to an instance of the outer, and is closely tied
to it. For example, consider a range class, describing a span of integers m to
n, and an iterator over the range. The iterator might as well have access to the
range object, and there is little point to discussing iterators-over-ranges without
discussing ranges as well. In the following example, the inner class RangeIter
iterates over the enclosing Range.

It has its own private cursor field n, telling where it is in the iteration; different
iterations over the same Range can exist, and will each have their own cursor. It
is perhaps unwise to use the name n for a field of the inner class, since it is also a
field of the outer class, but it is legal. (It can happen by accident as well —e.g., if a
programmer were to add a field n to a superclass of the outer class, the inner class
would still work.) It does not even interfere with the inner class’s ability to refer
to the outer class’s n field: the cursor initialization refers to the Range’s lower
bound through a fully qualified name Range . this.n. The initialization of its n
field refers to the outer class’s m field, which is not shadowed and can be referred
to directly, as m.

class Range(m:Int, n:Int) implements Iterable[Int]{

public def iterator () = new Rangelter();

private class Rangelter implements Iterator[Int] {
private var n : Int = m;
public def hasNext() = n <= Range.this.n;
public def next() = n++;

}

public static def main(argv:Array[String] (1)) {
val r = new Range(3,5);
for(i in r) Console.OUT.println("i='

}

+ 1);

8.13. INNER CLASSES 155

An inner class has full access to the members of its enclosing class, both static
and instance. In particular, it can access private information, just as methods of
the enclosing class can.

An inner class can have its own members. Inside instance methods of an inner
class, this refers to the instance of the inner class. The instance of the outer class
can be accessed as Quter.this (where QOuter is the name of the outer class). If,
for some dire reason, it is necessary to have an inner class within an inner class,
the innermost class can refer to the this of either outer class by using its name.

An inner class can inherit from any class in scope, with no special restrictions.
super inside an inner class refers to the inner class’s superclass. If it is neces-
sary to refer to the outer classes’s superclass, use a qualified name of the form
Outer.super.

The members of inner classes must be instance members. They cannot be static
members. Classes, interfaces, static methods, static fields, and typedefs are not
allowed as members of inner classes. The same restriction applies to local classes
(48.14).

Consider an inner class IC1 of some outer class 0C1, being extended by another
class IC2. However, since an IC1 only exists as a dependent of an 0C1, each IC2
must be associated with an 0C1 — or a subtype thereof — as well. So, IC2 must
be an inner class of either OC1 or some subclass 0C2 <: OCL.

Example: For example, one often extends an inner class when one extends its
outer class:

class 0C1 {
class IC1 {}

3

class 0C2 extends 0C1 {
class IC2 extends IC1 {}

}

The hiding of method names has one fine point. If an inner class defines a method
named doit, then all methods named doit from the outer class are hidden —
even if they have different argument types than the one defined in the inner class.
They are still accessible via Outer.this.doit(), but not simply via doit().
The following code is correct, but would not be correct if the ERROR line were
uncommented.

class Outer {

156 CHAPTER 8. CLASSES

def doit() {}
def doit(String) {}
class Inner {
def doit(Boolean, Outer) {}
def example() {
doit(true, Outer.this);
Outer.this.doit();
//ERROR: doit("fails");

8.13.1 Constructors and Inner Classes

If IC is an inner class of OC, then instance code in the body of OC can create
instances of IC simply by calling a constructor new IC(...):

class 0OC {
class IC {}
def method(){
val ic = new ICQ);
}
3

Instances of IC can be constructed from elsewhere as well. Since every instance
of IC is associated with an instance of OC, an OC must be supplied to the IC
constructor. The syntax for doing so is: oc.new IC(). For example:

class 0OC {
class IC {}
static val ocl = new 0CQ);
static val oc2 = new 0CQ);

static val icl
static val ic2
ks
class Elsewhere{
def method(oc : 00) {
val ic = oc.new ICQ);

ocl.new ICQ);
oc2.new ICQ);

8.14. LOCAL CLASSES 157

8.14 Local Classes

Classes can be defined and instantiated in the middle of methods and other code
blocks. A local class in a static method is a static class; a local class in an instance
method is an inner class. Local classes are local to the block in which they are
defined. They have access to almost everything defined at that point in the method;
the one exception is that they cannot use var variables. Local classes cannot be
public, protected, or private, because they are only visible from within the
block of declaration. They cannot be static.

Example: The following example illustrates the use of a local class Local,
defined inside the body of method m().

class Outer {
val a = 1;
def m(O {
val a = -2;
val b = 2;
class Local {
val a = 3;
def m(O = 100*0Quter.this.a + 10*b + a;
}
val 1 : Local = new Local();
assert 1.m() == 123;
}//end of m(Q)
3

Note that the middle a, whose value is -2, is not accessible inside of Local; it
is shadowed by Local’s a field. Outer’s a is also shadowed, but the notation
Outer.this gives a reference to the enclosing Outer object. There is no corre-
sponding notation to access shadowed local variables from the enclosing block;
if you need to get them, rename the fields of Local.

The members of inner classes must be instance members. They cannot be static
members. Classes, interfaces, static methods, static fields, and typedefs are not

158 CHAPTER 8. CLASSES

allowed as members of local classes. The same restriction applies to inner classes
(48.13).

8.15 Anonymous Classes

It is possible to define a new local class and instantiate it as part of an expression.
The new class can extend an existing class or interface. Its body can include all
of the usual members of a local class. It can refer to any identifiers available at
that point in the expression — except for var variables. An anonymous class in a
static context is a static inner class.

Anonymous classes are useful when you want to package several pieces of be-
havior together (a single piece of behavior can often be expressed as a function,
which is syntactically lighter-weight), or if you want to extend and vary an extant
class without going through the trouble of actually defining a whole new class.

The syntax for an anonymous class is a constructor call followed immediately by
a braced class body: new C(1){def foo()=2;}.

Example: [n the following minimalist example, the abstract class Choice encap-
sulates a decision. A Choice has a yes() and a no() method. The choose (b)
method will invoke one of the two. Choices also have names.

The main() method creates a specific Choice. c is not a immediate instance
of Choice — as an abstract class, Choice has no immediate instances. C is an
instance of an anonymous class which inherits from Choice, but supplies yes ()
and no () methods. These methods modify the contents of the Cell[Int] n. (Note
that, as n is a local variable, it would take a few lines more coding to extract C’s
class, name it, and make it an inner class.) The call to c.choose (true) will call
c.yes(), incrementing n(), in a rather roundabout manner.

abstract class Choice(name: String) {
def this(name:String) {property(name);}
def choose(b:Boolean) {
if (b) this.yes(); else this.no(); }
abstract def yes():void;
abstract def no():void;

}

class Example {

8.15. ANONYMOUS CLASSES 159

static def main(Array[String]) {
val n = new Cell[Int](0);
val c new Choice("Inc Or Dec") {
def yes(O { nQO +=1; }
def noQ {n(Q -=1; }
};
c.choose(true);
Console.OUT.println("n=" + n());
b

}

Anonymous classes have many of the features of classes in general. A few features
are unavailable because they don’t make sense.

e Anonymous classes don’t have constructors. Since they don’t have names,
there’s no way a constructor could get called in the ordinary way. Instead,
the new C(...) expression must match a constructor of the parent class C,
which will be called to initialize the newly-created object of the anonymous
class.

e The public, private, and protected modifiers don’t make sense for
anonymous classes: Anonymous classes, being anonymous, cannot be ref-
erenced at all, so references to them can’t be public, private, or protected.

e Anonymous classes cannot be abstract. Since they only exist in combi-
nation with a constructor call, they must be constructable. The parent class
of the anonymous class may be abstract, or may be an interface; in this case,
the anonymous class must provide all the methods that the parent demands.

e Anonymous classes cannot have explicit extends or implements clauses;
there’s no place in the syntax for them. They have a single parent and that
is that.

9 Structs

X10 objects are a powerful general-purpose programming tool. However, the
power must be paid for in space and time. In space, a typical object implemen-
tation requires some extra memory for run-time class information, as well as a
pointer for each reference to the object. In time, a typical object requires an ex-
tra indirection to read or write data, and some run-time computation to figure out
which method body to call.

For high-performance computing, this overhead may not be acceptable for all ob-
jects. X10 provides structs, which are stripped-down objects. They are less pow-
erful than objects; in particular they lack inheritance and mutable fields. Without
inheritance, method calls do not need to do any lookup; they can be implemented
directly. Accordingly, structs can be implemented and used more cheaply than
objects, potentially avoiding the space and time overhead. (Currently, the C++
back end avoids the overhead, but the Java back end implements structs as Java
objects and does not avoid it.)

Structs and classes are interoperable. Both can implement interfaces; in particular,
like all X10 values they implement Any. Subroutines whose arguments are defined
by interfaces can take both structs and classes. (Some caution is necessary here:
referring to a struct through an interface requires overhead similar to that required
for an object.)

In many cases structs can be converted to classes or classes to structs, within the
constraints of structs. If you start off defining a struct and decide you need a
class instead, the code change required is simply changing the keyword struct
to class. If you have a class that does not use inheritance or mutable fields, it
can be converted to a struct by changing its keyword. Client code using the struct
that was a class will need certain changes: e.g., the new keyword must be added
in constructor calls, and structs (unlike classes) cannot be null.

160

9.1. STRUCT DECLARATION 161

9.1 Struct declaration

StructDecln = Mods’ struct Id TypeParamsI’ Properties’ Guard’
Interfaces’ ClassBody

TypeParamsl ::= [TypeParamlList]

Properties = (PropList)

Guard = DepParams

Interfaces = 1implements InterfaceTypelList
ClassBody = { ClassMemberDeclns’ }

All fields of a struct must be val.

A struct S cannot contain a field of type S, or a field of struct type T which,
recursively, contains a field of type S. This restriction is necessary to permit S to
be implemented as a contiguous block of memory of size equal to the sum of the
sizes of its fields.

Values of a struct C type can be created by invoking a constructor defined in C.
Unlike for classes, the new keyword is optional for struct constructors.

Example: Leaving out new can improve readability in some cases:

struct Polar(r:Double, theta:Double){
def this(r:Double, theta:Double) {property(r,theta);}
static val Origin = Polar(0,0);
static val x0yl Polar(l, 3.14159/2);
static val x1y® new Polar(l, 0);
3

When a struct and a method have the same name (often in violation of the X10
capitalization convention), new may be used to resolve to the struct’s constructor.

struct Ambig(x:Int) {
static def Ambig(x:Int) = "ambiguity please";
static def example() {
val useMethod
val useConstructor

Ambig(1);
new Ambig(2);

}
}

Structs support the same notions of generics, properties, and constrained types
that classes do.

20.148

20.171

20.136]

20.82

20.10

20.33

162 CHAPTER 9. STRUCTS

Example:

struct Exam[T] (nQuestions:Int){T <: Question} {
public static interface Question {}
/] ...

3

9.2 Boxing of structs

If a struct S implements an interface I (e.g., Any), a value v of type S can be
assigned to a variable of type I. The implementation creates an object o that is
an instance of an anonymous class implementing I and containing v. The result
of invoking a method of I on o is the same as invoking it on v. This operation is
termed auto-boxing. 1t allows full interoperability of structs and objects—at the
cost of losing the extra efficiency of the structs when they are boxed.

In a generic class or struct obtained by instantiating a type parameter T with a
struct S, variables declared at type T in the body of the class are not boxed. They
are implemented as if they were declared at type S.

Example: The array aa in the following example is an Array[Any]. It ini-
tially holds two objects. Then, its elements are replaced by two structs, both of
which are auto-boxed. Note that no fussing is required to put an integer into an
Array[Any]. However, an array of structs, such as ah, holds unboxed structs
and does not incur boxing overhead.

struct Horse(x:Int){
static def example(){
val aa : Array[Any](1) = ["an Object" as Any, "another one"];

aa(®) = Horse(8);
aa(l) = 13;
val ah : Array[Horse] (1) = [Horse(7), Horse(13)];

9.3 Optional Implementation of Any methods

Two structs are equal (==) if and only if their corresponding fields are equal (==).

9.4. PRIMITIVE TYPES 163

All structs implement x10.1lang.Any. Structs are required to implement the fol-
lowing methods from Any. Programmers need not provide them; X10 will produce
them automatically if the program does not include them.

public def equals(Any):Boolean;
public def hashCode():Int;
public def typeName():String;
public def toString():String;

A programmer who provides an explicit implementation of equals(Any) for a
struct S should also consider supplying a definition for equals(S) :Boolean.
This will often yield better performance since the cost of an upcast to Any and
then a downcast to S can be avoided.

9.4 Primitive Types

Certain types that might be built in to other languages are in fact implemented
as structs in package x10.1lang in X10. Their methods and operations are often
provided with @Native (§I8) rather than X10 code, however. These types are:

Boolean, Char, Byte, Short, Int, Long
Float, Double, UByte, UShort, UInt, ULong

9.4.1 Signed and Unsigned Integers

X10 has an unsigned integer type corresponding to each integer type: UInt is
an unsigned Int, and so on. These types can be used for binary programming,
or when an extra bit of precision for counters or other non-negative numbers is
needed in integer arithmetic. However, X10 does not otherwise encourage the use
of unsigned arithmetic.

9.5 Example structs

x10.1lang.Complex provides a detailed example of a practical struct, suitable
for use in a library. For a shorter example, we define the Pair struct. A Pair

164 CHAPTER 9. STRUCTS

packages two values of possibly unrelated type together in a single value, e.g., to
return two values from a function.

divmod computes the quotient and remainder of a < b (naively). It returns both,
packaged as aPair[UInt, UInt]. Note that the constructor uses type inference,
and that the quotient and remainder are accessed through the first and second
fields.

struct Pair[T,U] {
public val first:T;
public val second:U;
public def this(first:T, second:U):Pair[T,U] {
this.first = first;
this.second = second;

}
public def toString()

n "

="(" + first + ", + second + ")";
ks
class Example {
static def divmod(var a:UInt, b:UInt): Pair[UInt, UInt] {
assert b > Ou;
var q : UInt = Ou;
while (a > b) {qgq++; a -= b;}
return Pair(q, a);
}
static def example() {
val qr = divmod(22, 7);
assert qr.first == 3u && gr.second == 1lu;

9.6 Nested Structs

Static nested structs may be defined, essentially as static nested classes except for
making them structs (§8.12). Inner structs may be defined, essentially as inner
classes except making them structs (§8.13). Limitation: Nested structs must be
currently be declared static.

9.7. DEFAULT VALUES OF STRUCTS 165

9.7 Default Values of Structs

If all fields of a struct have default values, then the struct has a default value, viz.,
the struct whose fields are all set to their default values. If some field does not
have a default value, neither does the struct.

Example:

In the following code, the Example struct has a default value whose 1 field is
0. If an Example is ever constructed by the constructor, its i field will be 1.
This program does a slightly subtle dance to get ahold of a default Example, by
having an instance var (which, unlike most kinds of variables, does not need to
get initialized before use (though that exemption only applies if its type has a
default value)). As the assert confirms, the default Example does indeed have
an 1 field of 0.

class StructDefault {
static struct Example {
val i : Int;
def this() {i=1; }
}
var ex : Example;
static def example() {
val ex = (new StructDefault()).ex;
assert ex.i == 0;

9.8 Converting Between Classes And Structs

Code written using structs can be modified to use classes, or vice versa. Caution
must be used in certain places.

Class and struct definitions are syntactically nearly identical: change the class
keyword to struct or vice versa. Of course, certain important class features can’t
be used with structs, such as inheritance and var fields.

Converting code that uses the class or struct requires a certain amount of caution.
Suppose, in particular, that we want to convert the class Class2Struct to a struct,
and Struct2Class to a class.

166

CHAPTER 9. STRUCTS

class Class2Struct {

val a : Int;

def this(a:Int) { this.a = a; }
def m() = a;
ks
struct Struct2Class {
val a : Int;
def this(a:Int) { this.a = a; }

}

1.

def m(OO = a;

Class constructors require the new keyword; struct constructors allow it but
do not require it. Struct2Class(3) to will need to be converted to new
Struct2Class(3).

Objects and structs have different notions of ==. For objects, == means
“same object”; for structs, it means “same contents”. Before conversion,
both asserts in the following program succeed. After converting and fix-
ing constructors, both of them fail.

val a = new Class2Struct(2);
val b new Class2Struct(2);
assert a != b;

val ¢ = Struct2Class(3);

val d = Struct2Class(3);
assert c==d;

. Objects can be set to null. Structs cannot.

The rules for default values are quite different. The default value of an
object type (if it exists) is null, which behaves quite differently from an
ordinary object of that type; e.g., you cannot call methods on null, whereas
you can on an ordinary object. The default value for a struct type (if it exists)
is a struct like any other of its type, and you can call methods on it as for
any other.

10 Functions

10.1 Overview

Functions, the last of the three kinds of values in X10, encapsulate pieces of code
which can be applied to a vector of arguments to produce a value. Functions, when
applied, can do nearly anything that any other code could do: fail to terminate,
throw an exception, modify variables, spawn activities, execute in several places,
and so on. X10 functions are not mathematical functions: the £(1) may return
true on one call and false on an immediately following call.

A function literal (x1:T1,..,xn:Tn){c}:T=>e creates a function of type
(x1:T1,...,xn:Tn) {c}=>T (§4.6). For example, (x:Int):Int => x*xis a

function literal describing the squaring function on integers. null is also a func-
tion value.

Limitation: X10 functions cannot have type arguments or constraints.

Function application is written £(a,b, c), following common mathematical us-
age.

The function body may be a block. To compute integer squares by repeated addi-
tion (inefficiently), one may write:

val sq: (Int) => Int
= (n:Int) => {
var s : Int = 0;
val abs_.n =n<0® ? -n : n;
for (i in 1..abs_n) s += abs_n;
S

}s

A function literal evaluates to a function entity f. When f is applied to a suitable
list of actual parameters al through an, it evaluates e with the formal parameters

167

168 CHAPTER 10. FUNCTIONS

bound to the actual parameters. So, the following are equivalent, where e is an
expression involving x1 and XZEI

{
val f = (x1:T1,x2:T2){true}:T => e;
val al : Tl = arglQ);
val a2 : T2 = arg2Q);
result = f(al,a2);

and

val al : T1
val a2 : T2

arglQ);
arg2Q);

val x1 : Tl = al;
val x2 : T2 az;
result = e;

}
}

This equivalence does not hold if the body is a statement rather than an expres-
sion. A few language features are forbidden (break or continue of a loop that
surrounds the function literal) or mean something different (return inside a func-
tion returns from the function, not the surrounding block).

Function types may be used in implements clauses of class definitions. Suitable
operator definitions must be supplied, with public operator this(x1:T1,

.., xn:Tn) declarations. Instances of such classes may be used as functions of
the given type. Indeed, an object may behave like any (fixed) number of functions,
since the class it is an instance of may implement any (fixed) number of function
types. e.g. Instances of the Funny class behave like two functions: a constant
function on Booleans, and a linear function on pairs of Ints.

class Funny implements (Boolean) => Int,
(Int, Int) => Int
{

IStrictly, there are a few other requirements; e.g., result must be a var of type T defined
outside the outer block, the variables al and a2 had better not appear in e, and everything in sight
had better typecheck properly.

10.2. FUNCTION APPLICATION 169

public operator this(Boolean) = 1;
public operator this(x:Int, y:Int) = 10*x+y;
static def example() {

val f <: Funny = new Funny(Q);
assert f(true) == 1; // (Boolean)=>Int behavior
assert f(1,2) == 12; // (Int,Int)=>Int behavior

}

10.2 Function Application

The basic operation on functions is function application. (Since, e.g., array lookup
has the same type as function application, these rules are used for array lookup as
well, and so on.)

A function with type (x1:Ty, ..., Xx,:T,){c} => T can be applied to a se-
quence of expressions ey, ..., e,if:

e e isof type T;[e1/%x1],

o ...,
o e, isof type T,[e1/%X1, ..., e,/%X,],
e X10 can prove that c[e;/x1, ..., €,/X,] holds.

In this case, if the application terminates normally, it returns a value of type
Tlei/x1, ..., ex/Xy].
Example: Consider

f : (a:Int{a!=0}, b:Int{b!=a}){b!=0} => Int{self != a}

Then the call £(3,4) is allowed, because:

e 3isoftype Int{a!=0} with a replaced by 3, viz. Int{3 != 0};

e 4 is of type Int{b!=a} with a replaced by 3 and b replaced by 4, viz.
Int{3 I= 4}

170 CHAPTER 10. FUNCTIONS

e The guard b!=0, with a replaced by 3 and b replaced by 4, is 4!=0, which
is true.

So, £(3,4) will return a value of type Int{self != a} with areplaced by 3 and
b replaced by 4, which is to say, Int{self!=3}.

10.3 Function Literals

X10 provides first-class, typed functions, often called closures.

ClosureExp ::= Formals Guard’ HasResultType® => ClosureBody
Formals .= (FormalList’)
Guard ::= DepParams
HasResultType ::= ResultType
| <: Dype
ClosureBody w= Exp

| Annotations’ { BlockStmts’ LastExp }
| Annotations’ Block

Functions have zero or more formal parameters and an optional return type. The
body has the same syntax as a method body; it may be either an expression, a
block of statements, or a block terminated by an expression to return. In particular,
a value may be returned from the body of the function using a return statement

(412.13).

The type of a function is a function type as described in In some cases the
return type T is also optional and defaults to the type of the body. If a formal xi
does not occur in any Tj, c, T or e, the declaration x1i: Ti may be replaced by just
Ti. E.g., (Int)=>7 is the integer function returning 7 for all inputs.

As with methods, a function may declare a guard to constrain the actual parame-
ters with which it may be invoked. The guard may refer to the type parameters,
formal parameters, and any vals in scope at the function expression.

Example:
val n = 3;
val £ : (x:Int){x != n} => Int
= (x:Int){x != n} = (12/(n-x));
Console.OUT.printIn("£(5)=" + £(5));

20.41

20.79

20.82

20.83

10.3. FUNCTION LITERALS 171

The body of the function is evaluated when the function is invoked by a call ex-
pression (§11.6)), not at the function’s place in the program text.

As with methods, a function with return type void cannot have a terminating
expression. If the return type is omitted, it is inferred, as described in
It is a static error if the return type cannot be inferred. E.g., (Int)=>null is
not well-specified; X10 does not know which type of null is intended. But
(Int):Array[Double] (1) => null is legal.

Example: The following method takes a function parameter and uses it to test
each element of the list, returning the first matching element. It returns no if no
element matches.

def find[T](f: (T) => Boolean, xs: List[T], no:T): T = {
for (x: T in xs)
if (£(x)) return x;
no

}

The method may be invoked thus, to find a positive element of xs, or return 0 if
there is no positive element.

xs: List[Int] = new ArrayList[Int](Q);
x: Int = find((x: Int) => x>0, xs, 0);

10.3.1 Outer variable access

In a function (x;: Ty, ..., X,: T,){c} => { s } the types T;, the guard c
and the body s may access many, though not all, sorts of variables from outer
scopes. Specifically, they can access:

o All fields of the enclosing object(s) and class(es);
e All type parameters;

e All val variables;

var variables cannot be accessed.

The function body may refer to instances of enclosing classes using the syntax
C.this, where C is the name of the enclosing class. this refers to the instance
of the immediately enclosing class, as usual.

172 CHAPTER 10. FUNCTIONS

e.g. The following is legal. Note that a is not a local var variable. It is a field
of this. A reference to a is simply short for this.a, which is a use of a val
variable (this).

class Lambda {
var a : Int = 0;
val b = 0;
def m(var ¢ : Int, val d : Int) {
var e : Int = 0;
val £ : Int = O;
val closure = (var i: Int, val j: Int) => {
return a + b +d+ f + i
+ j + this.a + Lambda.this.a;
// ¢ and e are not usable here
};

return closure;

10.4 Functions as objects of type Any

Two functions f and g are equal if both were obtained by the same evaluation of
a function literalE] Further, it is guaranteed that if two functions are equal then
they refer to the same locations in the environment and represent the same code,
so their executions in an identical situation are indistinguishable. (Specifically, if
f == g, then £(1) can be substituted for g(1) and the result will be identical.
However, there is no guarantee that £(1)==g(1) will evaluate to true. Indeed,
there is no guarantee that £(1)==£(1) will evaluate to true either, as £ might
be a function which returns n on its n** invocation. However, £(1)==£(1) and
£(1)==g(1) are interchangeable.)

Every function type implements all the methods of Any. f.equals(g) is equiva-
lent to f==g. The behavior of hashCode, toString, and typeName is up to the
implementation, but respect equals and the basic contracts of Any.

2A literal may occur in program text within a loop, and hence may be evaluated multiple times.

11 Expressions

X10 has a rich expression language. Evaluating an expression produces a value,
or, in a few cases, no value. Expression evaluation may have side effects, such as
change of the value of a var variable or a data structure, allocation of new values,
or throwing an exception.

11.1 Literals

Literals denote fixed values of built-in types. The syntax for literals is given in
§3.5)

The type that X10 gives a literal often includes its value. E.g., 1 is of type
Int{self==1}, and true is of type Boolean{self==true}.

11.2 this

Primary ::= this 20.132
| ClassName . this

The expression this is a local val containing a reference to an instance of the
lexically enclosing class. It may be used only within the body of an instance
method, a constructor, or in the initializer of a instance field — that is, the places
where there is an instance of the class under consideration.

Within an inner class, this may be qualified with the name of a lexically enclos-
ing class. In this case, it represents an instance of that enclosing class.

Example: Outer is a class containing Inner. Each instance of Inner has a
reference Outer.this to the Outer involved in its creation. Inner has access

173

174 CHAPTER 11. EXPRESSIONS

to the fields of Outer.this. Note that Inner has its own three field, which is
different from and not even the same type as Outer.this. three.

class Outer {
val three = 3;
class Inner {
val three = "THREE";
def example() {
assert Outer.this.three == 3;
assert three.equals("THREE");
assert this.three.equals("THREE");
}
}
ks

The type of a this expression is the innermost enclosing class, or the qualifying
class, constrained by the class invariant and the method guard, if any.

The this expression may also be used within constraints in a class or interface
header (the class invariant and extends and implements clauses). Here, the type
of this is restricted so that only properties declared in the class header itself,
and specifically not any members declared in the class body or in supertypes, are
accessible through this.

11.3 Local variables

Id ::= IDENTIFIER

A local variable expression consists simply of the name of the local variable, field
of the current object, formal parameter in scope, etc. It evaluates to the value of
the local variable.

Example: n in the second line below is a local variable expression. The n in the
first line is not; it is part of a local variable declaration.

val n = 22;
val m = n + 56;

11.4. FIELD ACCESS 175

11.4 Field access

FieldAccess ::= Primary . Id
| super . Id
| ClassName . super . Id

A field of an object instance may be accessed with a field access expression.

The type of the access is the declared type of the field with the actual target sub-
stituted for this in the type.

Example: The declaration of b below has a constraint involving this. The use
of an instance of it, £.b, has the same constraint involving £ instead of this, as
required.

class Fielded {
public val a : Int = 1;
public val b : Int{this.a == b} = this.a;
static def example() {
val f : Fielded = new Fielded();

assert f.a == && f.b == 1;
val fb : Int{fb == f.a} = £f.b;
assert fb == 1;

}
}

The field accessed is selected from the fields and value properties of the static type
of the target and its superclasses.

If the field target is given by the keyword super, the target’s type is the superclass
of the enclosing class. This form is used to access fields of the parent class hidden
by same-named fields of the current class.

If the field target is Cls. super, then the target’s type is C1s, which must be an
enclosing class. This (admittedly obscure) form is used to access fields of an
ancestor class which are shadowed by same-named fields of some more recent
ancestor.

Example: This illustrates all four cases of field access.

class Uncle {
public static val f = 1;

176 CHAPTER 11. EXPRESSIONS

3
class Parent {
public val f = 2;
ks
class Ego extends Parent {
public val f = 3;
class Child extends Ego {
public val f = 4;
def example() {
assert Uncle.f == 1;
assert Ego.super.f == 2;
assert super.f == 3;
assert this.f == 4;
assert f == 4;

If the field target is null, a Nul1lPointerException is thrown. If the field target
is a class name, a static field is selected. It is illegal to access a field that is not
visible from the current context. It is illegal to access a non-static field through a
static field access expression. However, it is legal to access a static field through a
non-static reference.

11.5 Function Literals

Function literals are described in

11.6. CALLS 177

11.6 Calls

Methodlnvo = MethodName TypeArgs’ (ArgumentList’)
| Primary . Id TypeArgs’ (ArgumentList’)
| super . Id TypeArgs’ (ArgumentList’)
| ClassName . super . Id TypeArgs’ (ArgumentList’)
| Primary TypeArgs’ (ArgumentList’)

ArgumentList = Exp
| ArgumentList , Exp

MethodName ::= Id 0.114
| FullyQualifiedName . Id

A MethodInvocation may be to either a static method, an instance method, or a
closure.

The syntax for method invocations is ambiguous. ob.m() could either be the
invocation of a method named m on object ob, or the application of a function
held in a field ob.m. If both are defined on the same class, X10 resolves ob.m()
to the invocation of the method. If the application of a function in a field is desired,
use an alternate syntax which makes the intent clear to X10, such as (ob.m) ().

Example:

class Callsome {

static val closure : () = Int =) = 1;
static def method() = 2;
static def example() {

assert Callsome.closure() == 1;

assert Callsome.method() == 2;
}

}

However, adding a static method [mis [named closure makes Callsome.closure()
refer to the method, rather than the closure

static def closure () = 3;

static def example() {
assert Callsome.closure() == 3;
assert (Callsome.closure)() == 1;

178 CHAPTER 11. EXPRESSIONS

The application form e (£, g), when e evaluates to an object or struct, invokes the
application operator, defined in the form

public operator this(f:F, g¢g:G) = "value";

Method selection rules are given in §8.11}

Guard satisfaction depends on the STATIC_CHECKS compiler flag. With the flag
on, it is a static error if a method’s Guard is not statically satisfied by the caller.
With STATIC_CHECKS off, the guard will be checked at runtime if necessary.

Example: [In this example, a DivideBy object provides the service of dividing
numbers by denom — so long as denom is not zero. X10’s strictness of checking
this is under control of the STATIC_CHECKS compiler option (§C.0.4)).

With STATIC_CHECKS turned on, the example method will not compile. The call
this.div(100) is not allowed; there is no guarantee that denom != 0. Casting
this to a type whose constraint implies denom != O permits the method call.

With STATIC_CHECKS turned off, the call will compile. X10 will insert a dynamic
check that the denominator is non-zero, and will fail at runtime if it is zero.

class DivideBy(denom:Int) {
def div(numer:Int){denom != 0} = numer / denom;
def example() {
val thisCast = (this as DivideBy{self.denom != 0});
thisCast.div(100);
//ERROR (with STATIC_CHECKS): this.div(100);

11.6.1 super calls

The expression super. f(el...en) may appear in an instance method definition.
This causes the method invocation to be a super invocation, as described in §8.11]

Informally, suppose the invocation appears in class C1, which extends class Sup.
An invocation this. f() will call a nullary method named £ that appears in class
Cl itself, if there is one. An invocation super . £() will call the nullary £ method
in Sup or an ancestor thereof, but not one in C1. Note that super.f() may be
used to invoke an £ method in Sup which has been overridden by one appearing
in C1.

11.7. ASSIGNMENT 179

Note that there’s only one choice for which f is invoked by super.f() — viz
the lowest one in the class hierarchy above Cl. So, super.f() performs static
dispatch, like a static method call. This is generally more efficient than a dynamic
dispatch, like an instance method call.

11.7 Assignment

LeftHandSide AsstOp AsstExp
| ExpName (ArgumentList’) AsstOp AsstExp
| Primary (ArgumentList’) AsstOp AsstExp
ExpName

| FieldAccess
AsstOp n= =

Assignment

LeftHandSide

/=
%=

The assignment expression X = e assigns a value given by expression e to a vari-
able x. Most often, x is mutable, a var variable. The same syntax is used for
delayed initialization of a val, but vals can only be initialized once.

var x : Int;

val y : Int;

x =1;

y = 2; // Correct; initializes y
X = 3;

// ERROR: y = 4;

There are three syntactic forms of assignment:

180 CHAPTER 11. EXPRESSIONS

1. x = e;, assigning to a local variable, formal parameter, field of this, etc.
2. x.f = e;, assigning to a field of an object.

3. a(iy,...,1,) = v;, where n > 0, assigning to an element of an array or
some other such structure. This is an operator call (§3.7). For well-behaved
classes it works like array assignment, mutatis mutandis, but there is no
actual guarantee, and the compiler makes no assumptions about how this
works for arbitrary a. Naturally, it is a static error if no suitable assignment
operator for a exists..

For a binary operator ¢, the ¢-assignment expression X ¢= e combines the current
value of x with the value of e by ¢, and stores the result back into x. i += 2, for
example, adds 2 to i. For variables and fields,

X o= e

behaves just like

X =X < e.

The subscripting forms of a(i) o= b are slightly subtle. Subexpressions of a and
i are only evaluated once. However, a(i) and a(i)=c are each executed once—
in particular, there is one call to the application operator, and one to the assignment
operator. If subscripting is implemented strangely for the class of a, the behavior
is not necessarily updating a single storage location. Specifically, AQ) (I())
+= B() is tantamount to the following code, except for the unspecified order of
evaluation of the expressions:

{
// The order of these evaluations is not specified
val aa = AQ); // Evaluate A() once
val ii = I(); // Evaluate I() once
val bb = B(); // Evaluate B() once
// But they happen before this:
val tmp = aa(ii) + bb; // read aa(ii)
aa(ii) = tmp; // write sum back to aa(ii)

11.8. INCREMENT AND DECREMENT 181

11.8 Increment and decrement

The operators ++ and -- increment and decrement a variable, respectively. x++
and ++x both increment x, just as the statement x += (1 as T) would (where
x:T), and similarly for --.

The difference between the two is the return value. ++x and --x return the new
value of x, after incrementing or decrementing. x++ and x-- return the old value
of x, before incrementing or decrementing.

These operators work for any x for which 1 as T is defined, where T is the type
of x.

11.9 Numeric Operations

Numeric types (Byte, Short, Int, Long, Float, Double, Complex, and un-
signed variants of fixed-point types) are normal X10 structs, though most of their
methods are implemented via native code. They obey the same general rules as
other X10 structs. For example, numeric operations, coercions, and conversions
are defined by operator definitions, the same way you could for any struct.

Promoting a numeric value to a longer numeric type preserves the sign of the
value. For example, (255 as UByte) as Ulnt is 255.

Most of these operations can be defined on user-defined types as well. While it
is good practice to keep such operations consistent with the numeric operations
whenever possible, the compiler neither enforces nor assumes any particular se-
mantics of user-defined operations.

11.9.1 Conversions and coercions

Specifically, each numeric type can be converted or coerced into each other nu-
meric type, perhaps with loss of accuracy.

Example:

val n : Byte = 123 as Byte; // explicit
val f : (Int)=>Boolean = (Int) => true;
val ok = f(n); // implicit

182 CHAPTER 11. EXPRESSIONS

11.9.2 Unary plus and unary minus

The unary + operation on numbers is an identity function. The unary - operation
on signed numbers is a negation function. On unsigned numbers, these are two’s-
complement arithmetic; the unsigned number types are closed under unary -. For
example, - (0x0F as UByte) is (0xF1 as UByte).

11.10 Bitwise complement

The unary ~ operator, only defined on integral types, complements each bit in its
operand.

11.11 Binary arithmetic operations

The binary arithmetic operators perform the familiar binary arithmetic operations:
+ adds, - subtracts, * multiplies, / divides, and % computes remainder.

On integers, the operands are coerced to the longer of their two types, and then op-
erated upon. Floating point operations are determined by the IEEE 754 standard.
The integer / and % throw an exception if the right operand is zero.

11.12 Binary shift operations

When operands of the binary shift operations are of integral type, the expression
performs bitwise shifts. The type of the result is the type of the left operand. The
right operand, describing a number of bits, must be unsigned: x << 1U.

If the promoted type of the left operand is Int, the right operand is masked with
0x1f using the bitwise AND (&) operator, giving a number at most the number of
bits in an Int. If the promoted type of the left operand is Long, the right operand
1s masked with 0x3 £ using the bitwise AND (&) operator, giving a number at most
the number of bits in a Long.

The << operator left-shifts the left operand by the number of bits given by the right
operand. The >> operator right-shifts the left operand by the number of bits given
by the right operand. The result is sign extended; that is, if the right operand is

11.13. BINARY BITWISE OPERATIONS 183

k, the most significant k bits of the result are set to the most significant bit of the
operand.

The >>> operator right-shifts the left operand by the number of bits given by the
right operand. The result is not sign extended; that is, if the right operand is %, the
most significant £ bits of the result are set to 0. This operation is deprecated, and
may be removed in a later version of the language.

11.13 Binary bitwise operations

The binary bitwise operations operate on integral types, which are promoted to
the longer of the two types. The & operator performs the bitwise AND of the
promoted operands. The | operator performs the bitwise inclusive OR of the
promoted operands. The " operator performs the bitwise exclusive OR of the
promoted operands.

11.14 String concatenation

The + operator is used for string concatenation as well as addition. If either
operand is of static type x10.lang.String, the other operand is converted to
a String, if needed, and the two strings are concatenated. String conversion of a
non-null value is performed by invoking the toString() method of the value.
If the value is null, the value is converted to "null".

The type of the result is String.

For example, "one " + 2 + true evaluates to one 2true.

11.15 Logical negation

The unary ! operator applied to type x10.1lang.Boolean performs logical nega-
tion. The type of the result is Boolean. If the value of the operand is true, the
result is false; if if the value of the operand is false, the result is true.

184 CHAPTER 11. EXPRESSIONS

11.16 Boolean logical operations

The binary operations & and | at type Boolean perform Boolean logical opera-
tions.

The & operator evaluates to true if both of its operands evaluate to true; other-
wise, the operator evaluates to false.

The | operator evaluates to false if both of its operands evaluate to false; oth-
erwise, the operator evaluates to true.

11.17 Boolean conditional operations

The binary & and | | operations, on Boolean values, give conditional or short-
circuiting Boolean operations.

The && operator evaluates to true if both of its operands evaluate to true; oth-
erwise, the operator evaluates to false. Unlike the logical operator &, if the first
operand is false, the second operand is not evaluated.

The || operator evaluates to false if both of its operands evaluate to false;
otherwise, the operator evaluates to true. Unlike the logical operator | |, if the
first operand is true, the second operand is not evaluated.

11.18 Relational operations

The relational operations on numeric types compare numbers, producing Boolean
results.

The < operator evaluates to true if the left operand is less than the right. The <=
operator evaluates to true if the left operand is less than or equal to the right. The
> operator evaluates to true if the left operand is greater than the right. The >=
operator evaluates to true if the left operand is greater than or equal to the right.

Floating point comparison is determined by the IEEE 754 standard. Thus, if either
operand is NaN, the result is false. Negative zero and positive zero are consid-
ered to be equal. All finite values are less than positive infinity and greater than
negative infinity.

11.19. CONDITIONAL EXPRESSIONS 185

11.19 Conditional expressions
ConditionalExp ::= ConditionalOrExp ? Exp : ConditionalExp

A conditional expression evaluates its first subexpression (the condition); if true
the second subexpression (the consequent) is evaluated; otherwise, the third subex-
pression (the alternative) is evaluated.

The type of the condition must be Boolean. The type of the conditional ex-
pression is some common ancestor (as constrained by §4.10) of the types of the
consequent and the alternative.

Example: a == b ? 1 : 2 evaluates to 1 if a and b are the same, and 2 if
they are different. As the type of 1 is Int{self==1} and of 2 is Int{self==2},
the type of the conditional expression has the form Int{c}, where self==1 and
self==2 both imply c. For example, it might be Int{true} — or perhaps it might
be a more accurate type, like Int{self != 8}. Note that this term has no most
accurate type in the X10 type system.

The subexpression not selected is not evaluated.

Example: The following use of the conditional expression prevents division by
zero. If den==0, the division is not performed at all.

(den == 0) ? 0 : num/den

Similarly, the following code performs a method call if op is non-null, and avoids
the null pointer error if it is null. Defensive coding like this is quite common when
working with possibly-null objects.

(ob == null) ? null : ob.toString(Q);

11.20 Stable equality

EqualityExp ::= RelationalExp
| EqualityExp == Relational Exp
| EqualityExp = Relational Exp
| Type ==Type

The == and != operators provide a fundamental, though non-abstract, notion of
equality. a==Db is true if the values of a and b are extremely identical.

186

CHAPTER 11. EXPRESSIONS

If a and b are values of object type, then a==b holds if a and b are the same
object.

If one operand is null, then a==b holds iff the other is also null.
The structs in x10. 1lang have unsurprising concepts of ==:

In Boolean, true == true and false == false.
In Char,c == diff c.ord() == d.ord().
Equality in Double and Float is IEEE floating-point equality.

Two GlobalRefs are == if they refer to the same object.

The integral types, Byte, Short, Int, Long, and their unsigned ver-
sions, use binary equality.

If the operands both have struct type and are not in x10.1lang, then they
must be structurally equal; that is, they must be instances of the same struct
and all their fields or components must be ==.

The definition of equality for function types is specified in §10.4

No implicit coercions are performed by ==.

e It is a static error to have an expression a == b if the types of a and b are
disjoint.
a != bis true iff a==b is false.

The predicates == and != may not be overridden by the programmer.

== provides a stable notion of equality. If two values are == at any time, they
remain == forevermore, regardless of what happens to the mutable state of the
program.

Example: Regardless of the values and types of a and b, or the behavior of
any_code_at_all (which may, indeed, be any code at all—not just a method
call), the value of a==b does not change:

val a = something();

val b = something_else();
val eql = (a == b);
any_code_at_all(Q);

val eq2 = (a == b);
assert eql == eq2;

11.20. STABLE EQUALITY 187

11.20.1 No Implicit Coercions for ==

== is a primitive operation in X10 — one of very few. Most operations, like +
and <=, are defined as operators. == and != are not. As non-operators, they
need not and do not follow the general method resolution procedure of In
particular, while operators perform implicit conversions on their arguments, ==
and !=do not.

The advantage of this restriction is that =="s behavior is as simple and efficient
as possible. It never runs user-defined code, and the compiler can analyze and
understand it in detail — and guarantee that it is efficient.

The disadvantage is that certain straightforward-looking idioms do not work. One
may not test that a Long variable is == to an integer like 0:

//ERROR: for(var i : Long = 0; i != 100; i++) {}

A Long like i can never == an Int like 100.

Wecanwritei = 1 + 1;,addingan Int to i. This works because the expression
uses +, an ordinary operator. There is an implicit coercion from Int to Long,
so the 1 can be converted to 1L, which can be added to 1i.

However, == does not permit implicit coercions, and so the 100 stays an Int. The
loop must be written with a comparison of two Longs:

for(var i : Long = 0; i != 100L; i++) {}

Incidentally, it could also be written

for(var i : Long = 0; i <= 100; i++) {}

The operation <= is a regular operator, and thus uses coercions in its arguments,
so 100 gets coerced to 100L.

Example: [If numbers are cast to Any, they are compared as values of type Any,
not as numbers. For example, 1 as Any == 1lul as Any is not a static error
(because it is comparing two values of type Any), and returns false (because the
two Any values refer to different values — indeed, to values of different types, Int
and ULong).

188 CHAPTER 11. EXPRESSIONS

11.20.2 Non-Disjointness Requirement

It is, in many cases, a static error to have an expression a==b where a and b could
not possibly be equal, based on their types. (In one case it is a static error even
though they could be equal.) This is a practical codicil to §11.20.1} Consider the
illegal code

// NOT ALLOWED
for(var i : Long = 0; i != 100; i++)

100 and 100L are different values; they are not ==. A coercion could make them
equal, but == does not allow coercions. So, if 100 == 100L were going to return
anything, it would have to return false. This would have the unfortunate effect
of making the for loop run forever.

Since this and related idioms are so common, and since so many programmers are
used to languages which are less precise about their numeric types, X10 avoids
the mistake by declaring it a static error in most cases. Specifically, a==b is not
allowed if, by inspection of the types, a and b could not possibly be equal.

Example: Nonetheless, it is possible to wind up comparing values of different
numeric types. Even though, say, ® and OL represent the same number, they are
different values and of different types, and hence, ® = OL. The expression § ==

OL does not compile. However, if you hide type information from X10, you can
get a similar expression to compile:

val a : Any = 0;
val b : Any OL;
assert a != b;

e Numbers of different base types cannot be equal, and thus cannot compared
for equality. 100==100L is a static error. To compare numbers, explicitly
cast them to the same type: 100 as Long == 100L.

e Indeed, structs of different types cannot be equal, and so they cannot be
compared for equality.

e For objects, the story is different. Unconstrained object types can always
be compared for equality. Given objects of unrelated classes a:Person
and b:Theory, a==b could be true if a==null and b==null. Despite this,

11.21. ALLOCATION 189

a==b is a static error, because it is generally a programming mistake. a
as Object == b as Object can be used to express the equality, if it is
necessary.

e Constraints are ignored in determining whether an equality is statically al-
lowed. For example, the following is allowed:

def m(a:Int{self==1}, b:Int{self==2}) = (a==b);

e Explicit casts erase type information. If you wanted to have a comparison
a==b for a:Person{self!=null} and b:Theory, you could write it as
a as Object == b as Object. It would, of course, return false, but it
would not be a compiler errorE] A struct and an object may both be cast to
Any and compared for equality, though they, too, will always be different.

11.21 Allocation

ObCreationExp ::= new TypeName TypeArgs® (ArgumentList’) ClassBody’
| Primary . new Id TypeArgs’ (ArgumentList’) ClassBody’
| FullyQualifiedName . new Id TypeArgs’ (ArgumentList’)
ClassBody’

An allocation expression creates a new instance of a class and invokes a construc-
tor of the class. The expression designates the class name and passes type and
value arguments to the constructor.

The allocation expression may have an optional class body. In this case, an anony-
mous subclass of the given class is allocated. An anonymous class allocation may
also specify a single super-interface rather than a superclass; the superclass of the
anonymous class is x10.1lang.0Object.

If the class is anonymous—that is, if a class body is provided—then the construc-
tor is selected from the superclass. The constructor to invoke is selected using the
same rules as for method invocation (§11.6).

The type of an allocation expression is the return type of the constructor invoked,
with appropriate substitutions of actual arguments for formal parameters, as spec-

ified in §11.6

!Code generators often find this trick to be useful.

190 CHAPTER 11. EXPRESSIONS

§8.13.1|describes allocation expressions for inner classes.

It is illegal to allocate an instance of an abstract class. The usual visibility rules
apply to allocations: it is illegal to allocate an instance of a class or to invoke a
constructor that is not visible at the allocation expression.

Note that instantiating a struct type can use function application syntax; new is
optional. As structs do not have subclassing, there is no need or possibility of a
ClassBody.

11.22 Casts and Conversions

CastExp ::= Primary 20.30

| ExpName
| CastExp as Type

The cast and conversion operation e as T may be used to force an expression
into a given type T, if is permissible at run time, and either a compile-time error
or a runtime exception (x10.1lang.TypeCastException) if it is not.

The e as T operation comes in two forms. Which form applies depends on both
the source type (the type of e) and the target type T.

e Cast: A cast makes a value have a different type, without changing the
value’s identity. For example, "a String" as Object simply reconsid-
ers the String object as an Object. This cast does not need to do any
run-time computation, since every String is an Object; a cast in the re-
verse direction, from Object to String, would need a run-time check that
the Object was in fact a String. Casts are all system-defined, following
from the X10 type system.

e Conversions: A conversion takes a value of one type and produces one of
a different type which, conceptually, means the same thing. For example,
1 as Float is a conversion. It performs some computation on 1 to come
up with a Float value. Conversions are all library- or user-defined.

11.22.1 Casts

A cast v as T2 re-imagines a value v of one type T1 as being a value of another
type T2. The value itself does not change, nor is a new value computed. The only

11.22. CASTS AND CONVERSIONS 191

run-time computation that happens is to check that v is indeed a value of type T2
(which, in many cases, is unnecessary), and auto-boxing (§9.2)).

Casts to generic types can be unsound. The instantiations of the generic types
have constraints, but the runtime does not preserve the representation of these

types. See §4.5.5|for more details.

There are two forms of casts. Upcasts happen when T1 <: T2, that is, when
a value is being cast to a more general type. Upcasts often don’t require any
runtime computation at all, since, if T1 <: T2 <: Object, every value of type
T1 is automatically one of type T2. For example, "A String" as Object is an
upcast: every String is already an Object, and no work need be done to make it
one. Other upcasts may require auto-boxing, such as 1 as Any.

Downcasts are casts which are not upcasts. Often they are recasting something
from a more general to a more specific type, though casts that cross the type
hierarchy laterally are also called downcasts.

val ob : Object = "a String" as Object; // upcast

val st : String = ob as String; // downcast
assert st == ob;
Example:

In the following example, Snack and Crunchy are unrelated interfaces: neither
inherits from the other. Some objects are both; some are one but not the other.
Casting from a Crunchy to a Snack requires confirming that the value being cast
is indeed a Snack.

interface Snack {}
interface Crunchy {}
class Pretzel implements Snack, Crunchy{}
class Apricot implements Snack{}
class Gravel implements Crunchy{}
class Example{
def example(crunchy : Crunchy) {
if (crunchy instanceof Snack) {
val snack = crunchy as Snack;

Py}

An upcast v as T2 requires no computation. A downcast v as T2 requires test-
ing that v really is a value of type T2. In either case, the cast returns the value v;
casts do not change value identity.

192 CHAPTER 11. EXPRESSIONS

When evaluating E as T{c}, first the value of E is converted to type T (which
may fail), and then the constraint {c} is checked (which may also fail).

e If T is a class, then the first half of the cast succeeds if the run-time value of
E is an instance of class T, or of a subclass.

e If T is an interface, then the first half of the cast succeeds if the run-time
value of E is an instance of a class or struct implementing T.

e If T is a struct type, then the first half of the cast succeeds if the run-time
value of E is an instance of T.

e If T is a function type, then the first half of the cast succeeds if the run-time
value of X is a function of that type, or an object or struct which implements
it.

If the first half of the cast succeeds, the second half — the constraint {c} — must
be checked. In general this will be done at runtime, though in special cases it can
be checked at compile time. For example, n as Int{self != w} succeedsifn

I= w— even if w is a value read from input, and thus not determined at compile
time.

The compiler may forbid casts that it knows cannot possibly work. If there is no
way for the value of E to be of type T{c}, then E as T{c} can result in a static
error, rather than a runtime error. For example, 1 as Int{self==2} may fail
to compile, because the compiler knows that 1, which has type Int{self==1},
cannot possibly be of type Int{self==2}.

If, for some reason, you need to write one of these forbidden casts, cast to Any
first. (1 as Any) as Int{self==2} always returns false, but compiles.

11.22.2 Explicit Conversions

Explicit conversions are written with the same syntax as casts: v as T2. Explicit
conversions transform a value of one type T1 to an unrelated type T2. Unlike
casts, conversions do execute code, and may (and generally do) return new values.

Explicit conversions do not arise spontaneously, as casts do. They may be pro-
grammed directly, using the operator syntax of §8.7.3] Implicit coercions can

11.22. CASTS AND CONVERSIONS 193

also be called explicitly as conversions. (The reverse is not true — explicit conver-
sions cannot be used as implicit conversions.)

The numeric types in x10 . 1ang have explicit conversions, as described in §11.23.1
These conversions enable 1 as Float and the like.

Example: The following class has an explicit conversion from Int to Knot, and
an implicit one from String to Knot. a uses the explicit conversion, b uses the
implicit coercion, and c uses the implicit coercion explicitly.

class Knot(s:String){
public def is(t:String):Boolean = s.equals(t);
// explicit conversion
public static operator (n:Int) as Knot = new Knot("knot-
// implicit coercion
public static operator (s:String):Knot
// using them
public static def example() {
val a : Knot = 1 as Knot;
val b : Knot = "frayed";
val ¢ : Knot = "three" as Knot;

new Knot(s);

+ n);

assert a.is("knot-1") && b.is("frayed") && c.is("three");

11.22.3 Resolving Ambiguity

If v as T could either be a cast or an explicit coercion, X10 treats its as a cast.
With the VERBOSE compiler flag, this is flagged as a warning.

Example: The Person class provides an explicit conversion from its subclass
Fop to itself. However, since Fop is a subclass of Person, using the as operator
invokes the upcast, rather than the explicit conversion. This is visible in the ex-
ample because the user-defined operator £ as Person returns new Person()
(just like the asPerson method), while the upcast returns £ itself.

class Person {
static operator (f:Fop) as Person = new Person();
static def asPerson(f:Fop) = new Person();
public static def example() {

194 CHAPTER 11. EXPRESSIONS

val £ = new Fop(Q);
val cast = f as Person; // WARNING on this line

assert cast == f;
val meth = asPerson(f);
assert meth != f;

}
}

class Fop extends Person {}

The definition of an explicit conversion in this case is of little value, since any use
of it in the £ as Person syntax will invoke the upcast.

11.23 Coercions and conversions

A coercion does not change object identity; a coerced object may be explicitly
coerced back to its original type through a cast. A conversion may change object
identity if the type being converted to is not the same as the type converted from.

X10 permits both user-defined coercions and conversions (§11.23.2).

11.23.1 Coercions

CastExp ::= Primary 20.30
| ExpName
| CastExp as Type

Subsumption coercion. A value of a subtype may be implicitly coerced to any
supertype.

Example: [fChild <: Personandval rhys:Child, then rhys may be used
in any context that expects a Person. For example,

class Example {

def greet(Person) = "Hi!";

def example(rhys: Child) {
greet(rhys);

}

}

11.23. COERCIONS AND CONVERSIONS 195

Similarly, 2 (whose innate type is Int{self==2}) is usable in a context requiring
a non-zero integer (Int{self != 0}).

Explicit Coercion (Casting with as) All classes and interfaces allow the use of
the as operator for explicit type coercion. Any class or interface may be cast to
any interface. Any interface may be cast to any class. Also, any interface can be
cast to a struct that implements (directly or indirectly) that interface.

Example: In the following code, a Person is cast to Childlike. There is
nothing in the class definition of Person that suggests that a Person can be
Childlike. However, the Person in question, p, is actually a HappyChild —a
subclass of Person — and is, in fact, Childlike.

Similarly, the Childlike value cl is cast to Happy. Though these two interfaces
are unrelated, the value of cl is, in fact, Happy. And the Happy value hc is cast
to the class Child, though there is no relationship between the two, but the actual
value is a HappyChild, and thus the cast is correct at runtime.

Cyborg is a struct rather than a class. So, it cannot have substructs, and all the in-
terfaces of all Cyborgs are known: a Cyborg is Personable, but not Childlike
or Happy. So, it is correct and meaningful to cast r to Personable. There is no
way that a cast to Childlike could succeed, so r as Childlike is a static
error.

interface Personable {}
class Person implements Personable {}
interface Childlike extends Personable {}
class Child extends Person implements Childlike {}
struct Cyborg implements Personable {}
interface Happy {}
class HappyChild extends Child implements Happy {}
class Example {
static def example() {

var p : Person = new HappyChild(Q);

// class -> interface

val cl : Childlike = p as Childlike;

// interface -> interface

val hc : Happy = cl as Happy;

// interface -> class

val ch : Child = hc as Child;

196 CHAPTER 11. EXPRESSIONS

var r : Cyborg = Cyborg(Q);
val rl : Personable = r as Personable;
// ERROR: val no = r as Childlike;
}
3

If the value coerced is not an instance of the target type, and no coercion operators
that can convert it to that type are defined, a ClassCastException is thrown.
Casting to a constrained type may require a run-time check that the constraint is
satisfied.

It is a static error, rather than a ClassCastException, when the cast is statically
determinable to be impossible.

Effects of explicit numeric coercion Coercing a number of one type to another
type gives the best approximation of the number in the result type, or a suitable
disaster value if no approximation is good enough.

e Casting a number to a wider numeric type is safe and effective, and can be
done by an implicit conversion as well as an explicit coercion. For example,
4 as Long produces the Long value of 4.

e Casting a floating-point value to an integer value truncates the digits after
the decimal point, thereby rounding the number towards zero. 54.321 as
Int is 54, and -54.321 as Int is -54. If the floating-point value is too
large to represent as that kind of integer, the coercion returns the largest or
smallest value of that type instead: 1e110 as Intis Int.MAX_VALUE, viz.
2147483647.

e Casting a Double to a Float normally truncates binary digits:
0.12345678901234567890 as Float is approximately 0.12345679f.
This can turn a nonzero Double into 0. 01, the zero of type Float: 1e-100

as Float is 0.0f. Since Doubles can be as large as about 1.79E308
and Floats can only be as large as about 3.4E38f, a large Double will be
converted to the special Float value of Infinity: 1e1l00 as Float is
Infinity.

e Integers are coerced to smaller integer types by truncating the high-order
bits. If the value of the large integer fits into the smaller integer’s range, this

11.23. COERCIONS AND CONVERSIONS 197

gives the same number in the smaller type: 12 as Byte is the Byte-sized
12, -12 as Byte is -12. However, if the larger integer doesn’t fit in the
smaller type, the numeric value and even the sign can change: 254 as
Byte is the Bytesized -2y.

e Casting an unsigned integer type to a signed integer type of the same size
(e.g., UInt to Int) preserves 2’s-complement bit pattern (e.g.,
UInt.MAX_VALUE as Int == -1. Casting an unsigned integer type to a
signed integer type of a different size is equivalent to first casting to an
unsigned integer type of the target size, and then casting to a signed integer

type.

e Casting a signed integer type to an unsigned one is similar.

User-defined Coercions

Users may define coercions from arbitrary types into the container type B, and
coercions from B to arbitrary types, by providing static operator definitions
for the as operator in the definition of B.

Example:
class Bee {
public static operator (x:Bee) as Int = 1;
public static operator (x:Int) as Bee = new Bee();

def example() {
val b:Bee = 2 as Bee;
assert (b as Int) == 1;
}
3

11.23.2 Conversions

Widening numeric conversion. A numeric type may be implicitly converted
to a wider numeric type. In particular, an implicit conversion may be performed
between a numeric type and a type to its right, below:

Byte < Short < Int < Long < Float < Double
UByte < UShort < UInt < UlLong

198 CHAPTER 11. EXPRESSIONS

Furthermore, an unsigned integer value may be implicitly coerced to a signed
type large enough to hold any value of the type: UByte to Short, UShort to
Int, UInt to Long. There are no implicit conversions from signed to unsigned
numbers, since they cannot treat negatives properly.

There are no implicit conversions in cases when overflow is possible. For exam-
ple, there is no implicit conversion between Int and UInt. If it is necessary to
convert between these types, use n as Int orn as UInt, generally with a test
to ensure that the value will fit and code to handle the case in which it does not.

String conversion. Any value that is an operand of the binary + operator may
be converted to String if the other operand is a String. A conversion to String
is performed by invoking the toString() method.

User defined conversions. The user may define implicit conversion operators
from type A to a container type B by specifying an operator in B’s definition of the
form:

public static operator (r: A): T = ...

The return type T should be a subtype of B. The return type need not be specified
explicitly; it will be computed in the usual fashion if it is not. However, it is good
practice for the programmer to specify the return type for such operators explicitly.
The return type can be more specific than simply B, for cases when there is more
information available.

Example: The code for x10.1lang.Point contains a conversion from one-
dimensional Arrays of integers to Points of the same length:

public operator (r: Array[Int](1)): Point(r.size)
= make(r);

This conversion is used whenever an array of integers appears in a context that
requires a Point, such as subscripting. Note that a requires a Point of rank
2 as a subscript, and that a two-element Array (like [2,4]) is converted to a
Point (2).

val a = new Array[String]((2..3) * (4..5), "hil");
a([2,4]) = "converted!";

11.24. INSTANCEOF 199

11.24 instanceof

X10 permits types to be used in an in instanceof expression to determine whether
an object is an instance of the given type:

RelationalExp ::= ShiftExp
| HasZeroConstraint
| SubtypeConstraint
| Relational Exp < ShiftExp
| RelationalExp > ShiftExp
| RelationalExp <= ShiftExp
| RelationalExp >= ShiftExp
| RelationalExp instanceof Type

In the above expression, Type is any type. Atrun time, the result of e instanceof

T is true if the value of e is an instance of type T. Otherwise the result is false.
This determination may involve checking that the constraint, if any, associated
with the type is true for the given expression.

For example, 3 instanceof Int{self==x} is an overly-complicated way of
saying 3==X.

However, it is a static error if e cannot possibly be an instance of C{c}; the com-
piler will reject 1 instanceof Int{self == 2} because 1 can never satisfy
Int{self == 2}. Similarly, 1 instanceof String is a static error, rather
than an expression always returning false.

If x instanceof T returns true for some value x and type T, then x as T will
evaluate normally.

Limitation: X10 does not currently handle instanceof of generics in the way
you might expect. For example, r instanceof Array[Int{self != 0}] does
not test that every element of r is non-zero; instead, the compiler gives an unsound
cast warning.

11.24.1 Nulls in Constraints in as and instanceof
Both as and instanceof expressions can throw NullPointerExceptions, if

the constraints involve selecting fields or properties of variables which are bound
tonull.

200 CHAPTER 11. EXPRESSIONS

These operations give some guarantees for any type T, constraint c, and class
SomeObj with an a field:

1. null instanceof T always returns false. It never throws an exception.
It never returns true, not even in cases where null could be assigned to a
variable of type T.

2. null can be assigned to a variable of type SomeObj{self.a==b}, or, more
broadly, to a variable of a constrained object type whose constraint does not
explicitly exclude null. This is the case even though null.a==b would
throw a NullPointerException rather than evaluate to either true ‘ or
false.

3. If x instanceof T returns true, then x as T is a cast rather than an
explicit conversion, and will succeed and have static type T.

4. 1If the static type of x is T, then x instanceof T and x as T will do one
of these:

e Succeed, with x instanceof T returning true, and x as T being a
cast and returning value of type T; or
e Throw a NullPointerException.

e If x==null, then x instanceof T will always return false, and x
as T will either return anull of type T, or, if T has a constraint which
tries to extract a field of x, will throw a NullPointerException.

5. If x instanceof SomeObj{self.a==b} is true, then x.a==Db evaluates
to true (rather than a null pointer exception). Indeed, in general, if x
instanceof T{c} succeeds, then cc evaluates to true, where cc is ¢ with
suitable occurrences of self replaced by x.

11.25 Subtyping expressions

SubtypeConstraint ::= Type <: Type 20. 149
| Type :> Type

The subtyping expression T; <: T, evaluates to true if T; is a subtype of T,.

11.26. ARRAY CONSTRUCTORS 201

The expression T; :> T, evaluates to true if T, is a subtype of T;.

The expression T; == T, evaluates to true if T, is a subtype of Ty and if T5 is a
subtype of T;.

Example: Subtyping expressions are particularly useful in giving constraints
on generic types. x10.util.Ordered[T] is an interface whose values can be
compared with values of type T. In particular, T <: x10.util.Ordered[T] is
true if values of type T can be compared to other values of type T. So, if we wish
to define a generic class OrderedList[T1, of lists whose elements are kept in the
right order, we need the elements to be ordered. This is phrased as a constraint
onT:

class OrderedList[T]{T <: x10.util.Ordered[T]} {
// ...
ks

11.26 Array Constructors

Primary = [ArgumentList’]
X10 includes short syntactic forms for constructing one-dimensional arrays. En-
close some expressions in brackets to put them in an array:

val ints <: Array[Int](l1l) = [1,3,7,21];

The expression [e;, ..., e,] produces an n-element Array[T] (1), where T is
the computed common supertype (§4.10) of the types of of the expressions e;.

Example: The type of [0,1,2] is Array[Int](1). The type of [0] is
Array[Int{self==03}](1).

To make an Array[Int] (1) containing just a ©, use [0 as Int]. The as Int
masks more detailed type information, such as the fact that 0 is zero.

Example: Occasionally one does actually need Array[Int{self==0}](1),
or, say, Array[Eel{self !'= null}](1), an array of non-null Eels. For these
cases, cast one or more of the elements of the array to the desired type, and the
array constructor will do the right thing.

val zero <: Array[Int{self == 0}](1)
= [0];

202 CHAPTER 11. EXPRESSIONS

val nonl <: Array[Int{self != 1}](1)
= [0 as Int{self != 1}];
val eels <: Array[Eel{self != null}](1)
= [new Eel() as Eel{self != null},
new Eel(), new Eel()];

11.27 Parenthesized Expressions

If E is any expression, (E) is an expression which, when evaluated, produces the
same result as E.

Example: The main use of parentheses is to write complex expressions for which
the standard precedence order of operations is not appropriate: 1+2%3 is 7, but
(1+2)*3 is 9.

Similarly, but perhaps less familiarly, parentheses can disambiguate other ex-
pressions. In the following code, funny . £ is a field-selection expression, and so
(funny. £) O means “select the f field from funny, and evaluate it”. However,
funny. £() means “evaluate the £ method on object funny.”

class Funny {
def £ O = 1;
val £ = O = 2;
static def example() {
val funny = new Funny(Q);
assert funny.f() == 1;
assert (funny.f) () == 2;
}
ks

Note that this does not mean that E and (E) are identical in all respects; for ex-
ample, if i is an Int variable, i++ increments i, but (i)++ is not allowed. ++ is
an assignment; it operates on variables, not merely values, and (i) is simply an
expression whose value is the same as that of 1.

12 Statements

This chapter describes the statements in the sequential core of X10. Statements
involving concurrency and distribution are described in

12.1 Empty statement

The empty statement ; does nothing.

Example: Sometimes, the syntax of X10 requires a statement in some position,
but you do not actually want to do any computation there. The following code
searches the array a for the value v, assumed to appear somewhere in a, and
returns the index at which it was found. There is no computation to do in the loop
body, so we use an empty statement there.

static def search[T](a: Array[T](1l), v: T):Int {
var i : Int;
for(i = a.region.min(®); a(i) != v; i++)

return i;

}

203

204 CHAPTER 12. STATEMENTS

12.2 Local variable declaration

LocVarDecln = Mods’ VarKeyword VariableDeclrs 20.105)
| Mods" VarDeclsWType
| Mods’ VarKeyword FormalDeclrs

LocVarDeclnStmt = LocVarDecln ; 20.106]

VarDeclsWType = VarDeclWType 20.176
| VarDeclsWType , VarDecIWType

VariableDeclrs ::=VariableDeclr 20.179
| VariableDeclrs , VariableDeclr

Variablelnitializer ::= Exp 20.180

FormalDeclrs = FormalDeclr 20.7

| FormalDeclrs , FormalDeclr

Short-lived variables are introduced by local variables declarations, as described
in Local variables may be declared only within a block statement (§12.3).
The scope of a local variable declaration is the subsequent statements in the block.

if (a > 1) {
val b = a/2;
var ¢ : Int = 0;
// b and c are defined here

}

// b and c are not defined here.

Variables declared in such statements shadow variables of the same name declared
elsewhere. A local variable of a given name, say x, cannot shadow another local
variable or parameter named x unless there is an intervening method, constructor,
initializer, or closure declaration.

Example: The following code illustrates both legal and illegal uses of shadow-
ing. Note that a shadowed field name x can still be accessed as this.x.

class Shadow{
var x : Int;
def this(x:Int) {
// Parameter can shadow field
this.x = x;
3
def example(y:Int) {

12.2. LOCAL VARIABLE DECLARATION 205

val x = "shadows a field";
// ERROR: val y = "shadows a param";
val z = "local";

for (a in [1,2,3]) {
// ERROR: val x = "can’t shadow local var";

}
async {
// ERROR: val x = "can’t shadow through async";
}
val £ = O = {
val x = "can shadow through closure";
X
};
class Local {
val f = atChere.next()){ val x = "can here"; x };
def this() { val x = "can here, too"; }
3

Example: Note that recursive definitions of local variables is not allowed. There
are few useful recursive declarations of objects and structs; X, in the following
example, has no meaningful definition. Recursive declarations of local functions
is forbidden, even though (like £ below) there are meaningful uses of it.

val x : Int = x + 1; // ERROR: recursive local declaration
val £ : (Int)=>Int

= (:Int) = (n<=2) ?1: £f(n-1) + £(n-2);

// ERROR: recursive local declaration

206 CHAPTER 12. STATEMENTS

12.3 Block statement

Block .= { BlockStmts’ }
BlockStmts ::= BlockInteriorStmt
| BlockStmts BlockInteriorStmt
BlockInteriorStmt ::= LocVarDeclnStmt
| ClassDecln
| StructDecln
| TypeDefDecln
| Stmt

20.2)5|
20.27

A block statement consists of a sequence of statements delimited by “{” and
“}”. When a block is evaluated, the statements inside of it are evaluated in or-
der. Blocks are useful for putting several statements in a place where X10 asks for
a single one, such as the consequent of an if, and for limiting the scope of local

variables.
if (b) {
// This is a block
val v = 1;
S1(v);
S2(v);
ks

12.4 Expression statement

Any expression may be used as a statement.

ExpStmt StmtExp ;
StmtExp = Assignment
| PrelncrementExp
| PreDecrementExp
| PostIncrementExp
| PostDecrementExp
| Methodlnvo
| ObCreationExp

20.62

20.14

12.5. LABELED STATEMENT 207

The expression statement evaluates an expression. The value of the expression is
not used. Side effects of the expression occur, and may produce results used by
following statements. Indeed, statement expressions which terminate without side
effects cannot have any visible effect on the results of the computation.

Example:

class StmtEx {
def this() {
x10.i0.Console.OUT.println("New StmtEx made"); }
static def call(Q) {
x10.i0.Console.OUT.println("call!™);}
def example() {
var a : Int = 0;
a =1; // assignment
new StmtEx(); // allocation
call(); // call

12.5 Labeled statement

LabeledStatement ::= Id : Statement

Statements may be labeled. The label may be used to describe the target of a
break statement appearing within a substatement (which, when executed, ends
the labeled statement), or, in the case of a loop, a continue as well (which, when
executed, proceeds to the next iteration of the loop). The scope of a label is the
statement labeled.

Example: The label on the outer for statement allows continue and break
statements to continue or break it. Without the label, continue or break would
only continue or break the inner for loop.

1bl : for (i in 1..10) {
for (j in i..10) {
if (a(i,j) == 0) break 1bl;
if (a(i,j) == 1) continue 1bl;
if (a(i,j) == a(j,i)) break 1bl;

208 CHAPTER 12. STATEMENTS

}

In particular, a block statement may be labeled: L:{S}. This allows the use of
break L within S to leave S, which can, if carefully used, avoid deeply-nested
ifs.

Example:

multiphase: {
if (lexists(filename)) break multiphase;
phasel(filename);
if (!suitable_for_phase_2(filename)) break multiphase;
phase2(filename);
if (!suitable_for_phase_3(filename)) break multiphase;
phase3(filename);

ks

// Now the file has been phased as much as possible

Limitation: Blocks cannot currently be labeled.

12.6 Break statement

BreakStmt ::= breakId’ ; 20.29

An unlabeled break statement exits the currently enclosing loop or switch state-
ment. A labeled break statement exits the enclosing statement with the given
label. It is illegal to break out of a statement not defined in the current method,
constructor, initializer, or closure. break is only allowed in sequential code.

Example: The following code searches for an element of a two-dimensional
array and breaks out of the loop when it is found:

var found: Boolean = false;
outer: for (var i: Int = 0; i < a.size; i++)
for (var j: Int = 0; j < a(i).size; j++)
if (@@ (@) == v) {
found = true;
break outer;

12.7. CONTINUE STATEMENT 209

12.7 Continue statement

ContinueStmt ::= continue Id’ ;

An unlabeled continue skips the rest of the current iteration of the innermost en-
closing loop, and proceeds on to the next. A labeled continue does the same to
the enclosing loop with that label. It is illegal to continue a loop not defined in the
current method, constructor, initializer, or closure. continue is only allowed in
sequential code.

12.8 If statement

IfThenStmt
IfThenElseStmt

if CExp) Stmt
if (Exp) Stmt else Stmt

An if statement comes in two forms: with and without an else clause.

The if-then statement evaluates a condition expression, which must be of type
Boolean. If the condition is true, it evaluates the then-clause. If the condition is
false, the if-then statement completes normally.

The if-then-else statement evaluates a Boolean expression and evaluates the then-
clause if the condition is true; otherwise, the else-clause is evaluated.

As is traditional in languages derived from Algol, the if-statement is syntactically
ambiguous. That is,

if (B1) if (B2) S1 else S2

could be intended to mean either

if (B1) { if (B2) S1 else S2 }

or

if (B1) {if (B2) S1} else S2

X10, as is traditional, attaches an else clause to the most recent if that doesn’t
have one. This example is interpreted as if (B1) { if (B2) S1 else S2 }.

20.90
20.89

210 CHAPTER 12. STATEMENTS

12.9 Switch statement

SwitchStmt = switch (Exp) SwitchBlock
SwitchBlock = { SwitchBlockGroups® SwitchLabels’ }
SwitchBlockGroups ::= SwitchBlockGroup

| SwitchBlockGroups SwitchBlockGroup
SwitchBlockGroup ::= SwitchLabels BlockStmts
SwitchLabels = SwitchLabel

| SwitchLabels SwitchLabel
SwitchLabel := case ConstantExp :

| default:

A switch statement evaluates an index expression and then branches to a case
whose value is equal to the value of the index expression. If no such case exists,
the switch branches to the default case, if any.

Statements in each case branch are evaluated in sequence. At the end of the
branch, normal control-flow falls through to the next case, if any. To prevent
fall-through, a case branch may be exited using a break statement.

The index expression must be of type Int. Case labels must be of type Int, Byte,
or Short, and must be compile-time constants. Case labels cannot be duplicated
within the switch statement.

Example: [In this switch, case 1 falls through to case 2. The other cases are
separated by breaks.

switch (i) {
case 1: println("one, and ");
case 2: println("two™);

break;

case 3: println("three");
break;

default: println("Something else");
break;

20.156

20.151

20.153

20.152

20.155]

20.154

12.10. WHILE STATEMENT 211

12.10 While statement

WhileStmt ::= while (Exp) Stmt 20.183

A while statement evaluates a Boolean-valued condition and executes a loop body
if true. If the loop body completes normally (either by reaching the end or via a
continue statement with the loop header as target), the condition is reevaluated
and the loop repeats if true. If the condition is false, the loop exits.

Example: A loop to execute the process in the Collatz conjecture (a.k.a. 3n+1
problem, Ulam conjecture, Kakutani’s problem, Thwaites conjecture, Hasse’s al-
gorithm, and Syracuse problem) can be written as follows:

while (n > 1) {
n=MmM9%2==1) 7?7 3*n+l1 : n/2;
ks

12.11 Do-while statement

DoStmt = do Stmtwhile (Exp) ;

A do-while statement executes the loop body, and then evaluates a Boolean-
valued condition expression. If true, the loop repeats. Otherwise, the loop exits.

12.12 For statement

ForStmt ::== BasicForStmt
| EnhancedForStmt
BasicForStmt = for (Forlnit’ ; Exp? ; ForUpdate?) Stmt
Forlnit = StmtExpList
| LocVarDecln
ForUpdate = StmtExpList
StmtExpList = StmtExp
| StmtExpList , StmtExp
EnhancedForStmt ::= for (Looplndex in Exp) Stmt

| for (Exp) Stmt

212 CHAPTER 12. STATEMENTS

for statements provide bounded iteration, such as looping over a list. It has two
forms: a basic form allowing near-arbitrary iteration, a la C, and an enhanced
form designed to iterate over a collection.

A basic for statement provides for arbitrary iteration in a somewhat more orga-
nized fashion than a while. The loop for(init; test; step)body is similar
to:

{
init;
while(test) {
body;
step;
}
ks

except that continue statements which continue the for loop will perform the
step, which, in the while loop, they will not do.

init is performed before the loop, and is traditionally used to declare and/or
initialize the loop variables. It may be a single variable binding statement, such
asvar i:Int = Q@ orvar i:Int=0, j:Int=100. (Note that a single variable
binding statement may bind multiple variables.) Variables introduced by init
may appear anywhere in the for statement, but not outside of it. Or, it may be
a sequence of expression statements, such as i=0, j=100, operating on already-
defined variables. If omitted, init does nothing.

test is a Boolean-valued expression; an iteration of the loop will only proceed if
test is true at the beginning of the loop, after init on the first iteration or after
step on later ones. If omitted, test defaults to true, giving a loop that will run
until stopped by some other means such as break, return, or throw.

step is performed after the loop body, between one iteration and the next. It
traditionally updates the loop variables from one iteration to the next: e.g., i++
and i++, j--. If omitted, step does nothing.

body is a statement, often a code block, which is performed whenever test is
true. If omitted, body does nothing.

An enhanced for statement is used to iterate over a collection, or other structure
designed to support iteration by implementing the interface Iterable[T]. The
loop variable must be of type T, or destructurable from a value of type T (§5).

12.12. FOR STATEMENT 213

Each iteration of the loop binds the iteration variable to another element of the
collection. The loop for(x in c)S behaves like:

val iterator: Iterator[T] = c.iterator();
while (iterator.hasNext()) {

val x : T = iterator.next();

SO;
ks

A number of library classes implement Iterable, and thus can be iterated over.
For example, iterating over a Region iterates the Points in the region, and iterat-
ing over an Array iterates over the Points at which the array is defined.

The type of the loop variable may be supplied as x <: T. In this case the iterable
¢ must have type Iterable[U} for some U <: T, and x will be given the type U.

Example: This loop adds up the elements of a List[Int]. Note that iterating
over a list yields the elements of the list, as specified in the List API.

static def sum(a:x10.util.List[Int]):Int {
var s : Int = 0;
for(x in a) s += x;
return s;

}

The following code sums the elements of an integer array. Note that the for loop
iterates over the indices of the array, not the elements, as specified in the Array
API.

static def sum(a: Array[Int]): Int {
var s : Int = 0;
for(p in a) s += a(p);
return s;

}

Iteration over an IntRange (§/6.2) is quite common. This allows looping while
varying an integer index:

var sum : Int = 0;

for(i in 1..10) sum += i;

assert sum == 55;

Iteration variables have the for statement as scope. They shadow other variables
of the same names.

214 CHAPTER 12. STATEMENTS

12.13 Return statement

ReturnStmt = return Exp’ ; 20.140

Methods and closures may return values using a return statement. If the method’s
return type is explicitely declared void, the method must return without a value;
otherwise, it must return a value of the appropriate type.

Example: The following code illustrates returning values from a closure and a
method. The return inside of closure returns from closure, not from method.

def method(x:Int) {
val closure = (y:Int) => {return x+y;};
val res = closure(0);
assert res == X;
return res == X;

12.14 Assert statement

AssertStmt = assert Exp ; 20.10
| assert Exp: Exp ;

The statement assert E checks that the Boolean expression E evaluates to true,
and, if not, throws an x10.lang.Error exception. The annotated assertion state-
ment assert E : F; checks E, and, if it is false, throws an x10.lang.Error
exception with F’s value attached to it.
Example: The following code compiles properly.
class Example {
public static def main(argv:Array[String] (1)) {
val a = 1;
assert a != 1 : "Changed my mind about a.";

}
}

However, when run, it prints a stack trace starting with

x10.lang.Error: Changed my mind about a.

12.15. EXCEPTIONS IN X10 215

12.15 Exceptions in X10

X10 programs can throw Exceptions to indicate unusual or problematic situa-
tions; this is abrupt termination. Exceptions, as data values, are objects which
which inherit from x10.lang.Throwable. Exceptions may be thrown inten-
tionally with the throw statement. Many primitives and library functions throw
exceptions if they encounter problems; e.g., dividing by zero throws an instance
of x10.lang.ArithmeticException.

When an exception is thrown, statically and dynamically enclosing try-catch
blocks in the same activity can attempt to handle it. If the throwing statement
in inside some try clause, and some matching catch clause catches that type
of exception, the corresponding catch body will be executed, and the process
of throwing is finished. If no statically-enclosing try-catch block can handle
the exception, the current method call returns (abnormally), throwing the same
exception from the point at which the method was called.

This process continues until the exception is handled or there are no more calling
methods in the activity. In the latter case, the activity will terminate abnormally,
and the exception will propagate to the activity’s root; see §14.1|for details.

Unlike some statically-typed languages with exceptions, X10’s exceptions are
all unchecked. Methods do not declare which exceptions they might throw; any
method can, potentially, throw any exception.

12.16 Throw statement

ThrowStmt ::= throw Exp ;

throw E throws an exception whose value is E, which must be an instance of a
subtype of x10.lang.Throwable.

Example: The following code checks if an index is in range and throws an
exception if not.

if (A <0 |] 1> x.size)
throw new MyIndexOutOfBoundsException();

216 CHAPTER 12. STATEMENTS

12.17 Try-catch statement

TryStmt = try Block Catches

| try Block Catches’ Finally
Catches = CatchClause

| Catches CatchClause
CatchClause = catch (Formal) Block
Finally := finally Block

Exceptions are handled with a try statement. A try statement consists of a try
block, zero or more catch blocks, and an optional finally block.

First, the try block is evaluated. If the block throws an exception, control trans-
fers to the first matching catch block, if any. A catch matches if the value of the
exception thrown is a subclass of the catch block’s formal parameter type.

The finally block, if present, is evaluated on all normal and exceptional control-
flow paths from the try block. If the try block completes normally or via a
return, a break, or a continue statement, the finally block is evaluated, and
then control resumes at the statement following the try statement, at the branch
target, or at the caller as appropriate. If the try block completes exceptionally,
the finally block is evaluated after the matching catch block, if any, and when
and if the finally block finishs normally, the exception is rethrown.

The parameter of a catch block has the block as scope. It shadows other variables
of the same name.

Example: The example () method below executes without any assertion errors

class Example {
class ThisExn extends Throwable {}
class ThatExn extends Throwable {}
var didFinally : Boolean = false;
def example(b:Boolean) {
try {
throw b ? new ThatExn() : new ThisExn(Q);
}
catch(ThatExn) {return true;}
catch(ThisExn) {return false;}
finally {
this.didFinally = true;

12.18. ASSERT 217

}

}
static def doExample() {

val e = new Example();
assert e.example(true);
assert e.didFinally == true;
h
ks

Limitation: Constraints on exception types in catch blocks are not currently
supported.

12.18 Assert

The assert statement assert B; checks that the Boolean expression B evaluates
to true. If so, computation proceeds. If not, it throws x10.lang.AssertionError.

The extended form assert B:A; is similar, but provides more debugging infor-
mation. The value of the expression A is available as part of the AssertionError,
e.g., to be printed on the console.

Example: assert is useful for confirming properties that you believe to be true
and wish to rely on. In particular, well-chosen asserts make a program robust
in the face of code changes and unexpected uses of methods. For example, the
following method compute percent differences, but asserts that it is not dividing
by zero. If the mean is zero, it throws an exception, including the values of the
numbers as potentially useful debugging information.

static def percentDiff(x:Double, y:Double) {
val diff = x-y;
val mean = (x+y)/2;
assert mean != 0.0 : [x,y];
return Math.abs(100 * (diff / mean));
3

At times it may be considered important not to check assert statements; e.g.,
if the test is expensive and the code is sufficiently well-tested. The -noassert
command line option causes the compiler to ignore all assert statements.

13 Places

An X10 place is a repository for data and activities, corresponding loosely to a
process or a processor. Places induce a concept of “local”. The activities running
in a place may access data items located at that place with the efficiency of on-chip
access. Accesses to remote places may take orders of magnitude longer. X10’s
system of places is designed to make this obvious. Programmers are aware of the
places of their data, and know when they are incurring communication costs, but
the actual operation to do so is easy. It’s not hard to use non-local data; it’s simply
hard to to do so accidentally.

The set of places available to a computation is determined at the time that the
program is started, and remains fixed through the run of the program. See the
README documentation on how to set command line and configuration options to
set the number of places.

Places are first-class values in X10, as instances x10.lang.Place. Place pro-
vides a number of useful ways to query places, such as Place.places, which is
a Sequence[Place] of the places available to the current run of the program.

Objects and structs (with one exception) are created in a single place — the place
that the constructor call was running in. They cannot change places. They can be
copied to other places, and the special library struct GlobalRef allows values at
one place to point to values at another.

13.1 The Structure of Places

Places are numbered O through Place.MAX_PLACES-1; the number is stored in
the field pl.1id. The Sequence[Place] Place.places() contains the places
of the program, in numeric order. The program starts by executing a main method
at Place.FIRST_PLACE, which is Place.places() (0); see

218

13.2. HERE 219

Operations on places include pl.next(), which gives the next entry (looping
around) in Place.places and its opposite pl.prev(). In multi-place execu-
tions, here.next () is a convenient way to express “a place other than here”.
There are also a number of tests, like pl.isSPE() and pl.isCUDA(), which test
for particular kinds of processors.

13.2 here

The variable here is always bound to the place at which the current computation is
running, in the same way that this is always bound to the instance of the current
class (for non-static code), or self is bound to the instance of the type currently
being constrained. here may denote different places in the same method body or
even the same expression, due to place-shifting operations.

This is not unusual for automatic variables: self denotes two different values
(one List, one Int) when one describes a non-null list of non-zero numbers
as List[Int{self!=0}]{self!=null}. In the following code, here has one
value at h0, and a different one at h1 (unless there is only one place).

val h® = here;

at (here.next()) {
val hl = here;
assert (h0® != hl);

3

(Similar examples show that self and this have the same behavior: self can
be shadowed by constrained types appearing inside of type constraints, and this
by inner classes.)

The following example looks through a list of references to Things. It finds those
references to things that are here, and deals with them.

public static def deal(things: List[GlobalRef[Thing]]) {
for(gr in things) {
if (gr.home == here) {
val grHere =
gr as GlobalRef[Thing]{gr.home == here};
val thing <: Thing = grHere(Q);
dealWith(thing);

220 CHAPTER 13. PLACES

13.3 at: Place Changing

An activity may change place synchronously using the at statement or at expres-
sion. Like any parallel operation, it is potentially expensive, as it requires, at a
minimum, two messages and the copying of all data used in the operation, and
must be used with care — but it provides the basis for multicore programming in
X10.

AtStmt
AtExp

at (Exp) Stmt 20.20)
at (Exp) ClosureBody 20. 19,

The PlaceExp must be an expression of type Place or some subtype.

Example: The following example creates an array a located here, and copies
it to another place. a in the second place (here.next()) refers to the copy.
The copy is modified and examined. After the at finishes, the original is also
examined, and (since only the copy, not the original, was modified) is observed to
be unchanged.

val a = [1,2,3];
at(here.next()) {
a(l) = 4;
assert a(0®)==1 && a(l)==4 && a(2)==3;
ks
assert a(@®)==1 && a(l)==2 && a(2)==3;

13.3.1 Copying Values

An activity executing at (q) S at a place p evaluates q at place p, which should be
a Place. It then moves to place q to execute S. The values variables that S refers
to are copied (§13.3.2) to g, and bound to the variables of the same name. If the
at is inside of an instance method and S uses this, this is copied as well. Note
that a field reference this.fld or a method call this.meth() will cause this

13.3. AT: PLACE CHANGING 221

to be copied — as will their abbreviated forms £1d and meth(), despite the lack
of a visible this.

Note that the value obtained by evaluating q is not necessarily distinct from p
(e.g., g may be here). This does not alter the behavior of at. at(here)S will
copy all the values mentioned in S, even though there is no actual change of place,
and even though the original values already exist there.

On normal termination of S control returns to p and execution is continued with
the statement following at (q) S. If S terminates abruptly with exception E, E
is serialized into a buffer, the buffer is communicated to p where it is deserialized
into an exception E1 and at (p) S throws E1.

Since at(p) S is a synchronous construct, usual control-flow constructs such as
break, continue, return and throw are permitted in S. All concurrency related
constructs — async, finish, atomic, when are also permitted.

The at-expression at (p)E is similar, except that, in the case of normal termina-
tion of E, the value that E produces is serialized into a buffer, transported to the
starting place, and deserialized, and the value of the at-expression is the result of
deserialization.

Limitation: X10 does not currently allow break, continue, or return to exit
from an at.

13.3.2 How at Copies Values

The values mentioned in S are copied to place p by at(p)S as follows.

First, the original-expressions are evaluated to give a vector of X10 values. Con-
sider the graph of all values reachable from these values (except for transient

fields (§13.3.5] GlobalRefs (§13.3.6)); also custom serialization (§13.3.2| may al-

ter this behavior)).

Second this graph is serialized into a buffer and transmitted to place q. Third, the
vector of X10 values is re-created at q by deserializing the buffer at q. Fourth, S
is executed at g, in an environment in which each variable v declared in F refers
to the corresponding deserialized value.

Note that since values accessed across an at boundary are copied, the program-
mer may wish to adopt the discipline that either variables accessed across an at
boundary contain only structs or stateless objects, or the methods invoked on them
do not access any mutable state on the objects. Otherwise the programmer has to

222 CHAPTER 13. PLACES

ensure that side effects are made to the correct copy of the object. For this the
struct x10.lang.GlobalRef[T] is often useful.

Serialization and deserialization.

The X10 runtime provides a default mechanism for serializing/deserializing an
object graph with a given set of roots. This mechanism may be overridden by
the programmer on a per class or struct basis as described in the API documen-
tation for x10.10.CustomSerialization. The default mechanism performs
a deep copy of the object graph (that is, it copies the object or struct and, recur-
sively, the values contained in its fields), but does not traverse or copy transient
fields. transient fields are omitted from the serialized data. On deserialization,
transient fields are initialized with their default values (§4.7). The types of
transient fields must therefore have default values.

A struct s of type x10.lang.GlobalRef[T] [13.3.6] is serialized as a unique
global reference to its contained object o (of type T). Please see the documen-
tation of x10.1lang.GlobalRef[T] for more details.

13.3.3 at and Activities

at(p)S does not start a new activity. It should be thought of as transporting the
current activity to p, running S there, and then transporting it back. async is the
only construct in the language that starts a new activity. In different contexts, each
one of the following makes sense: (1) async at(p) S (spawn an activity locally
to execute S at p; here p is evaluated by the spawned activity) , (2) at(p) async
S (evaluate p and then at p spawn an activity to execute S), and, (3) async at(p)
async S. In most cases, async at(p) Sis preferred to at(p) async S, since
the former returns instantly, but the latter blocks waiting for the remote activity to
be spawned.

Since at (p) S does not start a new activity, S may contain constructs which only
make sense within a single activity. For example,

for(x in globalRefsToThings)
if (at(x.home) x().isNice())
return x(0);

13.3. AT: PLACE CHANGING 223

returns the first nice thing in a collection. If we had used async at(x.home),
this would not be allowed; you can’t return from an async.

Limitation: X10 does not currently allow break, continue, or return to exit
from an at.

13.3.4 Copying from at

at(p)S copies data required in S, and sends it to place p, before executing S there.
The only things that are not copied are values only reachable through GlobalRefs
and transient fields, and data omitted by custom serialization.

Example:

val ¢ = new Cell[Int](9); // (1)

at (here) { // (2)
assert(c() == 9); // (3)
c.set(8); // (4
assert(c() == 8); // (5)

}

assert(c() == 9); // (6)

The at statement copies the Cell and its contents. After (1), c is a Cell con-
taining 9; call that cell ¢, At (2), that cell is copied, resulting in another cell cy
whose contents are also 9, as tested at (3). (Note that the copying behavior of at
happens even when the destination place is the same as the starting place— even
with at Chere).) At (4), the contents of cy are changed to 8, as confirmed at (5);
the contents of ¢, are of course untouched. Finally, at (), outside the scope of
the at started at line (2), c refers to its original value c, rather than the copy c.

The at statement induces a deep copy. Not only does it copy the values of vari-
ables, it copies values that they refer to through zero or more levels of reference.
Structures are preserved as well: if two fields x. f and x . g refer to the same object
o1 1n the original, then x. f and x.g will both refer to the same object o, in the
copy.

Example: In the following variation of the preceding example, a’s original
value a, is an array with two references to the same Cell[Int] c,. The fact that
a1(0) and a,(1) are both identical to ¢, is demonstrated in (A)-(C), as ay(0) is
modified and a,(1) is observed to change. In (D)-(F), the copy as is tested in
the same way, showing that as(0) and as(1) both refer to the same Cell[Int] cs.

224 CHAPTER 13. PLACES

However, the test at (G) shows that c5 is a different cell from cy, because changes
to co did not propagate to cy.

val ¢ = new Cell[Int](5);

val a : Array[Cell[Int]](1) = [c,c as Cell[Int]l];

assert(a(® () == 5 & a(1)) == 5); // (A)
c.set(6); // (B)
assert(a(® () == 6 && a(l)() == 6); // (O
at(Chere) {
assert(a(® (O ==6 & a(1)(= 6); // (D)
c.set(7); // (E)

assert(a(® () =7 & a(lDO = 7); // (F)
}
assert(a(® (O == 6 && a(1)(== 6); // (G

13.3.5 Copying and Transient Fields

Recall that fields of classes and structs marked transient are not copied by at.
Instead, they are set to the default values for their types. Types that do not have
default values cannot be used in transient fields.

Example: Every Trans object has an a-field equal to 1. However, despite
the initializer on the b field, it is not the case that every Trans has b==2. Since
b is transient, when the Trans value this is copied at at(here){...} in
example(), its b field is not copied, and the default value for an Int, 0, is used
instead. Note that we could not make a transient field ¢ : Int{c != 0}, since
the type has no default value, and copying would in fact set it to zero.

class Trans {

val a : Int = 1;
transient val b : Int = 2;
//ERROR: transient val c : Int{c != 0} = 3;
def example() {

assert(a == 1 && b == 2);

at Chere) {

assert(a ==1&& b == 0);

3

}

13.3. AT: PLACE CHANGING 225

13.3.6 Copying and GlobalRef

A GlobalRef[T] (say g) contains a reference to a value v of type T, in a form
which can be transmitted, and a Place g.home indicating where the value lives.
When a GlobalRef is serialized an opaque, globally unique handle to v is created.

Example: The following example does not copy the value huge. However, huge
would have been copied if it had been put into a Cell, or simply used directly.

val huge = "A potentially big thing";
val href = GlobalRef(huge);
at (here) {
use (href);
}
ks

Values protected in GlobalRefs can be retrieved by the application operation
g(. g(Q) is guarded; it can only be called when g.home == here. If you want
to do anything other than pass a global reference around or compare two of them
for equality, you need to placeshift back to the home place of the reference, often
with at (g.home).

Example: The following program, for reasons best known to the programmer,
modifies the command-line argument array.

public static def main(argv: Array[String] (1)) {
val argref = GlobalRef[Array[String](1)](argv);
at Chere.next())
use(argref);
3
static def use(argref : GlobalRef[Array[String](1)]) {
at(argref) {
val argv = argref();
argv(®) = "Hi!";
}
3

There is an implicit coercion from GlobalRef[T] to Place, so at(argref)S
goes to argref.home.

226 CHAPTER 13. PLACES

13.3.7 Warnings about at

There are two dangers involved with at:

e Careless use of at can result in copying and transmission of very large data
structures. In particular, it is very easy to capture this — a field reference
will do it — and accidentally copy everything that this refers to, which can
be very large. A disciplined use of copy specifiers to make explicit just what
gets copied can ameliorate this issue.

e As seen in the examples above, a local variable reference x may refer to
different objects in different nested at scopes. The programmer must either
ensure that a variable accessed across an at boundary has no mutable state
or be prepared to reason about which copy gets modified. A disciplined use
of copy specifiers to give different names to variables can ameliorate this
concern.

14 Activities

An activity is a statement being executed, independently, with its own local vari-
ables; it may be thought of as a very light-weight thread. An X10 computation
may have many concurrent activities executing at any give time. All X10 code
runs as part of an activity; when an X10 program is started, the main method is
invoked in an activity, called the root activity.

Activities coordinate their execution by various control and data structures. For
example, when (x==0) ; blocks the current activity until some other activity sets
x to zero. However, activities determine the places at which they may be blocked
and resumed, by when and similar constructs. There are no means by which one
activity can arbitrarily interrupt, block, or resume another.

An activity may be running, blocked on some condition or terminated. If it is
terminated, it is terminated in the same way that its statement is: in particular,
if the statement terminates abruptly, the activity terminates abruptly for the same

reason. (§14.1).

Activities can be long-running entities with a good deal of local state. In particular
they can involve recursive method calls (and therefore have runtime stacks). How-
ever, activities can also be short-running light-weight entities, e.g., it is reasonable
to have an activity that simply increments a variable.

An activity may asynchronously and in parallel launch activities at other places.
Every activity except the initial main activity is spawned by another. Thus, at any
instant, the activities in a program form a tree.

X10 uses this tree in crucial ways. First is the distinction between local termina-
tion and global termination of a statement. The execution of a statement by an
activity is said to terminate locally when the activity has finished all its compu-
tation. (For instance the creation of an asynchronous activity terminates locally
when the activity has been created.) It is said to terminate globally when it has

227

228 CHAPTER 14. ACTIVITIES

terminated locally and all activities that it may have spawned at any place have,
recursively, terminated globally. For example, consider:

async {s1Q);}
async {s2Q);}

The primary activity spawns two child activities and then terminates locally, very
quickly. The child activities may take arbitrary amounts of time to terminate (and
may spawn grandchildren). When s1(), s2(), and all their descendants terminate
locally, then the primary activity terminates globally.

The program as a whole terminates when the root activity terminates globally.
In particular, X10 does not permit the creation of daemon threads—threads that
outlive the lifetime of the root activity. We say that an X10 computation is rooted
(414.4).

Future Extensions. We may permit the initial activity to be a daemon activity
to permit reactive computations, such as webservers, that may not terminate.

14.1 The X10 rooted exception model

The rooted nature of X10 computations permits the definition of a rooted excep-
tion model. In multi-threaded programming languages there is a natural parent-
child relationship between a thread and a thread that it spawns. Typically the
parent thread continues execution in parallel with the child thread. Therefore the
parent thread cannot serve to catch any exceptions thrown by the child thread.

The presence of a root activity and the concept of global termination permits X10
to adopt a more powerful exception model. In any state of the computation, say
that an activity A is a root of an activity B if A is an ancestor of B and A is blocked
at a statement (such as the finish statement awaiting the termination of
B (and possibly other activities). For every X10 computation, the root-of relation
is guaranteed to be a tree. The root of the tree is the root activity of the entire
computation. If A is the nearest root of B, the path from A to B is called the
activation path for the activityE]

"Note that depending on the state of the computation the activation path may traverse activities
that are running, blocked or terminated.

14.2. ASYNC: SPAWNING AN ACTIVITY 229

We may now state the exception model for X10. An uncaught exception propa-
gates up the activation path to its nearest root activity, where it may be handled
locally or propagated up the root-of tree when the activity terminates (based on
the semantics of the statement being executed by the activity) There is always
a good place to put a try-catch block to catch exceptions thrown by an asyn-
chronous activity.

14.2 async: Spawning an activity

Asynchronous activities serve as a single abstraction for supporting a wide range
of concurrency constructs such as message passing, threads, DMA, streaming,
and data prefetching. (In general, asynchronous operations are better suited for
supporting scalability than synchronous operations.)

An activity is created by executing the async statement:

AsyncStmt = async ClockedClause® Stmt
| clocked async Stmt
ClockedClause ::= clocked Arguments

The basic form of async is async S, which starts a new activity located here
executing S. (For the clocked form, see §15.4)

Multiple activities launched by a single activity at another place are not ordered
in any way. They are added to the set of activities at the target place and will be
executed based on the local scheduler’s decisions. If some particular sequencing
of events is needed, when, atomic, finish, clocks, and other X 10 constructs can
be used. X10 implementations are not required to have fair schedulers, though
every implementation should make a best faith effort to ensure that every activity
eventually gets a chance to make forward progress.

The statement in the body of an async is subject to the restriction that it must be
acceptable as the body of a void method for an anonymous inner class declared
at that point in the code. For example, it may reference val variables in lexically
enclosing scopes, but not var variables. Similarly, it cannot break or continue
surrounding loops.

%In X10 v2.2 the finish statement is the only statement that marks its activity as a root activity.
Future versions of the language may introduce more such statements.

230 CHAPTER 14. ACTIVITIES

14.3 Finish

The statement £finish S converts global termination to local termination.

FinishStmt = finish Stmt 20.71
| clocked finish Stmt

An activity A executes finish S by executing S and then waiting for all activities
spawned by S (directly or indirectly, here or at other places) to terminate. An
activity may terminate normally, or abruptly, 1.e. by throwing an exception. All
exceptions thrown by spawned activities are caught and accumulated.

finish S terminates locally when all activities spawned by S terminate globally
(either abruptly or normally). If S terminates normally, then finish S terminates
normally and A continues execution with the next statement after finish S. If

S or one of the activities spawned by it terminate abruptly, then finish S termi-

nates abruptly and throws a single exception, of type x10.lang.MultipleExceptions,
formed from the collection of exceptions accumulated at finish S.

Thus finish S statement serves as a collection point for uncaught exceptions
generated during the execution of S.

Note that repeatedly £inishing a statement has little effect after the first finish:
finish finish Sisindistinguishable from finish S if S terminates normally.
If S throws exceptions, finish S collects the exceptions and wraps them in
a MultipleExceptions, whereas finish finish S does the same, and then
puts that MultipleExceptions inside of a second MultipleExceptions.

14.4 Initial activity

An X10 computation is initiated from the command line on the presentation of a
class or struct name C. The container must have a main method:

public static def main(a: Array[String] (1)) :void

method, or a

public static def main(a: Array[String]):void

method, otherwise an exception is thrown and the computation terminates. The
single statement

14.5. ATEACH STATEMENTS 231

finish async at (Place.FIRST_PLACE) {
C.main(s);

}

is executed where s is a one-dimensional Array of strings created from the com-
mand line arguments. This single activity is the root activity for the entire com-
putation. (See §13]for a discussion of places.)

14.5 Ateach statements

Deprecated: The ateach construct is deprecated.

AtEachStmt == ateach (LoopIndex in Exp) ClockedClause’ Stmt
| ateach (Exp) Stmt
LooplndexDeclr ::= Id HasResultType®

| [IdList 1 HasResultType®

| Id [IdList] HasResultType’
LoopIndex = Mods’ LoopIndexDeclr

| Mods’ VarKeyword LoopIndexDeclr

In ateach(p in D) S, D must be either of type Dist (see or of type
DistArray[T] (see §16), and p will be of type Point (see §I6.1). If D is an
DistArray[T], thenateach (p in D)Sisidenticaltoateach(p in D.dist)S;
the iteration is over the array’s underlying distribution.

Instead of writing ateach (p in D) S the programmer should write for(p in
D) at(D(p)) async S to get the same effect. For each point p in D, at place
D(p), transmitting information as specified by F, S is executed simultaneously.

However, this often results in excessive communication and parallelism. Instead
the programmer may want to write:

for (place in D.places()) async at (place) {
for (p in D|here) {
S(p);
}
ks

If the programmer wishes to execute S in parallel at each place, S(p) may be
replaced by async S(p).
break and continue statements may not be applied to ateach.

)

0.10

o

232 CHAPTER 14. ACTIVITIES

14.6 vars and Activities

X10 restricts the use of local var variables in activities, to make programs more
deterministic. Specifically, a local var variable x defined outside of async S
cannot appear inside async S unless there is a finish surrounding async S
with the definition of x outside of it.

Example: The following code is fine; the definition of result appears outside
of the £inish block:

var result : Int = 0;
finish {
async result = 1;

}

assert result == 1;

This code is deterministic: the async will finish before the assert starts, and the
assert’s test will be true.

However, without the finish, it would be wrong, and would not compile in X10.
If it were allowed to compile, the activity might finish or might not finish before
the println, and the program would not be deterministic.

14.7 Atomic blocks

X10’s atomic blocks provide a high-level construct for coordinating the mutation
of shared data. A programmer may use atomic blocks to guarantee that invariants
of shared data-structures are maintained even as they are being accessed simulta-
neously by multiple activities running in the same place.

An X10 program in which all accesses (both reads and writes) of shared variables
appear in atomic or when blocks is guaranteed to use all shared variables atom-
ically. Equivalently, if two accesses to some shared variable v could collide at
runtime, and one is in an atomic block, then the other must be in an atomic block
as well to guarantee atomicity of the accesses to v. If some accesses to shared
variables are not protected by atomic or when, then race conditions or deadlocks
may occur.

In particular, atomic sections at the same place are atomic with respect to each
other. They may not be atomic with respect to non-atomic code, or with respect
to atomic sections at different places.

14.7. ATOMIC BLOCKS 233

X10 guarantees that atomic sections at the same place are mutually exclusive.
That is, if one activity A at a given place p is executing an atomic section, then
no other activity B at p will also be executing an atomic section. If such a B at-
tempts to execute an atomic or when command, it will be blocked until A finishes
executing its atomic section.

AtomicStmt = atomic Stmt
WhenStmt ;== when (Exp) Stmt

Example: Consider a class Redund[T], which encapsulates a list 1ist and,
(redundantly) keeps the size of the list in a second field size. Then r:Redund[T]
has the invariant r.list.size() == r.size, which must be true at any point
at which no method calls on r are active.

If the add method on Redund (which adds an element to the list) were defined as:

def add(x:T) { // Incorrect
this.list.add(x);
this.size = this.size + 1;

}

Then two activities simultaneously adding elements to the same r could break
the invariant. Suppose that r starts out empty. Let the first activity perform the
list.add, and compute this.size+1, which is 1, but not store it back into
this.size yet. (At this point, r.list.size()==1 and r.size==0; the invari-
ant expression is false, but, as the first call to r .add () is active, the invariant does
not need to be true — it only needs to be true when the call finishes.) Now, let the
second activity do its call to add to completion, which finishes with r.size==1.
(As before, the invariant expression is false, but a call to r.add () is still active, so
the invariant need not be true.) Finally, let the first activity finish, which assigns
the 1 computed before back into this.size. At the end, there are two elements in
r.list, butr.size==1. Since there are no calls to r.add () active, the invariant
is required to be true, but it is not.

In this case, the invariant can be maintained by making the increment atomic.
Doing so forbids that sequence of events, the atomic block cannot be stopped
partway.

def add(x:T) {
atomic {
this.list.add(x);

20.21

20.182

234 CHAPTER 14. ACTIVITIES

this.size = this.size + 1;

14.7.1 Unconditional atomic blocks

The simplest form of an atomic block is the unconditional atomic block: atomic
S. When atomic S is executing at some place p, no other activity at p may enter
an atomic block. So, other activities may continue, even at the same place, but
code protected by atomic blocks is not subject to interference from other code in
atomic blocks.

If execution of the statement may throw an exception, it is the programmer’s re-
sponsibility to wrap the atomic block within a try/finally clause and include
undo code in the finally clause. Thus the atomic statement only guarantees atom-
icity on successful execution, not on a faulty execution.

Atomic blocks are closely related to non-blocking synchronization constructs [6],
and can be used to implement non-blocking concurrent algorithms.

Code executed inside of atomic S and when(E)S is subject to certain restrictions.
A violation of these restrictions causes an I1legalOperationException to be
thrown at the point of the violation.

e S may not spawn another activity.

e S may not use any blocking statements; when, next, finish. (The use of a
nested atomic is permitted.)

e S may not force() a Future.

e S may not use at expressions.

Note an important property of an (unconditional) atomic block:

atomic {sl; atomic s2} = atomic {sl; s2} (14.1)

Atomic blocks do not introduce deadlocks. They may exhibit all the bad behavior
of sequential programs, including throwing exceptions and running forever, but
they are guaranteed not to deadlock.

Example: The following class method implements a (generic) compare and
swap (CAS) operation:

14.7. ATOMIC BLOCKS 235

var target:Object = null;
public atomic def CAS(Coldl: Object, y: Object):Boolean {
if (target.equals(oldl)) {
target = y;
return true;

}

return false;

14.7.2 Conditional atomic blocks

Conditional atomic blocks allow the activity to wait for some condition to be
satisfied before executing an atomic block. For example, consider a Redund class
holding a list r.1list and, redundantly, its length r.size. A pop operation will
delay until the Redund is nonempty, and then remove an element and update the
length.

def pop():T {
var ret : T;
when(size>0) {
ret = list.removeAt(0);
size --;
}

return ret;

}

The execution of the test is atomic with the execution of the block. This is impor-
tant; it means that no other activity can sneak in and make the condition be false
after the test was seen to be true, but before the block is executed. In this example,
two pops executing on a list with one element would work properly. Without the
conditional atomic block — even doing the decrement atomically — one call to pop
could pass the size>0 guard; then the other call could run to completion (remov-
ing the only element of the list); then, when the first call proceeds, its removeAt
will fail.

Note that i £ would not work here.

if(size>0) atomic{size--; return list.removeAt(®);}

allows another activity to act between the test and the atomic block. And

236 CHAPTER 14. ACTIVITIES

atomic{ if(size>0) {size--; ret = list.removeAt(0);}}

does not wait for size>0 to become true.

Conditional atomic blocks are of the form when(b)S; b is called the guard, and S
the body.

An activity executing such a statement suspends until such time as the guard is true
in the current state. In that state, the body is executed. The checking of the guards
and the execution of the corresponding guarded statement is done atomically.

X10 does not guarantee that a conditional atomic block will execute if its condition
holds only intermittently. For, based on the vagaries of the scheduler, the precise
instant at which a condition holds may be missed. Therefore the programmer is
advised to ensure that conditions being tested by conditional atomic blocks are
eventually stable, i.e., they will continue to hold until the block executes (the
action in the body of the block may cause the condition to not hold any more).

The statement when (true) S is behaviorally identical to atomic S: it never
suspends.

The body S of when(b)S is subject to the same restrictions that the body of
atomic Sis. The guard is subject to the same restrictions as well. Furthermore,
guards should not have side effects.

Note that this implies that guarded statements are required to be flat, that is, they
may not contain conditional atomic blocks. (The implementation of nested con-
ditional atomic blocks may require sophisticated operational techniques such as
rollbacks.)

Example: The following class shows how to implement a bounded buffer of size
1 in X10 for repeated communication between a sender and a receiver. The call
buf.send(ob) waits until the buffer has space, and then puts ob into it. Dually,
buf.receive() waits until the buffer has something in it, and then returns that
thing.

class OneBuffer[T] {
var datum: T;
def this(t:T) { this.datum = t; this.filled = true; }
var filled: Boolean;
public def send(v: T) {
when (!filled) {
this.datum = v;

14.7. ATOMIC BLOCKS 237

this.filled = true;
}

h
public def receive(): T {

when (filled) {
v: T = datum;
filled = false;
return v;
}
3
3

When when is Tested

Suppose that activity A is blocked waiting on when(e)S, because e is false. If
some other activity B changes the state in an atomic section in a way that makes
e become true, then either:

e A will eventually execute S, or
e Some activity C' # A will cause e to become false again.

In particular, if no other activity ever falsifies e, then A will, eventually, discover
that e evaluates to true and run S.

Two caveats are worth noting:

e X10 has no guarantees of fairness or liveness.

e X10 only makes guarantees about state changes in atomic sections alerting
whens. State changes outside of atomic sections might not cause A to re-
evaluate e.

Example: The method good below will always terminate. In particular, if the
when statement is allowed to run first and block on c(), the atomic will alert it
that c() has changed.

The method bad has no such guarantee: it might terminate if the compiler and
scheduler are in a generous mood, or the when might wait forever to be told that
c(Q) is now true. Without an atomic, the when statement might not be notified
about the change in c().

238 CHAPTER 14. ACTIVITIES

static def good() {
val ¢ = new Cell[Boolean] (false);

async {

atomic {c() = true;}
}
when(cQ);

ks
static def bad() {
val ¢ = new Cell[Boolean] (false);
async {
c() = true;
h
when(c(Q);

}

14.8 Use of Atomic Blocks

The semantics of atomicity is chosen as a compromise between programming sim-
plicity and efficient implementation. Unlike some possible definitions of “atomic”,
atomic blocks do not provide absolute atomicity.

Atomic blocks are atomic with respect to each other.
var n : Int = 0;
finish {
async atomic n = n + 1; //(a)
async atomic n =n + 2; //(b)

}

This program has only two possible interleavings: either (a) entirely precedes
(b) or (b) entirely precedes (a). Both end up with n==3.

However, atomic blocks are not atomic with respect to non-atomic code. It we
remove the atomics on (a), we get far messier semantics.

var n : Int = 0;
finish {
// LEGAL BUT UNWISE
async n = n + 1; //(a)

14.8. USE OF ATOMIC BLOCKS 239

async atomic n = n + 2; // ()

}

If X10 had absolute atomic semantics, this program would be guaranteed to treat
the atomic increment as a single statement. This would permit three interleavings:
the two possible from the fully atomic program, or a third one with the events:
(a)’s read of O from n, the entirety of (b), and then (a)’s write of 8+1 back to
n. This interleaving results in n==1. So, with absolute atomic semantics, n==1 or
n==3 are the possible results.

However, X10’s semantics are weaker than that. Atomic statements are atomic
with respect to each other — but there is no guarantee about how they interact
with non-atomic statements at all. They might even break up the atomicity of an
atomic block. In particular, the following fourth interleaving is possible: (a)’s
read of ® from n, (b)’s read of ® from n, (a)’s write of 1 to n, and (b)’s write of
2 to n. Thus, n==2 is permissible as a result in X10.

X10’s semantics permit more efficient implementation than absolute atomicity.
Absolute atomicity would, in principle, require all activities at place p to stop
whenever one of them enters an atomic section, which would seriously curtail
concurrency. X10 simply requires that, when one activity is in an atomic section,
that other activities stop when they are trying to enter an atomic section — which
is to say, they can continue computing on their own all they like. The difference
can be substantial, both in execution time and possible behaviors.

However, X10’s semantics do impose a certain burden on the programmer. A
sufficient rule of thumb is that, if any access to a variable is done in an atomic
section, then all accesses to it must be in atomic sections.

Atomic sections are a powerful and convenient general solution. Classes in the
package x10.util.concurrent may be more efficient and more convenient in
particular cases. For example, an AtomicInteger provides an atomic integer
cell, with atomic get, set, compare-and-set, and add operations. Each AtomicInteger
takes care of its own locking. Accesses to one AtomicInteger a only block ac-
tivities which try to access a — not others, not even if they are using different
AtomicIntegers or even atomic blocks.

15 Clocks

Many concurrent algorithms proceed in phases: in phase £, several activities work
independently, but synchronize together before proceeding on to phase £ + 1.
X10 supports this communication structure (and many variations on it) with a
generalization of barriers called clocks. Clocks are designed so that programs
which follow a simple syntactic discipline will not have either deadlocks or race
conditions.

The following minimalist example of clocked code has two worker activities A
and B, and three phases. In the first phase, each worker activity says its name
followed by 1; in the second phase, by a 2, and in the third, by a 3. So, if say
prints its argument, A-1 B-1 A-2 B-2 B-3 A-3 would be a legitimate run of
the program, but A-1 A-2 B-1 B-2 A-3 B-3 (with A-2 before B-1) would not.

The program creates a clock cl to manage the phases. Each participating activity
does the work of its first phase, and then executes Clock.advanceAll(); to
signal that it is finished with that work. Clock.advanceAll(); is blocking, and
causes the participant to wait until all participant have finished with the phase —
as measured by the clock cl to which they are both registered. Then they do
the second phase, and another Clock.advanceAll () ; to make sure that neither
proceeds to the third phase until both are ready. This example uses finish to
wait for both particiants to finish.

class ClockEx {
static def say(s:String) =
{ atomic{x10.io0.Console.OUT.println(s);} }
public static def main(argv:Rail[String]) {
finish async{
val cl = Clock.make();
async clocked(cl) {// Activity A
say("A-1");

240

241

Clock.advanceAll();
say("A-2");
Clock.advanceAll();
say("A-3");

}// Activity A

async clocked(cl) {// Activity B
say("B-1");
Clock.advanceAll();
say("B-2");
Clock.advanceAll();
say("B-3");

}// Activity B

}
}
3

This chapter describes the syntax and semantics of clocks and statements in the
language that have parameters of type Clock.

The key invariants associated with clocks are as follows. At any stage of the com-
putation, a clock has zero or more registered activities. An activity may perform
operations only on those clocks it is registered with (these clocks constitute its
clock set). An attempt by an activity to operate on a clock it is not registered with
will cause a ClockUseException to be thrown. An activity is registered with
zero or more clocks when it is created. During its lifetime the only additional
clocks it can possibly be registered with are exactly those that it creates. In partic-
ular it is not possible for an activity to register itself with a clock it discovers by
reading a data structure.

The primary operations that an activity a may perform on a clock c that it is
registered upon are:

e It may spawn and simultaneously register a new activity on c, with the
statement async clocked(c)S.

o It may unregister itself from c, with c.drop(). After doing so, it can no
longer use most primary operations on C.

o It may resume the clock, with c.resume (), indicating that it has finished

242 CHAPTER 15. CLOCKS

with the current phase associated with ¢ and is ready to move on to the next
one.

e It may wait on the clock, with c.advance (). This first does c.resume(),
and then blocks the current activity until the start of the next phase, viz.,
until all other activities registered on that clock have called c.resume().

e It may block on all the clocks it is registered with simultaneously, by the
command Clock.advanceAll () ;. This, in effect, calls c.advance() si-
multaneously on all clocks c that the current activity is registered with.

e Other miscellaneous operations are available as well; see the Clock API.

15.1 Clock operations

There are two language constructs for working with clocks. async clocked(cl)
S starts a new activity registered on one or more clocks. Clock.advanceAll();
blocks the current activity until all the activities sharing clocks with it are ready to
proceed to the next clock phase. Clocks are objects, and have a number of useful
methods on them as well.

15.1.1 Creating new clocks

Clocks are created using a factory method on x10.1lang.Clock:

val c: Clock = Clock.make();
The current activity is automatically registered with the newly created clock.
It may deregister using the drop method on clocks (see the documentation of

x10.1lang.Clock). All activities are automatically deregistered from all clocks
they are registered with on termination (normal or abrupt).

15.1.2 Registering new activities on clocks

async ClockedClause’ Stmt
clocked async Stmnt
ClockedClause ::= clocked Arguments

AsyncStmt

15.1. CLOCK OPERATIONS 243

The async statement with a clocked clause of either form, say

async clocked (cl1, c2, c3) S

starts a new activity, initially registered with clocks c1, c2, and c3, and running
S. The activity running this code must be registered on those clocks. Violations
of these conditions are punished by the throwing of a ClockUseException.

If an activity a that has executed c.resume() then starts a new activity b also
registered on c (e.g., via async clocked(c) S), the new activity b starts out
having also resumed c, as if it too had executed c.resume (). Thatis, a and b are
in the same phase of the clock.

// ACTIVITY a

val ¢ = Clock.make();

c.resume();

async clocked(c) {
// ACTIVITY b
c.advance();
b_phase_two();
// END OF ACTIVITY b

ks

c.advance();

a_phase_two();

// END OF ACTIVITY a

In the proper execution, a and b both perform c.advance () and then their phase-
2 actions. However, if b were not initially in the resume state for c, there would
be a race condition; b could perform c.advance () and proceed to b_phase_two
before a performed c.advance().

An activity may check whether or not it is registered on a clock c by the method
call c.registered()

NoOTE: X10 does not contain a “register” operation that would allow an activity
to discover a clock in a datastructure and register itself (or another process) on it.
Therefore, while a clock ¢ may be stored in a data structure by one activity a and
read from it by another activity b, b cannot do much with c unless it is already
registered with it. In particular, it cannot register itself on c, and, lacking that
registration, cannot register a sub-activity on it with async clocked(c) S.

244 CHAPTER 15. CLOCKS

15.1.3 Resuming clocks

X10 permits split phase clocks. An activity may wish to indicate that it has com-
pleted whatever work it wishes to perform in the current phase of a clock c it is
registered with, without suspending itself altogether. It may do so by executing
c.resume();.

An activity may invoke resume () only on a clock it is registered with, and has
not yet dropped (§15.1.5). A ClockUseException is thrown if this condition is
violated. Nothing happens if the activity has already invoked a resume on this
clock in the current phase.

An activity may invoke Clock.resumeAll () to resume all the clocks that it is
registered with and has not yet dropped. This resume () s all these clocks in par-
allel, or, equivalently, sequentially in some arbitrary order.

15.1.4 Advancing clocks

An activity may execute the following method call to signal that it is done with
the current phase.

Clock.advanceAll;

Execution of this call blocks until all the clocks that the activity is registered with
(if any) have advanced. (The activity implicitly issues a resume on all clocks it is
registered with before suspending.)

Clock.advanceAll () ; may be thought of as calling c.advance() in parallel
for all clocks that the current activity is registered with. (The parallelism is con-
ceptually important: if activities @ and b are both registered on clocks c and d,
and a executes c.advance(); d.advance() while b executes d.advance();
c.advance(), then the two will deadlock. However, if the two clocks are waited
on in parallel, as Clock.advanceAll () ; does, a and b will not deadlock.)

Equivalently, Clock.advanceAll(); sequentially calls c.resume() for each
registered clock c, in arbitrary order, and then c.advance () for each clock, again
in arbitrary order.

An activity blocked on advance () resumes execution once it is marked for progress
by all the clocks it is registered with.

15.2. DEADLOCK FREEDOM 245

15.1.5 Dropping clocks

An activity may drop a clock by executing c.drop() ;.

The activity is no longer considered registered with this clock. A ClockUseException
is thrown if the activity has already dropped c.

15.2 Deadlock Freedom

In general, programs using clocks can deadlock, just as programs using loops can
fail to terminate. However, programs written with a particular syntactic discipline
are guaranteed to be deadlock-free, just as programs which use only bounded
loops are guaranteed to terminate. The syntactic discipline is:

e The advance() instance method shall not be called on any clock. (The
Clock.advanceAll () ; method is allowed for this discipline.)

e Inside of finish{S}, all clocked asyncs shall be in the scope an unclocked
async.

X10 does not enforce this discipline. Doing so would exclude useful programs,
many of which are deadlock-free for reasons more subtle than the straightforward
syntactic discipline. Still, this discipline is useful for simple cases.

The first clause of the discipline prevents a deadlock in which an activity is reg-
istered on two clocks, advances one of them, and ignores the other. The second
clause prevents the following deadlock.

val c:Clock = Clock.make();
async clocked(c) { // (A)
finish async clocked(c) { // (B) Violates clause 2
Clock.advanceAll(); // (Bnext)
}
Clock.advanceAll; // (Anext)

}

(A), first of all, waits for the finish containing (B) to finish. (B) will execute
its advance at (Bnext), and then wait for all other activities registered on c to
execute their advance ()s. However, (A) is registered on c. So, (B) cannot finish
until (A) has proceeded to (Anext), and (A) cannot proceed until (B) finishes.
Thus, this causes deadlock.

246 CHAPTER 15. CLOCKS

15.3 Program equivalences

From the discussion above it should be clear that the following equivalences hold:

c.resume(); Clock.advanceAll(); = Clock.advanceAll(); (15.1)
c.resume(); d.resume(); = d.resume(); c.resume();(15.2)
c.resume(); c.resume(); = c.resume(); (15.3)

Note that Clock.advanceAll(); Clock.advanceAll(); is not the same as
Clock.advanceAll () ;. The first will wait for clocks to advance twice, and the
second once.

15.4 Clocked Finish

In the most common case of a single clock coordinating a few behaviors, X10
allows coding with an implicit clock. £inish and async statements may be qual-
ified with clocked.

A clocked finish introduces a new clock. It executes its body in the usual way
that a finish does— except that, when its body completes, the activity executing
the clocked finish drops the clock, while it waits for asynchronous spawned
asyncs to terminate.

A clocked async registers its async with the implicit clock of the surrounding
clocked finish.

The bodies of the clocked finish and clocked async statements may use
the Clock.advanceAll () method call to advance the implicit clock. Since the
implicit clock is not available in a variable, it cannot be manipulated directly. (If
you want to manipulate the clock directly, use an explicit clock, not a clocked
finish.)

Example: The following code starts two activities, each of which perform their
first phase, wait for the other to finish phase 1, and then perform their second
phase.

15.4. CLOCKED FINISH 247

clocked finish {
clocked async {
phase("A", 1);
Clock.advanceAll();
phase("A", 2);
3
clocked async {
phase("B", 1);
Clock.advanceAll();
phase("B", 2);
3
ks

Clocked finishes may be nested. The inner clocked finish operates in a single
phase of the outer one.

16 Local and Distributed Arrays

Arrays provide indexed access to data at a single Place, via Points—indices of
any dimensionality. DistArrays is similar, but spreads the data across multiple
Places, via Dists. We refer to arrays either sort as “general arrays”.

This chapter provides an overview of local and distributed arrays, (the x10.array
classes Array and DistArray), and their supporting classes Point, IntRange,
Region, and Dist.

16.1 Points

Both kinds of arrays are indexed by Points, which are n-dimensional tuples of
integers. The rank property of a point gives its dimensionality. Points can be con-
structed from integers or Array[Int] (1)s by the Point.make factory methods:

Point.make(0);
Point.make(0,0);
Point.make([0,0,0,0,0]);

val origin_1 : Point{rank==1}
val origin_2 : Point{rank==2}
val origin_5 : Point{rank==5}

There is an implicit conversion from Array[Int] (1) to Point, giving a conve-
nient syntax for constructing points:

val p : Point = [1,2,3];
val q : Point{rank==5} = [1,2,3,4,5];
val r : Point(3) = [11,22,33];

The coordinates of a point are available by function application, or, if you prefer,

by subscripting; p(i) is the ith coordinate of the point p. Point(n) is a type-
defined shorthand for Point {rank==n}.

248

16.2. INTRANGE 249

16.2 IntRange

An IntRange is a representation of a set of consecutive integers: 1..10 is the
numbers 1 through 10. There is nothing special about x10.1lang. IntRange, be-
yond its package. However, it appears frequently in idioms involving arrays and
related constructs, especially rectangular arrays.

One notable idiom involving IntRange is the integer iteration idiom. for(i in
1..10)use(i); calls use on each number 1,2, ..., 10, in turn.

If m > n, the IntRange m. .n is empty. It has no elements, and iterating over it
will not execute the body of the loop.

16.3 Regions

A region is a set of points of the same rank. X10 provides a built-in class,
x10.array.Region, to allow the creation of new regions and to perform opera-
tions on regions. Each region R has a property R. rank, giving the dimensionality
of all the points in it.

Example:

val MAX_HEIGHT=20;

val Null = Region.makeUnit(); //Empty 0-dimensional region
val R1 1..100; // IntRange

val R2 = R1 as Region(l);

val R3 (0..99) * (-1..MAX_HEIGHT);

val R4 = Region.makeUpperTriangular(10);

val R5 R4 && R3; // intersection of two regions

The IntRange value 1..100 can be implicitly or explicitly coerced to a one-
dimensional Region consisting of the points {[m], ..., [n]}. IntRanges are
useful in building up regions, especially rectangular regions. In general, we ig-
nore the distinction between an IntRange and a rank-one Region, except for
those occasional situations where the compiler requires attending to the distinc-
tion.

By a special dispensation, the compiler knows that, if r : Region(m) and s :
Region(n), then r*s : Region(m+n). (The X10 type system ordinarily could
not specify the sum; the best it could do would be r*s : Region, with the rank

250 CHAPTER 16. LOCAL AND DISTRIBUTED ARRAYS

of the region unknown.) This feature allows more convenient use of arrays; in
particular, one does not need to keep track of ranks nearly so much.

Various built-in regions are provided through factory methods on Region.

e Region.makeEmpty(n) returns an empty region of rank n.
e Region.makeFull(n) returns the region containing all points of rank n.

e Region.makeUnit() returns the region of rank O containing the unique
point of rank 0. It is useful as the identity for Cartesian product of regions.

e Region.makeHalfspace(normal, k), where normal is a Point and k
an Int, returns the unbounded half-space of rank normal . rank, consisting
of all points p satisfying the vector inequality p-normal < k.

e Region.makeRectangular(min, max), where min and max are rank-1
length-n integeger arrays, returns a Region(n) equal to: [min(®)
max(0®), ..., min(n-1)..max(n-1)].

e Region.make(regions) constructs the Cartesian product of the rectangu-
lar Region(1)s in regions.

e Region.makeBanded(size, a, b) constructs the banded Region(2) of
size size, with a bands above and b bands below the diagonal.

e Region.makeBanded(size) constructs the banded Region(2) with just
the main diagonal.

e Region.makeUpperTriangular (N) returns a region corresponding to the
non-zero indices in an upper-triangular N x N matrix.

e Region.makelLowerTriangular (N) returns a region corresponding to the
non-zero indices in a lower-triangular N x N matrix.

e If R is a region, and p a Point of the same rank, then R+p is R translated
forwards by p — the region whose points are r+p for each r in R.

e If R is a region, and p a Point of the same rank, then R-p is R translated
backwards by p — the region whose points are r-p for each r in R.

All the points in a region are ordered canonically by the lexicographic total order.
Thus the points of the region (1..2)*(1..2) are ordered as

16.4. ARRAYS 251

(1,D, 1,2, 2,1, 2,2

Sequential iteration statements such as for (§12.12) iterate over the points in a
region in the canonical order.

o
w

A region is said to be rectangular if it is of the form (T; * T.) for some
set of intervals T, = 1, .. h; . In particular an IntRange turned into a Region
is rectangular: (1..10) as Region(1l). Such aregion satisfies the property that
if two points p; and p3 are in the region, then so is every point p, between them
(that is, it is convex). (Banded and triangular regions are not rectangular.) The
operation R.boundingBox () gives the smallest rectangular region containing R.

16.3.1 Operations on regions

Let R be a region. A sub-region is a subset of R.

Let R1 and R2 be two regions whose types establish that they are of the same rank.
Let S be another region; its rank is irrelevant.

R1 && R2 is the intersection of R1 and R2, viz., the region containing all points
which are in both R1 and R2. For example, 1..10 && 2..201is2..10.

R1 * S is the Cartesian product of R1 and S, formed by pairing each point in R1
with every pointin S. Thus, (1..2)*(3..4)*(5..6) is the region of rank 3 con-
taining the eight points with coordinates [1,3,5], [1,3,6],[1,4,5],[1,4,6],
[2,3,5]1,[2,3,6], [2,4,5], [2,4,6].

For a region R and point p of the same rank, R+p and R-p represent the translation
of the region forward and backward by p. That is, R+p is the set of points p+q for
all g in R, and R-p is the set of q-p.

More Region methods are described in the API documentation.

16.4 Arrays

Arrays are organized data, arranged so that it can be accessed by subscript. An
Array[T] A has a Region A.region, telling which Points are in A. For each
point p in A.region, A(p) is the datum of type T associated with p. X10 imple-
mentations should attempt to store Arrays efficiently, and to make array element
accesses quick—e.g., avoiding constructing Points when unnecessary.

252 CHAPTER 16. LOCAL AND DISTRIBUTED ARRAYS

This generalizes the concepts of arrays appearing in many other programming
languages. A Point may have any number of coordinates, so an Array can have,
in effect, any number of integer subscripts.

Example: Indeed, it is possible to write code that works on Arrays regardless of
dimension. For example, to add one Array[Int] src into another dest,

static def addInto(src: Array[Int], dest:Array[Int])
{src.region == dest.region}
= {
for (p in src.region)
dest(p) += src(p);
}

Since p is a Point, it can hold as many coordinates as are necessary for the
arrays src and dest.

The basic operation on arrays is subscripting: if A is an Array[T] and p a point
with the same rank as A.region, then A(p) is the value of type T associated
with point p. This is the same operation as function application (§10.2)); arrays
implement function types, and can be used as functions.

Array elements can be changed by assignment. If t: T,
A(p) =t

modifies the value associated with p to be t, and leaves all other values in A
unchanged.

An Array[T] named a has:

e a.region: the Region upon which a is defined.
e a.size: the number of elements in a.

e a.rank, the rank of the points usable to subscript a. a.rank is a cached
copy of a.region.rank.

16.4.1 Array Constructors

To construct an array whose elements all have the same value init, call new
Array[T] (R, init). For example, an array of a thousand "oh!"s can be made
by: new Array[String](1l..1000, "oh!").

16.5. DISTRIBUTIONS 253

To construct and initialize an array, call the two-argument constructor. new
Array[T] (R, £) constructs an array of elements of type T on region R, with
a(p) initialized to £(p) for each point p in R. £ must be a function taking a point
of rank R.rank to a value of type T.

Example: One way to construct the array [11, 22, 33] is with an array con-
structor new Array[Int](1..3, (i:Point(1))=>11*i(®)). To construct a
multiplication table, callnew Array[Int]((0..9)*(0..9), (p:Point(2))
=> p(®)*p(1)).

Other constructors are available; see the API documentation and §11.26

16.4.2 Array Operations

The basic operation on Arrays is subscripting. If a:Array[T] and p:Point{rank
== a.rank}, then a(p) is the value of type T appearing at position p in a. The
syntax is identical to function application, and, indeed, arrays may be used as
functions. a(p) may be assigned to, as well, by the usual assignment syntax
a(p)=t. (This uses the application and setting syntactic sugar, as given in §8.7.5])

Sometimes it is more convenient to subscript by integers. Arrays of rank 1-4 can,
in fact, be accessed by integers:

val Al = new Array[Int](1..10, 0);

Al1(4) = A1(4) + 1;

val A4 = new Array[Int]((1..2)*(1..3)*(1..4)*(1..5), ©);
A4(2,3,4,5) = A4(1,1,1,1)+1;

Iteration over an Array is defined, and produces the Points of the array’s region.
If you want to use the values in the array, you have to subscript it. For example,
you could take the logarithm of every element of an Array[Double] by:

for (p in a) a(p) = Math.log(a(p));

16.5 Distributions

Distributed arrays are spread across multiple Places. A distribution, a mapping
from a region to a set of places, describes where each element of a distributed
array is kept. Distributions are embodied by the class x10.array.Dist and its

254 CHAPTER 16. LOCAL AND DISTRIBUTED ARRAYS

subclasses. The rank of a distribution is the rank of the underlying region, and
thus the rank of every point that the distribution applies to.

Example:

val R <: Region = 1..100;
val D1 <: Dist = Dist.makeBlock(R);
val D2 <: Dist = Dist.makeConstant(R, here);

D1 distributes the region R in blocks, with a set of consecutive points at each place,
as evenly as possible. D2 maps all the points in R to here.

Let D be a distribution. D.region denotes the underlying region. Given a point
p, the expression D(p) represents the application of D to p, that is, the place
that p is mapped to by D. The evaluation of the expression D(p) throws an
ArrayIndexOutofBoundsException if p does not lie in the underlying region.

16.5.1 PlaceGroups

A PlaceGroup represents an ordered set of Places. PlaceGroups exist for
performance and scaleability: they are more efficient, in certain critical places,
than general collections of Place. PlaceGroup implements Sequence[Place],
and thus provides familiar operations — pg.size() for the number of places,
pg.iterator() to iterate over them, etc.

PlaceGroup is an abstract class. The concrete class SparsePlaceGroup is in-
tended for a small group of places. new SparsePlaceGroup(somePlace) is a
good PlaceGroup containing one place. new SparsePlaceGroup(seqPlaces)
constructs a sparse place group from a sorted sequence of places.

16.5.2 Operations returning distributions

Let R be a region, Q a PlaceGroup, and P a place.

Unique distribution The distribution Dist.makeUnique(Q) is the unique dis-
tribution from the region (1..k) as Region(1l) to Q mapping each point i to
pi.

16.6. DISTRIBUTED ARRAYS 255

Constant distributions. The distribution Dist.makeConstant (R,P) maps ev-
ery point in region R to place P. The special case Dist.makeConstant (R) maps
every point in R to here.

Block distributions. The distribution Dist.makeBlock(R) distributes the el-
ements of R, in approximately-even blocks, over all the places available to the
program. There are other Dist.makeBlock methods capable of controlling the
distribution and the set of places used; see the API documentation.

Domain Restriction. If D is a distribution and R is a sub-region of D.region,
then D | R represents the restriction of D to R—that is, the distribution that takes
each point p in R to D(p), but doesn’t apply to any points but those in R.

Range Restriction. If D is a distribution and P a place expression, the term D |
P denotes the sub-distribution of D defined over all the points in the region of D
mapped to P.

Note that D | here does not necessarily contain adjacent points in D.region.
For instance, if D is a cyclic distribution, D | here will typically contain points
that differ by the number of places. An implementation may find a way to still
represent them in contiguous memory, e.g., using an arithmetic function to map
from the region index to an index into the array.

16.6 Distributed Arrays

Distributed arrays, instances of DistArray[T], are very much like Arrays, ex-
cept that they distribute information among multiple Places according to a Dist
value passed in as a constructor argument.

Example: The following code creates a distributed array holding a thousand
cells, each initialized to 0.0, distributed via a block distribution over all places.

val R <: Region = 1..1000;
val D <: Dist = Dist.makeBlock(R);
val da <: DistArray[Float]
= DistArray.make[Float] (D, (Point(1))=>0.01f);

256 CHAPTER 16. LOCAL AND DISTRIBUTED ARRAYS

16.7 Distributed Array Construction

DistArrays are instantiated by invoking one of the make factory methods of the
DistArray class. A DistArray creation must take either an Int as an argument
or a Dist. In the first case, a distributed array is created over the distribution
Dist.makeConstant(®..(N-1),here); in the second over the given distribu-
tion.

Example: A distributed array creation operation may also specify an initial-
izer function. The function is applied in parallel at all points in the domain of
the distribution. The construction operation terminates locally only when the
DistArray has been fully created and initialized (at all places in the range of
the distribution).

For instance:

val ident = ([i]:Point(1)) => i;
val data : DistArray[Int]
= DistArray.make[Int] (Dist.makeConstant(1..9), ident);
val blk = Dist.makeBlock((1l..9)*(1..9));
val data2 : DistArray[Int]
= DistArray.make[Int] (blk, ([i,j]l:Point(2)) => i*j);

The first declaration stores in data a reference to a mutable distributed array with
9 elements each of which is located in the same place as the array. The element
at [1] is initialized to its index 1.

The second declaration stores in data2 a reference to a mutable two-dimensional
distributed array, whose coordinates both range from 1 to 9, distributed in blocks
over all Places, initialized with i*j at point [1,j].

16.8 Operations on Arrays and Distributed Arrays

Arrays and distributed arrays share many operations. In the following, let a be an
array with base type T, and da be an array with distribution D and base type T.
16.8.1 Element operations

The value of a at a point p in its region of definition is obtained by using the
indexing operation a(p). The value of da at p is similarly da(p). This operation

16.8. OPERATIONS ON ARRAYS AND DISTRIBUTED ARRAYS 257

may be used on the left hand side of an assignment operation to update the value:
a(p)=t; and da(p)=t; The operator assignments, a(i) += e and so on, are
also available.

It is a runtime error to access arrays, with da(p) or da(p)=v, at a place other than
da.dist(p), viz. at the place that the element exists.

16.8.2 Arrays of Single Values

For a region R and a value v of type T, the expression new Array[T](R, v)
produces an array on region R initialized with value v. Similarly, for a distribution
D and a value v of type T the expression

DistArray.make[T] (D, (Point(D.rank))=>v)

constructs a distributed array with distribution D and base type T initialized with v
at every point.

Note that Arrays are constructed by constructor calls, but DistArrays are con-
structed by calls to the factory methods DistArray.make. This is because Arrays
are fairly simple objects, but DistArrays may be implemented by different classes
for different distributions. The use of the factory method gives the library writer
the freedom to select appropriate implementations.

16.8.3 Restriction of an array

LetR be a sub-region of da.region. Thenda | Rrepresentsthe sub-DistArray
of da on the region R. Thatis,da | R has the same values as da when subscripted
by a point in region R && da.region, and is undefined elsewhere.

Recall that a rich set of operators are available on distributions (§16.5]) to obtain
sub-distributions (e.g. restricting to a sub-region, to a specific place etc).

16.8.4 Operations on Whole Arrays

Pointwise operations The unary map operation applies a function to each ele-
ment of a distributed or non-distributed array, returning a new distributed array
with the same distribution, or a non-distributed array with the same region.

The following produces an array of cubes:

258 CHAPTER 16. LOCAL AND DISTRIBUTED ARRAYS

val A = new Array[Int](1..10, (p:Point(1))=>p(0®));
assert A(3) == 3 && A(4) == 4 && A(10) == 10;

val cube = (i:Int) => i*i*i;

val B = A.map(cube);

assert B(3) == 27 && B(4) == 64 && B(10) == 1000;

A variant operation lets you specify the array B into which the result will be stored,

val A = new Array[Int](1..10, (p:Point(1))=>p(0®));

assert A(3) == 3 && A(4) == 4 && A(10) == 10;

val cube = (i:Int) => i*i*i;

val B = new Array[Int](A.region); // B = 0,0,0,0,0,0,0,0,0,0
A.map(B, cube);

assert B(3) == 27 & & B(4) == 64 && B(10) == 1000;

This is convenient if you have an already-allocated array lying around unused.
In particular, it can be used if you don’t need A afterwards and want to reuse its
space:

val A = new Array[Int](1..10, (p:Point(1))=>p(0®));
assert A(3) == 3 && A(4) == 4 && A(10) == 10;

val cube = (i:Int) => i*i*i;

A.map(A, cube);

assert A(3) == 27 && A(4) == 64 && A(10) == 1000;

The binary map operation takes a binary function and another array over the same
region or distributed array over the same distribution, and applies the function
pointwise to corresponding elements of the two arrays, returning a new array or
distributed array of the same shape. The following code adds two distributed
arrays:

static def add(da:DistArray[Int], db: DistArray[Int])
{da.dist==db.dist}
= da.map(db, (a:Int,b:Int)=>a+b);

Reductions Let £ be a function of type (T,T)=>T. Let a be an array over base
type T. Let unit be a value of type T. Then the operation a.reduce(f, unit)
returns a value of type T obtained by combining all the elements of a by use
of £ in some unspecified order (perhaps in parallel). The following code gives

16.8. OPERATIONS ON ARRAYS AND DISTRIBUTED ARRAYS 259

one method which meets the definition of reduce, having a running total r, and
accumulating each value a(p) into it using f in turn. (This code is simply given
as an example; Array has this operation defined already.)

def oneWayToReduce[T](a:Array[T], £:(T,T)=>T, unit:T):T {
var r : T = unit;
for(p in a.region) r = f(r, a(p));
return r;

}

For example, the following sums an array of integers. f is addition, and unit is
Zero.

val a = [1,2,3,4];
val sum = a.reduce((a:Int,b:Int)=>a+b, 0);
assert(sum == 10); // 10 == 1+2+3+4

Other orders of evaluation, degrees of parallelism, and applications of £(x,unit)
and f(unit,x)are also correct. In order to guarantee that the result is precisely
determined, the function f should be associative and commutative, and the value
unit should satisfy f(unit,x) == x == f(x,unit) for all x:T.

DistArrays have the same operation. This operation involves communication
between the places over which the DistArray is distributed. The X10 implemen-
tation guarantees that only one value of type T is communicated from a place as
part of this reduction process.

Scans Let £:(T,T)=>T, unit:T, and a be an Array[T] or DistArray[T].
Then a.scan(f,unit) is the array or distributed array of type T whose ith ele-
ment in canonical order is the reduction by £ with unit unit of the first : elements
of a.

This operation involves communication between the places over which the dis-
tributed array is distributed. The X10 implementation will endeavour to minimize
the communication between places to implement this operation.

Other operations on arrays, distributed arrays, and the related classes may be
found in the x10.array package.

17 Annotations

X10 provides an an annotation system system for to allow the compiler to be
extended with new static analyses and new transformations.

Annotations are constraint-free interface types that decorate the abstract syntax
tree of an X10 program. The X10 type-checker ensures that an annotation is a
legal interface type. In X10, interfaces may declare both methods and properties.
Therefore, like any interface type, an annotation may instantiate one or more of
its interface’s properties.

17.1 Annotation syntax

The annotation syntax consists of an “@” followed by an interface type.

Annotations = Annotation
| Annotations Annotation
Annotation ::= @ NamedTypeNoConstraints

Annotations can be applied to most syntactic constructs in the language including
class declarations, constructors, methods, field declarations, local variable decla-
rations and formal parameters, statements, expressions, and types. Multiple occur-
rences of the same annotation (i.e., multiple annotations with the same interface
type) on the same entity are permitted.

Recall that interface types may have dependent parameters.

The following examples illustrate the syntax:

e Declaration annotations:

260

[N

DN

17.1. ANNOTATION SYNTAX 261

// class annotation
@Value
class Cons { ... }

// method annotation
@PreCondition(® <= i && i < this.size)
public def get(i: Int): Object { ... }

// constructor annotation
@Where(x != null)
def this(x: T) { ... }

// constructor return type annotation
def this(x: T): C@Initialized { ... }

// variable annotation
@Unique x: A;

e Type annotations:

List@Nonempty
Int@Range(1,4)
Array[Array[Double]]@Size(n * n)

e Expression annotations:
m() @RemoteCall

e Statement annotations:
@Atomic { ... }

@MinIterations(0)
@MaxIterations(n)
for (var i: Int = 0; i <n; i++) { ... }

// An annotated empty statement ;
@Assert(x < y);

262 CHAPTER 17. ANNOTATIONS

17.2 Annotation declarations

Annotations are declared as interfaces. They must be subtypes of the interface
x10.lang.annotation.Annotation. Annotations on particular static entities
must extend the corresponding Annotation subclasses, as follows:

e Expressions—ExpressionAnnotation

Statements—StatementAnnotation

Classes—ClassAnnotation

Fields—FieldAnnotation

Methods—MethodAnnotation

Imports—ImportAnnotation

Packages—PackageAnnotation

18 Native Code Integration

At times it becomes necessary to call non-X10 code from X10, perhaps to make
use of specialized libraries in other languages or to write more precisely controlled
code than X10 generally makes available.

The @Native(lang,code) Phrase annotation from x10.compiler.Native
in X10 can be used to tell the X10 compiler to generate code for certain kinds
of Phrase, instead of what it would normally compile to, when compiling to the
lang back end.

The compiler cannot analyze native code the same way it analyzes X10 code. In
particular, @Native fields and methods must be explicitly typed; the compiler will
not infer types.

18.1 Native static Methods

static methods can be given native implementations. Note that these imple-
mentations are syntactically expressions, not statements, in C++ or Java. Also, it
is possible (and common) to provide native implementations into both Java and
C++ for the same method.

import x10.compiler.Native;

class Son {
@Native("c++", "printf(\"Hi!'\'")"™)
@Native("java", "System.out.println(\"Hi!\")")
static def printNatively():void = {};

ks

If only some back-end languages are given, the X10 code will be used for the
remaining back ends:

263

264 CHAPTER 18. NATIVE CODE INTEGRATION

import x10.compiler.Native;
class Land {
@Native("c++", "printf(\"Hi from C++!\")"™)
static def example():void = {
x10.i0.Console.OUT.printIn("Hi from X10!");
};
ks

The native modifier on methods indicates that the method must not have an X10
code body, and @Native implementations must be given for all back ends:

import x10.compiler.Native;

class Plants {
@Native("c++", "printf(\"Hi!\")")
@Native("java", "System.out.println(\"Hi!\")")
static native def printNatively():void;

}

Values may be returned from external code to X10. Scalar types in Java and C++
correspond directly to the analogous types in X10.

import x10.compiler.Native;
class Return {
@Native("c++", "1'")
@Native("java", "1")
static native def one():Int;

}

Types are not inferred for methods marked as @Native.

Parameters may be passed to external code. (#1) is the first parameter, (#2)
the second, and so forth. ((#0) is the name of the enclosing class, or the this
variable.) Be aware that this is macro substitution rather than normal parameter
passing; e.g., if the first actual parameter is i++, and (#1) appears twice in the
external code, i will be incremented twice. For example, a (ridiculous) way to
print the sum of two numbers is:

import x10.compiler.Native;

class Species {
@Native("c++","printf(\"Sum=%d\", (FHL)+(#2)))"
@Native("java","System.out.println(\"\" + ((#L)+(#2)))")

18.2. NATIVE BLOCKS 265

static native def printNatively(x:Int, y:Int):void;
}

Static variables in the class are available in the external code. For Java, the static
variables are used with their X10 names. For C++, the names must be mangled,
by use of the FMGL macro.

import x10.compiler.Native;

class Ability {
static val A : Int = 1;
@Native("java", "A+2")
@Native("c++", "Ability::FMGLCA)+2")
static native def fromStatic():Int;

18.2 Native Blocks

Any block may be annotated with @Native(lang,stmt), indicating that, in
the given back end, it should be implemented as stmt. All variables from the
surrounding context are available inside stmt. For example, the method call
born.example(10), if compiled to Java, changes the field y of a Born object
to 10. If compiled to C++ (for which there is no @Native), it sets it to 3.

import x10.compiler.Native;
class Born {
var y : Int = 1;
public def example(x:Int):Int{
@Native("java", "y=x;")
{y = 3;}
return y;
}
}

Note that the code being replaced is a statement — the block {y = 3;} in this case
— so the replacement should also be a statement.

Other X10 constructs may or may not be available in Java and/or C++ code. For
example, type variables do not correspond exactly to type variables in either lan-
guage, and may not be available there. The exact compilation scheme is not fully

266 CHAPTER 18. NATIVE CODE INTEGRATION

specified. You may inspect the generated Java or C++ code and see how to do
specific things, but there is no guarantee that fancy external coding will continue
to work in later versions of X10.

The full facilities of C++ or Java are available in native code blocks. However,
there is no guarantee that advanced features behave sensibly. You must follow
the exact conventions that the code generator does, or you will get unpredictable
results. Furthermore, the code generator’s conventions may change without notice
or documentation from version to version. In most cases the code should either be
a very simple expression, or a method or function call to external code.

18.3 External Java Code

When X10 is compiled to Java, mentioning a Java class name in native code will
cause the Java compiler to find it in the sourcepath or classpath, in the usual way.
This requires no particular extra work from the programmer.

18.4 External C++ Code

C++ code can be linked to X10 code, either by writing auxiliary C++ files and
adding them with suitable annotations, or by linking libraries.

18.4.1 Auxiliary C++ Files

Auxiliary C++ code can be written in .h and . cc files, which should be put in the
same directory as the the X10 file using them. Connecting with the library uses
the @NativeCPPInclude(dot_h_file_name) annotation to include the header
file, and the @NativeCPPCompilationUnit(dot_cc_file_name) annotation
to include the C++ code proper. For example:

MyCppCode.h:
void foo();

MyCppCode.cc:

18.4. EXTERNAL C++ CODE 267

#include <cstdlib>
#include <cstdio>
void foo() {
printf("Hello World!\n");

}

Test.x10:

import x10.compiler.Native;
import x10.compiler.NativeCPPInclude;
import x10.compiler.NativeCPPCompilationUnit;

@NativeCPPInclude("MyCPPCode.h")
@NativeCPPCompilationUnit ("MyCPPCode.cc")
public class Test {
public static def main (args:Array[String] (1)) {
{ @Native("c++","foo();") {} }

}

18.4.2 C++ System Libraries

If we want to additionally link to more libraries in /usr/lib for example, it
is necessary to adjust the post-compilation directly. The post-compilation is the
compilation of the C++ which the X10-to-C++ compiler x10c++ produces.

The mechanism used for this is the -post command line parameter to x10c++.
The following example shows how to compile blas into the executable via post
compiler parameters. The command must be issued on one line.

x10c++ Test.x10 -post '# # -1 /usr/local/blas #
-L /usr/local/blas -1blas’

e The first # means to use the default compiler for the architecture (from x10rt
properties file).

e The second # is substituted for the .cc files and CXXFLAGS that would
ordinarily be used.

268 CHAPTER 18. NATIVE CODE INTEGRATION

o The third # is substituted for the libraries and LDFLAGS that would ordi-
narily used.

e For the second and third, if a % is used instead of a # then the the substitution
does not occur in that position. The % is erased. The desired parameter value
should appear after the % on the line. This allows a complete override of the
postcompiler behaviour.

19 Definite Assignment

X10 requires, reasonably enough, that every variable be set before it is read.
Sometimes this is easy, as when a variable is declared and assigned together:

var x : Int = 0;
assert x == 0;

However, it is convenient to allow programs to make decisions before initializing
variables.

def example(a:Int, b:Int) {
val max:Int;
//ERROR: assert max==max; // can’t read ’'max’
if (a > b) max = a;
else max = b;
assert max >= a && max >= b;

}

This is particularly useful for val variables. vars could be initialized to a default
value and then reassigned with the right value. vals must be initialized once and
cannot be changed, so they must be initialized with the correct value.

However, one must be careful — and the X10 compiler enforces this care. Without
the else clause, the preceding code might not give max a value by the assert.

This leads to the concept of definite assignment [Sl]. A variable is definitely as-
signed at a point in code if, no matter how that point in code is reached, the vari-
able has been assigned to. In X10, variables must be definitely assigned before
they can be read.

As X10 requires that val variables not be initialized twice, we need the dual con-
cept as well. A variable is definitely unassigned at a point in code if it cannot have

269

270 CHAPTER 19. DEFINITE ASSIGNMENT

been assigned there. For example, immediately after val x:Int, x is definitely
unassigned.

Finally, we need the concept of singly and multiply assigned. A variable is singly
assigned in a block if it is assigned precisely once; it is multiply assigned if it could
possibly be assigned more than once. vars can multiply assigned as desired. vals
must be singly assigned. For example, the code x = 1; x = 2; is perfectly fine
if x is a var, but incorrect (even in a constructor) if x is a val.

At some points in code, a variable might be neither definitely assigned nor defi-
nitely unassigned. Such states are not always useful.

def example(flag : Boolean) {
var x : Int;
if (flag) x = 1;
// X is neither def. assigned nor unassigned.
X = 2;
// x is def. assigned.

This shows that we cannot simply define “definitely unassigned” as “not definitely
assigned”. If x had been a val rather than a var, the previous example would not
be allowed.

Unfortunately, a completely accurate definition of “definitely assigned” or “def-
initely unassigned” is undecidable — impossible for the compiler to determine.
So, X10 takes a conservative approximation of these concepts. If X10’s definition
says that x is definitely assigned (or definitely unassigned), then it will be assigned
(or not assigned) in every execution of the program.

However, there are programs which X10’s algorithm says are incorrect, but which
actually would behave properly if they were executed. In the following example,
flag is either true or false, and in either case x will be initialized. However,
X10’s analysis does not understand this — thought it would understand if the
example were coded with an if-else rather than a pair of ifs. So, after the two
if statements, x is not definitely assigned, and thus the assert statement, which
reads it, is forbidden.

def example(flag:Boolean) {
var x : Int;
if (flag) x = 1;
if (!flag) x = 2;
// ERROR: assert x < 3;

19.1. ASYNCHRONOUS DEFINITE ASSIGNMENT 271

19.1 Asynchronous Definite Assignment

Local variables and instance fields allow asynchronous assignment. A local vari-
able can be assigned in an async statement, and, when the async is finished,
the variable is definitely assigned.

Example:

val a : Int;

finish {

async {

a=1;

3

// a is not definitely assigned here
ks
// a is definitely assigned after ’finish’
assert a==1;

This concept supports a core X10 programming idiom. A val variable may be
initialized asynchronously, thereby providing a means for returning a value from
an async to be used after the enclosing finish.

19.2 Characteristics of Definite Assignment

The properties “definitely assigned”, “singly assigned”, and “definitely unassigned”
are computed by a conservative approximation of X10’s evaluation rules.

The precise details are up to the implementation. Many basic cases must be han-
dled accurately; e.g., x=1; definitely and singly assigns x.

However, in more complicated cases, a conforming X10 may mark as invalid
some code which, when executed, would actually be correct. For example, the
following program fragment will always result in x being definitely and singly
assigned:

272 CHAPTER 19. DEFINITE ASSIGNMENT

val x : Int;
var b : Boolean = mysterious();
if (b) {

X = crypticQ);

}
if (b)) {

x = unknown();
ks

However, most conservative approximations of program execution won’t mark x
as properly initialized, though it is. For x to be properly initialized, precisely one
of the two assignments to x must be executed. If b were true initially, it would still
be true after the call to cryptic() — since methods cannot modify their caller’s
local variables — and so the first but not the second assignment would happen. If
b were false initially, it would still be false when !b is tested, and so the second
but not the first assignment would happen. Either way, x is definitely and singly
assigned.

However, for a slightly different program, this analysis would be wrong. E.g., if b
were a field of this rather than a local variable, cryptic() could change b; if b
were true initially, both assignments might happen, which is incorrect for a val.

This sort of reasoning is beyond most conservative approximation algorithms. (In-
deed, many do not bother checking that !b late in the program is the opposite of
b earlier.) Algorithms that pay attention to such details and subtleties tend to be
fairly expensive, which would lead to very slow compilation for X10 — for the
sake of obscure cases.

X10’s analysis provides at least the following guarantees. We describe them in
terms of a statement S performing some collection of possible numbers of assign-
ments to variables — on a scale of “0”, “1”, and “many”. For example, if (b)
x=1; else {x=1;x=2;y=2;} might assign to x one or many times, and might
assign to y zero or one time. Hence, after it, x is definitely assigned and may be
multiply assigned, and y is neither definitely assigned nor definitely unassigned.

These descriptions are combined in natural ways. For example, if R says that x
will be assigned 0 or 1 times, and S says it will be assigned precisely once, then
R;S will assign it one or many times. If only one or R or S will occur, as from
if (b) R; else S;,then x may be assigned O or 1 times.

This information is sufficient for the tests X10 makes. If x can is assigned one or
many times in S, it is definitely assigned. It is an error if x is ever read at a point

19.2. CHARACTERISTICS OF DEFINITE ASSIGNMENT 273

where it have been assigned zero times. It is an error if a val may be assigned
many times.

We do not guarantee that any particular X10 compiler uses this algorithm; indeed,
as of the time of writing, the X10 compiler uses a somewhat more precise one.
However, any conformant X10 compiler must provide results which are at least as
accurate as this analysis.

Assignment: x = e

X = e assigns to x, in addition to whatever assignments e makes. For example,
if this.setX(y) sets a field x to y and returns y, then x = this.setX(y) def-
initely and multiply assigns x.

async and finish

By itself, async S provides few guarantees. After async{x=1;} finishes, we
know that there is a separate activity which will, when the scheduler lets it, set x
to 1. We do not know that anything has happened yet.

However, if there is a £inish around the async, the situation is clearer. After
finish{ async{ x=1; }}, x has definitely been assigned.

In general, if an async S appears in the body of a finish in a way that guar-
antees that it will be executed, then, after the finish, the assignments made by
S will have occurred. For example, if S definitely assigns to x, and the body of
the finish guarantees that async S will be executed, then finish{...async
S. ..} definitely assigns x.

if and switch

When if(E) S else T finishes, it will have performed the assignments of E,
together with those of either S or T but not both. For example, if (b) x=1;
else x=2; definitely assigns x, but if (b) x=1; does not.

switch is more complex, but follows the same principles as if. For exam-
ple, switch(E){case 1: A; break; case 2: B; default: C;} performs
the assignments of E, and those of precisely one of A, or B;C, or C. Note that case
2 falls through to the default case, so it performs the same assignments as B; C.

274 CHAPTER 19. DEFINITE ASSIGNMENT

Sequencing

When R; S finishes, it will have performed the assignments of R and those of S. For
example, x=1;y=2; definitely assigns x and y, and x=1;x=2; multiply assigns x.

Loops

while(E)S performs the assignments of E one or more times, and those of S
zero or more times. For example, if while(b()){x=1;} might assign to x zero,
one, or many times. do S while(E) performs the assignments of E one or more
times, and those of S one or more times.

for (A;B;C)D performs the assignments of A once, those of B one or more times,
and those of C and D one or more times. for(x in E)S performs the assignments
of E once and those of S zero or more times.

Loops are of very little value for providing definite assignments, since X10 does
not in general know how many times they will be executed.

continue and break inside of a loop are hard to describe in simple terms. They
may be conservatively assumed to cause the loop give no information about the
variables assigned inside of it. For example, the analysis may conservatively con-
clude that do{ x = 1; if (true) break; } while(true) may assign to x
zero, one, or many times, overlooking the more precise fact that it is assigned
once.

Method Calls

A method call E.m(A,B) performs the assignments of E, A, and B once each, and
also those of m. This implies that X10 must be aware of the possible assignments
performed by each method.

If X10 has complete information about m (as when m is a private or final
method), this is straightforward. When such information is fundamentally impos-
sible to acquire, as when m is a non-final method invocation, X10 has no choice
but to assume that m might do anything that a method can do. (For this reason, the
only methods that can be called from within a constructor on a raw — incompletely-
constructed — object) are the private and final ones.)

e m cannot assign to local fields of the caller; methods have no such power.

19.2. CHARACTERISTICS OF DEFINITE ASSIGNMENT 275

e mcan assign to var fields of this freely.

e mcannot initialize val fields of this. (But see when one constructor
calls another as the first statement of its body, the other constructor can
initialize vval fields. This is a constructor call, not a method call.)

Recall that every container must be fully initialized upon exit from its constructor.
X10 places certain restrictions on which methods can be called from a construc-
tor; see One of these restrictions is that methods called before object
initialization is complete must be final or private — and hence, available for
static analysis. So, when checking field initialization, X10 will ensure:

1. Each val field is initialized before it is read. A method that does not read a
val field £ may be called before f is initialized; a method that reads £ must
not be called until £ is initialized. For example, a constructor may have the
form:

class C {
val £ : Int;
val g : String;
def this() {
f = fless(Q);
g = useFQ);
}
private def fless() = "f not used here".length(Q);
private def useF() = "f=" + this.f;
}

2. var fields require a deeper analysis. Consider a var field var x:T without
initializer. If T has a default value, x may be read inside of a constructor
before it is otherwise written, and it will have its default value.

If T has no default value, an analysis like that used for vals must be per-
formed to determine that x is initialized before it is used. The situation is
more complex than for vals, however, because a method can assign to x
as well read from it. The X10 compiler computes a conservative approx-
imation of which methods read and write which var fields. (Doing this
carefully requires finding a solution of a set of equations over sets of vari-
ables, with each callable method having equations describing what it reads
and writes.)

276 CHAPTER 19. DEFINITE ASSIGNMENT

at

at(p)S cannot perform any assignments. this cannot be read or written by an
at-statement.

atomic

atomic S performs the assignments of S, and when (E) S performs those of E and
S.

try

try S catch(x:T1) E1 ... catch(x:Tn) En finally F performs some
or all of the assignments of S, plus all the assignments of zero or one of the E’s,
plus those of F. For example,

try {
X boomy () ;
x = 0;
ks
catch(e:Boom) { y = 1; }
finally { z = 1; }

assigns x zero, one, or many timeﬂ assigns y zero or one time, and assigns z
exactly once.

Expression Statements

Expression statements E;, and other statements that execute an expression and
do something innocuous with it (local variable declaration and assert) have the
same effects as E.

return, throw

Statements that do not finish normally, such as return and throw, don’t initialize
anything (though the computation of the return or thrown value may). They also

' A more precise analysis could discover that x cannot be initialized only once.

19.2. CHARACTERISTICS OF DEFINITE ASSIGNMENT 277

terminate a line of computation. For example, if(b) {x=1; return;} x=2;
definitely and singly assigns x.

20 Grammar

In this grammar, X’ denotes an optional X element.

(0) AdditiveExp ::= MultiplicativeExp
| AdditiveExp + MultiplicativeExp
| AdditiveExp - MultiplicativeExp

(1) AndExp := EqualityExp

| AndExp & EqualityExp
(2) AnnotatedType ::= Type Annotations
(3) Annotation ::= @ NamedTypeNoConstraints
(4) AnnotationStmt = Annotations’ NonExpStmt
(5) Annotations ::= Annotation

| Annotations Annotation

(6) ApplyOpDecln ::= MethMods operator this TypeParams’ Formals
Guard® HasResultType® MethodBody

(7) ArgumentList ::= Exp
| ArgumentList , Exp

(8) Arguments ::= (ArgumentList)

278

279

(9) AssertStmt ::= assert Exp ;
| assert Exp : Exp ;

(10) AssignPropCall ::= property TypeArgs’ (ArgumentList’) ;

(11) Assignment ::= LeftHandSide AsstOp AsstExp
| ExpName (ArgumentList’) AsstOp AsstExp
| Primary (ArgumentList’) AsstOp AsstExp

(12) AsstExp = Assignment
| Conditional Exp

(13) AsstOp = =

(14) AsyncStmt = async ClockedClause® Stmt
| clocked async Stmt

(15) AtCaptureDeclr = Mods’ VarKeyword® VariableDeclr
| Id
| this

(16) AtCaptureDeclrs ::= AtCaptureDeclr

| AtrCaptureDeclrs , AtCaptureDeclr

280 CHAPTER 20. GRAMMAR

(17) AtEachStmt = ateach (LoopIndex in Exp) ClockedClause® Stmt
ateach (Exp) Stmt

(18) AtExp == at (Exp) ClosureBody
(19) AtStmt = at (Exp) Stmt
(20) AtomicStmt = atomic Stmt

(21) BasicForStmt = for (Forlnit’ ; Exp® ; ForUpdate®) Stmt

(22) BinOp :=

281

MethMods operator TypeParams? (Formal) BinOp (For-
mal) Guard® HasResultType® MethodBody

MethMods operator TypeParams’ this BinOp (Formal)
Guard’ HasResultType’ MethodBody

MethMods operator TypeParams’ (Formal) BinOp this
Guard® HasResultType® MethodBody

282 CHAPTER 20. GRAMMAR

(24) Block = { BlockStmts" }

(25) BlockiInteriorStmt ::= LocVarDeclnStmt
| ClassDecln
| StructDecln
| TypeDefDecln
| Stmt

(26) BlockStmts ::= BlocklnteriorStmt
| BlockStmts BlockInteriorStmt

(27) BooleanLiteral ::= true

| false

(28) BreakStmt = breaklId’ ;
(29) CastExp ::= Primary
| ExpName

| CastExp as Type
(30) CatchClause ::= catch (Formal) Block

(31) Catches ::= CatchClause
| Catches CatchClause

(32) ClassBody ::= { ClassMemberDeclns’ }

(33) ClassDecln = Mods’ class Id TypeParamsI’ Properties’ Guard’ Super’
Interfaces’ ClassBody

(34) ClassMemberDecln ::= InterfaceMemberDecln
| CtorDecln

(33)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(43)

283

ClassMemberDeclns ::= ClassMemberDecln
| ClassMemberDeclns ClassMemberDecln

ClassName ::== TypeName

ClassType ::== NamedType
ClockedClause ::= clocked Arguments
ClosureBody ::= Exp

\ Annotations’ { BlockStmts’ LastExp }
| Annotations® Block

ClosureExp = Formals Guard’ HasResultType’ => ClosureBody

CompilationUnit ::= PackageDecln’ TypeDeclns’
| PackageDecln’ ImportDeclns TypeDeclns’
| ImportDeclns PackageDecln ImportDeclns’
TypeDeclns’
| PackageDecln ImportDeclns PackageDecln
ImportDeclns® TypeDeclns’

ConditionalAndExp ::= InclusiveOrExp
| ConditionalAndExp && InclusiveOrExp

Conditional Exp = ConditionalOrExp

| ClosureExp

| AtExp

| ConditionalOrExp ? Exp : Conditional Exp
ConditionalOrExp = ConditionalAndExp

| ConditionalOrExp | | ConditionalAndExp

ConstantExp = Exp

284

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(53)

(56)

CHAPTER 20. GRAMMAR

ConstrainedType ::= NamedType
| AnnotatedType
ConstraintConjunction = Exp

| ConstraintConjunction , Exp

ContinueStmt = continue Id’ ;
ConversionOpDecln ::= ExplConvOpDecln
| ImplConvOpDecln
CtorBlock = { ExplicitCtorInvo? BlockStmts’ }
CtorBody ::= = CtorBlock
| CtorBlock
| = ExplicitCtorlnvo
| =AssignPropCall
|
CtorDecln = Mods’ def +this TypeParams’ Formals
HasResultType® CtorBody
DepNamedType ::= SimpleNamedType DepParams
| ParamizedNamedType DepParams
DoStmt ::= do Stmtwhile (Exp) ;
EmptyStmt =
EnhancedForStmt ::= for (LoopIndex in Exp) Stmt

| for (Exp) Stmt

Guard’

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

285

EqualityExp ::= RelationalExp
| EqualityExp == Relational Exp
| EqualityExp != Relational Exp
| Type == Type
| EqualityExp ~ Relational Exp
| EqualityExp !~ Relational Exp

ExclusiveOrExp ::= AndExp
| ExclusiveOrExp ~ AndExp

Exp = AsstExp

ExpName := Id
| FullyQualifiedName . Id

ExpStmt = StmtExp ;
ExplConvOpDecln == MethMods operator TypeParams’ (Formal) as
Type Guard’ MethodBody
| MethMods operator TypeParams® (Formal) as ?
Guard® HasResultType® MethodBody
ExplicitCtorlnvo = this TypeArgs’ (ArgumentList’) ;

| super TypeArgs’ (ArgumentList’) ;
| Primary . this TypeArgs’ (ArgumentList’) ;
| Primary . super TypeArgs’ (ArgumentList’) ;

ExtendsInterfaces ::= extends Type
| ExtendsInterfaces , Type

FieldAccess ::= Primary . Id
| super.Id
| ClassName . super . Id

286

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(73)

(76)

FieldDecln

FieldDeclr

FieldDeclrs

Finally ::=

FinishStmt

Forlnit =

ForStmt =

ForUpdate

Formal ::=

FormalDeclr

FormalDeclrs

CHAPTER 20. GRAMMAR

= Mods’ VarKeyword FieldDeclrs ;

| Mods’ FieldDeclrs ;

::= Id HasResultType
| Id HasResultType® = Variablelnitializer

::= FieldDeclr

| FieldDeclrs , FieldDeclr

finally Block

= finish Stmt
| clocked finish Stmt

StmtExpList
LocVarDecln

BasicForStmt
EnhancedForStmt

= StmtExpList

Mods® FormalDeclr
Mods® VarKeyword FormalDeclr

Type

::= Id ResultType
| [IdList] ResultType
| Id [IdList] ResultType

©:= FormalDeclr
| FormalDeclrs , FormalDeclr

(77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)

(87)

(88)

(89)

287

FormalList ::= Formal
| FormalList , Formal

Formals = (FormalList’)

FullyQualifiedName ::= Id
| FullyQualifiedName . Id

FunctionType = TypeParams’ (FormalList’) Guard’ => Type
Guard ::= DepParams
HasResultType ::= ResultType
| <: Type
HasZeroConstraint .= Type haszero
HomeVariable ::= 1d
| this
HomeVariableList ::= HomeVariable

| HomeVariableList , HomeVariable

Id ::= IDENTIFIER
IdList == Id
| IdList , Id
IfThenElseStmt ::= 1if (Exp) Stmt else Stmt

IfThenStmt ::= 1if (Exp) Stmt

288 CHAPTER 20. GRAMMAR

(90) ImplConvOpDecln ::= MethMods operator TypeParams’ (Formal)
Guard’ HasResultType’ MethodBody

(91) ImportDecln ::= SingleTypelmportDecln
| TypelmportOnDemandDecln

(92) ImportDeclns ::= ImportDecln
| ImportDeclns ImportDecln

(93) InclusiveOrExp = ExclusiveOrExp
| InclusiveOrExp | ExclusiveOrExp

(94) InterfaceBody ::= { InterfaceMemberDeclns’ }

(95) InterfaceDecln ::= Mods’ interface Id TypeParamsl’ Properties’
Guard’® ExtendsInterfaces’ InterfaceBody

(96) InterfaceMemberDecln ::= MethodDecln
| PropMethodDecln
| FieldDecln
| TypeDecin

(97) InterfaceMemberDeclns ::= InterfaceMemberDecln
| InterfaceMemberDeclns InterfaceMem-
berDecln

(98) InterfaceTypelList ::= Type
| InterfaceTypeList , Type

(99) Interfaces ::= implements InterfaceTypeList

(100) LabeledStmt ::= Id : LoopStmt

289

(101) LastExp := Exp

(102) LeftHandSide ::= ExpName

(103)

(104)

(105)

(106)

(107)

| FieldAccess

Literal ::= IntegerLiteral
| LongLiteral
| ByteLiteral
| UnsignedByteLiteral
| ShortLiteral
| UnsignedShortLiteral
| UnsignedIntegerLiteral
| UnsignedLongLiteral
| FloatingPointLiteral
| DoubleLiteral
| BooleanlLiteral

| CharacterLiteral

| StringLiteral

| null

LocVarDecln = Mods® VarKeyword VariableDeclrs
| Mods" VarDeclsWType
| Mods’ VarKeyword FormalDeclrs

LocVarDeclnStmt ::= LocVarDecln ;

LoopIndex = Mods’ LoopIndexDeclr
| Mods’ VarKeyword LoopIndexDeclr

LooplndexDeclr ::= Id HasResultType®
| [IdList 1 HasResultType®
| Id [IdList 1 HasResultType’

290 CHAPTER 20. GRAMMAR

ForStmt

| WhileStmt

| DoStmt

| AtEachStmt

(108) LoopStmt

(109) MethMods = Mods’
| MethMods property
| MethMods Mod

(110) MethodBody ::= = LastExp ;

| = Annotations’ { BlockStmts’ LastExp }
| = Annotations’ Block

| Annotations® Block

|

(111) MethodDecln ::= MethMods def Id TypeParams’ Formals Guard’
HasResultType’ MethodBody
| BinOpDecln
| PrefixOpDeclin
| ApplyOpDecln
| SetOpDecin
| ConversionOpDecln

(112) Methodlnvo ::= MethodName TypeArgs® (ArgumentList’)
| Primary . Id TypeArgs’ (ArgumentList’)
| super . Id TypeArgs® (ArgumentList’)
| ClassName . super . Id TypeArgs’ (ArgumentList’)
| Primary TypeArgs® (ArgumentList’)

(113) MethodName ::= Id
| FullyQualifiedName . Id

(114) Mod

abstract
Annotation
atomic
final
native
private
protected
public
static
transient
clocked

(115) MultiplicativeExp ::= RangeExp

(116) NamedType

| MultiplicativeExp * RangeExp
| MultiplicativeExp / RangeExp
| MultiplicativeExp % RangeExp
| MultiplicativeExp ** RangeExp

::= NamedTypeNoConstraints
| DepNamedType

(117) NamedTypeNoConstraints ::= SimpleNamedType

| ParamizedNamedType

291

292

(118) NonExpStmt

(119) ObCreationExp

(120) PackageDecln

(121) PackageName

= new TypeName

CHAPTER 20.

Block
EmptyStmt
AssertStmt
SwitchStmt
DoStmt
BreakStmt
ContinueStmt
ReturnStmt
ThrowStmt
TryStmt
LabeledStmt
IfThenStmt
IfThenElseStmt
WhileStmt
ForStmt
AsyncStmt
AtStmt
AtomicStmt
WhenStmt
AtEachStmt
FinishStmt
AssignPropCall

TypeArgs’
ClassBody’

| Primary
ClassBody"

| FullyQualifiedName new
ArgumentList’) ClassBody’

GRAMMAR

(ArgumentList?

Id TypeArgs®

Annotations’ package PackageName ;

Id

PackageName . Id

)

new Id TypeArgs’ (ArgumentList’)

(

293

(122) PackageOrTypeName ::= Id
| PackageOrTypeName . Id

(123) ParamizedNamedType ::= SimpleNamedType Arguments
| SimpleNamedType TypeArgs
| SimpleNamedType TypeArgs Arguments

(124) PostDecrementExp ::= PostfixExp --
(125) PostincrementExp ::= PostfixExp ++
(126) PostfixExp = CastExp
| PostIncrementExp
| PostDecrementExp
(127) PreDecrementExp = -- UnaryExpNotPlusMinus
(128) PrelncrementExp ::= ++ UnaryExpNotPlusMinus
(129) PrefixOp = +
|-
| !
’ ~
’ ~
|
| &
| *
|/
| %
(130) PrefixOpDecln ::= MethMods operator TypeParams’ PrefixOp (Formal

) Guard® HasResultType® MethodBody
| MethMods operator TypeParams’ PrefixOp this
Guard® HasResultType® MethodBody

294

(131)

(132)

(133)

(134)

(135)

(136)

(137)

(138)

Primary

Prop

PropList

PropMethodDecln

Properties

RangeExp

CHAPTER 20. GRAMMAR

here

[ArgumentList?]
Literal

self

this
ClassName .
CExp)
ObCreationExp
FieldAccess
MethodInvo

this

Annotations’ I1d ResultType

Prop
PropList , Prop

MethMods Id TypeParams’ Formals

HasResultType® MethodBody

Guard’

| MethMods Id Guard’ HasResultType® MethodBody

(PropList)

UnaryExp

| RangeExp .. UnaryExp

Relational Exp

ResultType

ShiftExp

| HasZeroConstraint

| SubtypeConstraint

| RelationalExp < ShiftExp

| RelationalExp > ShiftExp

| RelationalExp <= ShiftExp

| Relational Exp >= ShiftExp

| RelationalExp instanceof Type

: ype

(139)

(140)

(141)

(142)

(143)

(144)

(145)

(146)

ReturnStmt

SetOpDecln

ShiftExp

= return Exp’ ;

mal) Guard® HasResultType® MethodBody

AdditiveExp

ShiftExp << AdditiveExp
ShiftExp >> AdditiveExp
ShiftExp >>> AdditiveExp
ShiftExp -> AdditiveExp
ShiftExp <- AdditiveExp
ShiftExp -< AdditiveExp
ShiftExp >- AdditiveExp
ShiftExp | AdditiveExp

SimpleNamedType ::= TypeName

| Primary . Id
| ParamizedNamedType . Id
| DepNamedType . Id

SingleTypelmportDecln ::= import TypeName ;

Stmt =

StmtExp

StmtExpList

AnnotationStmt
ExpStmt

Assignment
PrelncrementExp
PreDecrementExp
PostIncrementExp
PostDecrementExp
MethodInvo
ObCreationExp

= StmtExp

| StmtExpList , StmtExp

295

::= MethMods operator this TypeParams® Formals = (For-

296 CHAPTER 20. GRAMMAR

(147) StructDecln = Mods’ struct Id TypeParamsl’ Properties’ Guard’
Interfaces’ ClassBody

(148) SubtypeConstraint ::= Type <: Type
| Type :> Type
(149) Super ::= extends ClassType
(150) SwitchBlock = { SwitchBlockGroups® SwitchLabels® }
(151) SwitchBlockGroup ::= SwitchLabels BlockStmts
(152) SwitchBlockGroups ::= SwitchBlockGroup

| SwitchBlockGroups SwitchBlockGroup

(153) SwitchLabel ::= case ConstantExp :
| default :
(154) SwitchLabels ::= SwitchLabel

| SwitchLabels SwitchLabel

(155) SwitchStmt = switch (Exp) SwitchBlock
(156) ThrowStmt = throw Exp ;
(157) TryStmt ::= try Block Catches

| try Block Catches® Finally

(158) Type ::= FunctionType
| ConstrainedType
| Void

(159) TypeArgs ::= [TypeArgumentList]

297

(160) TypeArgumentList = Type
| TypeArgumentList , Type

(161) TypeDecln ::= ClassDecln
| StructDecln
| InterfaceDecln
| TypeDefDecln
s

(162) TypeDeclns ::= TypeDecln

| TypeDeclns TypeDecln

(163) TypeDefDecln ::= Mods’ type Id TypeParams® Guard® = Type ;
] Mods® type Id TypeParams? (FormalList) Guard® =
Type ;
(164) TypelmportOnDemandDecln ::= import PackageOrTypeName . * ;
(165) TypeName := 1Id

| TypeName . Id

(166) TypeParam := 1Id

(167) TypeParamlList = TypeParam
| TypeParamlList , TypeParam
| TypeParamlList ,

(168) TypeParamlList ::= TypeParam

| TypeParamlList , TypeParam
(169) TypeParams ::= [TypeParamlList]

(170) TypeParamsl ::= [TypeParamlList]

298

(171)

(172)

(173)

(174)

(175)

(176)

(177)

(178)

CHAPTER 20. GRAMMAR

UnannotatedUnaryExp ::= PrelncrementExp
| PreDecrementExp
|+ UnaryExpNotPlusMinus
| - UnaryExpNotPlusMinus
| UnaryExpNotPlusMinus

UnaryExp ::= UnannotatedUnaryExp
| Annotations UnannotatedUnaryExp

UnaryExpNotPlusMinus ::= PostfixExp

“ UnaryExp
I UnaryExp
" UnaryExp
| UnaryExp
& UnaryExp
* UnaryExp
/ UnaryExp
% UnaryExp

VarDeclWType ::= Id HasResultType = Variablelnitializer
| [IdList 1 HasResultType = Variablelnitializer
| Id [IdList 1 HasResultType = Variablelnitializer

VarDeclsWType ::= VarDeclWType
| VarDeclsWType , VarDeclWType

VarKeyword ::= val
| var
VariableDeclr ::= Id HasResultType® = Variablelnitializer

| [IdList] HasResultType? = Variablelnitializer
| Id [IdList] HasResultType? = Variablelnitializer

VariableDeclrs ::= VariableDeclr
| VariableDeclrs , VariableDeclr

(179)

(180)

(181)

(182)

Variablelnitializer

Void ::=

WhenStmt

WhileStmt

void

= Exp

when (Exp) Stmt

while (Exp) Stmt

299

References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

David Bacon. Kava: A Java dialect with a uniform object model for
lightweight classes. Concurrency — Practice and Experience, 15:185-206,
2003.

Joseph A. Bank, Barbara Liskov, and Andrew C. Myers. Parameterized types
and Java. In Proceedings of the 24th Annual ACM Symposium on Principles
of Programming Languages (POPL’97), pages 132—145, 1997.

William Carlson, Tarek El-Ghazawi, Bob Numrich, and Kathy Yelick. Pro-
gramming in the Partitioned Global Address Space Model, 2003. Presenta-
tion at SC 2003, http://www.gwu.edu/ upc/tutorials.html.

Bradford L. Chamberlain, Sung-Eun Choi, Steven J. Deitz, and Lawrence
Snyder. The high-level parallel language ZPL improves productivity and
performance. In Proceedings of the IEEE International Workshop on Pro-
ductivity and Performance in High-End Computing, 2004.

J. Gosling, W. Joy, G. Steele, and G. Bracha. The Java Language Specifica-
tion. Addison Wesley, 2000.

Maurice Herlihy. Wait-free synchronization. ACM Transactions on Pro-
gramming Languages and Systems, 13(1):124-149, January 1991.

Jose E. Moreira, Samuel P. Midkiff, Manish Gupta, Pedro V. Artigas, Marc
Snir, and Richard D. Lawrence. Java programming for high-performance
numerical computing. IBM Systems Journal, 39(1):21-, 2000.

Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala. Ar-
tima Inc, 2 edition, January 2011.

300

REFERENCES 301

[9] A. Skjellum, E. Lusk, and W. Gropp. Using MPI: Portable Parallel Pro-
gramming with the Message Passing linterface. MIT Press, 1999.

[10] K. A. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishna-
murthy, P. N. Hilfinger, S. L. Graham, D. Gay, P. Colella, and A. Aiken.
Titanium: A high-performance java dialect. Concurrency - Practice and
Experience, 10(11-13):825-836, 1998.

302

0,126
0=, 12
++, [18]1]
i1
>, [200
<:,[79, 200

9

? :,[183
DistArray,[253|

creation, 256]
Object,[35 [6]1]
as,[196]
ateach,231]
instanceof,[199
this, [173]
x10.lang.Object,[35][6]1]

acc,[314]
activity,

blocked, 227]

creating, 229

initial,

running, 227]

terminated,
allocation, [T89]
annotations, 260]

type annotations,
anonymous class, [[58]
Any

structs, [162]
application operator, [126]
artay, 98} 25T

access, 256]

constant promotion, 257]
construction, 20T]

Index

Index

constructor, 2572
distributed, 2373

literal, 201]
operations on, [253]
pointwise operations,
reductions, 258]
restriction,
scans, 259
assert, 214]
assignment, [T79)
definite, 269
assignment operator, [126|
async, [229]
clocked, 246]
at, [220]
blocking copying, [225]
copying, 223
GlobalRef, 223
transient fields and, 224]

ateach, 231]

atomic, 232]
conditional, 233]

auto-boxing
struct to interface, [162]

block, 206]
Boolean, [163]
literal, [27]
Boolean operations, [184]
break, 208]
Byte, [163]

call,
function, 177
method,
super, [[7§]

cast, [190] 196
to generic type, [51]

303

304

catch, 216
Char, [163|
char
literal, 28]
class, [35]
anonymous, 158
construction, 89
field,
inner, [154]
instantation, [I89]
invariant,
nested, [153]
static nested, [153|
class declaration, 33
class invariant,
class invariants,
clock, 240]
advanceAll, 244
clocked statements, 242]

ClockUseException, 241} 243 244

creation,

drop, 245]

operations on, [247]

resume, 244]
clocked

async, [240]

finish, 246|
clocked finish

nested, 247
closure, [167]

parametrized, [3§]
coercion, [150] [194]

explicit, [196]

subsumption, [194]

user-defined, [197]
comment, 23]

concrete type, [3§]
conditional expression,

Index

Index 305

constrained type, 43|
constraint, 46|
entailment, [50]
permitted, [46]
semantics, 48]
subtyping, [50]
syntax, [46]
constraint solver
incompleteness, [50]
constructor, 115} [132]
and invariant, [129]
closure in, [140]

generated, [[16]
inner classes in, [[40]

parametrized, [3§]
container, [31]

continue, 209
conversion, [194]
numeric, [19§|

string, [19§]

user-defined, [198]
widening, 19§

declaration
class declaration, 33]
interface declaration, [37]
reference class declaration, 33
type,[39
decrement, [I8T]
default value, [53]
definite assignment, 269
definitely assigned, 269
definitely not assigned, 269
dependent type, 43|
destructuring,
DistArray, 253

creation, 256|
distributed array, [253]

306 Index

creation, 256
distribution, 253
block, 253
constant, 253]
operations, [254]
restriction
range, 253
region, 255]
unique, 254
do, 211]

documentation type declaration,

Double, [T63]
double

literal, 28]
dynamic checks, [322]

equality, [185]
function,
Exception, 213
unchecked,
exception, 215] [216] 22§]
model, 228]
rooted, 228]
expression,

allowed in constraint, 46|
conditional, [T83)
constraint, 46|

extends, [128]

field, 80, 09|
access to,
hiding, [TO0]
initialization, [T00]
qualifier, [I0T]
static, [T0T]
transient, [101] 222] 224]
final, [TOS]
finally, 216

Index

finish, 230
clocked, 246]
nested clocked, 247

FIRST_PLACE, 21§

Float, [163]

float
literal, 28]

for, 211]

formal parameter, [7§|

function,
==,[172]
application, [L69]
at(Object), [172]
at(Place),[172]
equality,
equals,
hashCode,
home, [172]
literal, [T67]
outer variables in,
toString,
typeName,
types, 53

generic type, 43
guard,
on method, [108]

here, 219

hiding, [82]

identifier, 23]

if, 209]

immutable variable, [75]

implements, 12§
implicit coercion, [150]

implicitly non-escaping, 133

import,
import,type definitions,

307

308

increment, [I8]]

initial activity, 230]

initial value,

initialization, [76}, [132]
of field, [T0Q]

static, [IT8]
inner class, [154]

constructor, [136]

extending, 153
instanceof, [199]
instantation, [I89]
Int, 163

literal,
integers

unsigned, [163]
interface,

field definition in, 93]
interface declaration,
IntRange, 249
invariant

and constructor, [129]

checked, [129]

class, [127]

type,
invocation, [177]

function,

method, [T77]

keywords, [26]

label,

literal, 26} [T73|
Boolean,

char, 2]
double, 28]

float, 28]
function,
integer,

Index

Index

string, [28]

local variable, [79]

Long, 163

MAX_PLACES, 2T8]

method, [103]
calling, [T77]
final, [TOg]
generic instance, [0
guard, [T08]
implicitly non-escaping, [I35]
instance, [103)]
invoking, [T77]
non-escaping, [135]
NonEscaping, [135]
overloading, [T12]
parametrized, [3§]
property, [T10]
resolution, 143
signature, 103

static, [103]
which one will get called, 143

method resolution
implicit coercions and, [I50]

name, [81]

namespace, [81]

native code, 263

new, [189]

non-escaping, [134} [133
implicitly, 133

NonEscaping, [135]

null, 27, 36]

nullary constructor, [76]

numeric operations, [I8T]

numeric promotion, [I8T]

object,
constructor, [132]

309

310

field, 80, 09|

literal, 27]
obscuring, [83
Offers, 314
offers, 314} 320
operation

numeric, [T81]
operator, 29} [TT9]

user-defined, [T19]
overloading, 103

package, [81]
parameter, [7§]

val, [T106]

var, [106]
place, [2T§]

changing, 220

FIRST_PLACES, 2T§]

MAX_PLACES, 218]
point, 248

syntax, [248]
polymorphism, [105]
primitive types, [I63]
private, [84]
promotion, [T8]]
properties

acyclic, [104]
property, 37} [102]

initialization, [T03]
property method, [T10]
protected, [84]
public, [84]

qualifier

field, [10T]

range, 249
region, [249]
banded, 250

Index

Index

convex, 251]

intersection, 257]
lowerTriangular, [250]
operations, 251]
product, 25T1]
sub-region, 251]
syntax, 249
upper Triangular, 250]
return, 214
root activity,

self, [43]
shadowing, [B1]
Short, [163]
signature, 103

statement, [203]
statement label,
static nested class, [153|
static nested struct, [164]
STATIC_CHECKS, 322]
string

concatenation, [183]

literal, 28]
struct, [160]

auto-boxing, [162]

casting to interface, [162]

construction, [I89
constructor, [132]
declaration, [16]]
field,
instantation, [I89]
static nested, [164]
subtype
test, [200]
subtyping, [57]
supercall,
switch, 210]

termination,

311

312

abrupt, 2195
global, 227
local,
normal, 2T5]
this,
throw,
transient, [T01] 222] 224]
try, 216]
type
annotated,
class, 33
coercion, [194]

concrete, [38]
constrained, 43|
conversion, [194]
default value, [53]
definitions, 39|
dependent, [43]
function, 53]
generic, 38| 43|
inference, [61]
interface,
parameter, [3§]

type conversion, [190]
implicit, [123]
user-defined, [124]

type equivalence,

type inference, [61]

type invariants, [[27]

type system, [32]

type-checking
extends clause, [128]

implements clause, 12§

types, [31]
primitive, [163]
unsigned, [163]

UByte, 163

Index

Index

Ulnt, [163]
ULong, 163
unit type, 33
unsigned, [163]
UShort, [163]

val, [73] 204]

var, 204]

variable,
declaration, 204]
immutable, [73]
local, [79]
val,

variable declaration,

variable declarator
destructuring, [77]

variable name, 23]

VERBOSE_CHECKS, 322]

void, [63]

when, 233]
timing,

while, 211]

white space, [25]

313

A Deprecations

X10 version 2.2 has a few relics of previous versions, code that is being used by
libraries but is not intended for general programming. They should be ignored.

These are:

e acc variables.
e The offers clause, as seen in the Offers nonterminal in the grammar (?7?).

e The grammar allows covariant and contravariant type parameters, marked
by + and -:

class Variant[X, +Y, -Z] {}
X10 does not support these in any other way.

e The syntax allows for a few Java-isms, such as c.class and super.class,
which are not used.

314

B Change Log

B.1 Changes from X10 v2.1

1. Covariance and contravariance are gone.

2. Operator definitions are regularized. A number of new operator symbols
are available.

The operator in is gone. in is now only a keyword.
Method functions and operator functions are gone.

m. .n is now a type of struct called IntRange.

S AW

for(i in m..n) now works. The old forms, for((i) in m..n) and
for([i] in m..n), are no longer needed.

7. (e as T) now has type T. (It used to have an identity constraint conjoined
in.)

8. vars can no longer be assigned in their place of origin. Use a GlLobalRef[Cell[T]]
instead. We’ll have a new idiom for this in 2.3.

9. The -STATIC_CALLS command-line flag is now -STATIC_CHECKS.
10. Any string may be written in backquotes to make an identifier: ‘while‘.

11. The next and resume keywords are gone; they have been replaced by static
methods on Clock.

12. The typed array construction syntax new Array[T][t1,t2] is gone. Use
[tl as T, t2] (if just plain [t1,t2] doesn’t work).

315

316 APPENDIX B. CHANGE LOG

B.2 Changes from X10 v2.0.6

This document summarizes the main changes between X10 2.0.6 and X10 2.1.
The descriptions are intended to be suggestive rather than definitive; see the lan-
guage specification for full details.

B.2.1 Object Model

1. Objects are now local rather than global.

(a) The home property is gone.

(b) at(P)S produces deep copies of all objects reachable from lexically
exposed variables in S when it executes S. (Warning: They are copied
even in at Chere)S.)

2. The GlobalRef[T] struct is the only way to produce or manipulate cross-
place references.
(a) GlobalRef’s have a home property.
(b) Use GlobalRef[Foo] (foo) to make a new global reference.
(c) Use myGlobalRef() to access the object referenced; this requires
here == myGlobalRef.home.

3. The ! type modifier is no longer needed or present.

4. global modifiers are now gone:

(a) global methods in interfaces are now the default.

(b) global fields are gone. In some cases object copying will produce the
same effect as global fields. In other cases code must be rewritten. It
may be desirable to mark nonglobal fields transient in many cases.

(c) global methods are now marked @Global instead. Methods intended
to be non-global may be marked @Pinned.

B.2. CHANGES FROM X10 V2.0.6 317

B.2.2 Constructors

1. proto types are gone.

2. Constructors and the methods they call must satisfy a number of static
checks.

(a) Constructors can only invoke private or final methods, or methods
annotated @NonEscaping.

(b) Methods invoked by constructors cannot read fields before they are
written.

(c) The compiler ensures this with a detailed protocol.

3. It is still impossible for X10 constructors to leak references to this or ob-
serve uninitialized fields of an object. Now, however, the mechanisms en-
forcing this are less obtrusive than in 2.0.6; the burden is largely on the
compiler, not the programmer.

B.2.3 Implicit clocks for each finish

Most clock operations can be accomplished using the new implicit clocks.

1. A finish may be qualified with clocked, which gives it a clock.

2. An async in a clocked finish may be marked clocked. This registers
it on the same clock as the enclosing finish.

3. clocked async S and clocked finish S may use next in the body of
S to advance the clock.

4. When the body of a clocked finish completes, the clocked finish is
dropped form the clock. It will still wait for spawned asyncs to terminate,
but such asyncs need to wait for it.

318 APPENDIX B. CHANGE LOG

B.2.4 Asynchronous initialization of val

vals can be initialized asynchronously. As always with vals, they can only be
read after it is guaranteed that they have been initialized. For example, both of
the prints below are good. However, the commented-out print in the async is
bad, since it is possible that it will be executed before the initialization of a.

val a:Int;
finish {
async {
a = 1;
print("a='

+ a);

}
// WRONG: print("a=" + a);

}

print("a='

+ a);

B.2.5 Main Method

The signature for the main method is now:

def main(Array[String]) {..}

or, if the arguments are actually used,

def main(Cargv: Array[String] (1)) {..}

B.2.6 Assorted Changes
1. The syntax for destructuring a point now uses brackets rather than braces:
for([i] in 1..10), rather than the prior (i).
B.2.7 Safety of atomic and when blocks

1. Static effect annotations (safe, sequential, nonblocking, pinned) are
no longer used. They have been replaced by dynamic checks.

B.2. CHANGES FROM X10 V2.0.6 319

2. Using an inappropriate operation in the scope of an atomic or when con-
struct will throw I11egalOperationException. The following are inap-
propriate:

e when

resume () or next on clocks

e async

Future.make(), or Future. force().

e at

B.2.8 Removed Topics

The following are gone:

1. foreach is gone.
2. All vars are effectively shared, so shared is gone.

3. The place clause on async is gone. async (P) S should be written at (P)
async S.

4. Checked exceptions are gone.
5. future is gone.
6. await ... or ... isgone.

7. const is gone.

B.2.9 Deprecated

The following constructs are still available, but are likely to be replaced in a future
version:

1. ValRail.

2. Rail.

320

APPENDIX B. CHANGE LOG

3. ateach

4. offers. The offers concept was experimental in 2.1, but was determined

inadequate. It has not been removed from the compiler yet, but it will be
soon. In the meantime, traces of it are still visible in the grammar. They
should not be used and can safely be ignored.

B.3 Changes from X10 v2.0

Some of these changes have been made obsolete in X10 2.2.

e Any is now the top of the type hierarchy (every object, struct and func-

tion has a type that is a subtype of Any). Any defines home, at, toString,
typeName, equals and hashCode. Any also defines the methods of Equals,
so Equals is not needed any more.

e Revised discussion of incomplete types.

e The manual has been revised and brought into line with the current imple-

mentation.

B.4 Changes from X10 v1.7

The language has changed in the following ways. Some of these changes have
been made obsolete in X10 2.2.

e Type system changes: There are now three kinds of entities in an X10

computation: objects, structs and functions. Their associated types are class
types, struct types and function types.

Class and struct types are called container types in that they specify a col-
lection of fields and methods. Container types have a name and a signature
(the collection of members accessible on that type). Collection types sup-
port primitive equality == and may support user-defined equality if they
implement the x10.1lang.Equals interface.

Container types (and interface types) may be further qualified with con-
straints.

B.4. CHANGES FROM X10 V1.7 321

A function type specifies a set of arguments and their type, the result type,
and (optionally) a guard. A function application type-checks if the argu-
ments are of the given type and the guard is satisfied, and the return value
is of the given type. A function type does not permit == checks. Closure
literals create instances of the corresponding function type.

Container types may implement interfaces and zero or more function types.

All types support a basic set of operations that return a string representation,
a type name, and specify the home place of the entity.

The type system is not unitary. However, any type may be used to instantiate
a generic type.

There is no longer any notion of value classes. value classes must be
re-written into structs or (reference) classes.

¢ Global object model: Objects are instances of classes. Each object is asso-
ciated with a globally unique identifier. Two objects are considered identical
==if their ids are identical. Classes may specify global fields and methods.
These can be accessed at any place. (global fields must be immutable.)

e Proto types. For the decidability of dependent type checking it is necessary
that the property graph is acyclic. This is ensured by enforcing rules on the
leakage of this in constructors. The rules are flexible enough to permit
cycles to be created with normal fields, but not with properties.

e Place types. Place types are now implemented. This means that non-global
methods can be invoked on a variable, only if the variable’s type is either a
struct type or a function type, or a class type whose constraint specifies that
the object is located in the current place.

There is still no support for statically checking array access bounds, or per-
forming place checks on array accesses.

C Options

C.0.1 Compiler Options

The X10 compilers have many useful options.

C.0.2 Optimization: -0 or -optimize

This flag causes the compiler to generate optimized code.

C.0.3 Debugging: -DEBUG=boolean

This flag, if true, causes the compiler to generate debugging information. It is
false by default.

C.0.4 Call Style: -STATIC CHECKS, -VERBOSE CHECKS

By default, if a method call could be correct but is not necessarily correct, the
X10 compiler generates a dynamic check to ensure that it is correct before it is
performed. For example, the following code:

def use(n:Int{self == 0}) {}
def test(x:Int) {
use(x); // creates a dynamic cast

}

compiles with -STATIC_CHECKS, even though it is possible that x ! =@ when use (x)
is called. In this case, the compiler inserts a cast, which has the effect of checking
that the call is correct before it happens:

322

323

def use(n:Int{self == 0}) {}
def test(x:Int) {

use(x as Int{self == 0});
}

The compiler produces a warning that it inserted some dynamic casts. If you then
want to see what it did, use ~-VERBOSE_CHECKS.

You may also turn on static checking, with the -STATIC_CHECKS flag. With static
checking, calls that cannot be proved correct statically will be marked as errors.

C.0.5 Help: -help and -- -help

These options cause the compiler to print a list of all command-line options.

C.0.6 Source Path: -sourcepath path

This option tells the compiler where to look for X10 source code.

C.0.7 (Deprecated) Class Path: -classpath path

This option is accepted for backward compatibility, but ignored.

C.0.8 Output Directory: -d directory

This option tells the compiler to produce its output files in the specified directory.

C.0.9 Runtime -x10rt impl

This option tells which runtime implementation to use. The choices are lapi,
pgp, sockets, mpi, and standalone.

C.0.10 Executable File -0 path

This option tells the compiler what path to use for the executable file.

324 APPENDIX C. OPTIONS

C.1 Execution Options: Java

The Java execution command x10 has a number of options as well.

C.1.1 Class Path: -classpath path

This option specifies the search path for class files.

C.1.2 Library Path: -1ibpath path

This option specifies the search path for native libraries.

C.1.3 Heap Size: -mx size

Sets the maximum size of the heap.

C.1.4 Help: -h

Prints a listing of all execution options.

C.2 Running X10

An X10 application is launched either by a direct invocation of the generated
executable or using a launcher command. The specification of the number of
places and the mapping from places to hosts is transport specific and discussed in
for Managed X10 (Java back end) and for Native X10 (C++ back end).
For distributed runs, the x10 distribution (libraries) and the compiled application
code (binary or bytecode) are expected to be available at the same paths on all the
nodes.

Detailed, up-to-date documentation may be found at

http://xj.watson.ibm.com/twiki/bin/view/Main/LaunchingX10Applications

C.3. MANAGED X10 325

C.3 Managed X10

Managed X10 applications are launched using the x10 script followed by the qual-
ified name of the main class.

x10c HelloWholelWorld.x1®
x10 HelloWholeWorld

The main purpose of the x10 script is to set the jvm classpath and the java.library.path
system property to ensure the x10 libraries are on the path.

C.4 Native X10

On most platforms and for most transports, X10 applications can be launched by
invoking the generated executable.

x10c++ -o HelloWholeWorld HelloWholeWorld.x1®
./HelloWholeWorld
On cygwin, X10 applications must be launched using the runx10 script followed
by the name of the generated executable.
x10c++ -o HelloWholeWorld HelloWholeWorld.x10
runx1® HelloWholeWorld
The purpose of the runx10 script is to ensure the x10 libraries are on the path.
Detailed, up-to-date documentation may be found at
http://xj.watson.ibm.com/twiki/bin/view/Main/X10NativeImplementation
The X10 language has been developed as part of the IBM PERCS Project, which

is supported in part by the Defense Advanced Research Projects Agency (DARPA)
under contract No. NBCH30390004.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

326 APPENDIX C. OPTIONS

	Introduction
	Overview of X10
	Object-oriented features
	The sequential core of X10
	Places and activities
	Clocks
	Arrays, regions and distributions
	Annotations
	Translating MPI programs to X10
	Summary and future work
	Design for scalability
	Design for productivity
	Conclusion

	Lexical and Grammatical structure
	Whitespace
	Comments
	Identifiers
	Keywords
	Literals
	Separators
	Operators
	Grammatical Notation

	Types
	Type System
	Unit Types: Classes, Struct Types, and Interfaces
	Class types
	Struct Types
	Interface types
	Properties

	Type Parameters and Generic Types
	Type definitions
	Motivation and use

	Constrained types
	Examples of Constraints
	Syntax of constraints
	Constraint solver: incompleteness and approximation
	Acyclicity of Properties
	Limitation: Generics and Constraints at Runtime

	Function types
	Default Values
	Annotated types
	Subtyping and type equivalence
	Common ancestors of types
	Fundamental types
	The interface Any
	The class Object

	Type inference
	Variable declarations
	Return types
	Inferring Type Arguments

	Type Dependencies
	Typing of Variables and Expressions
	Limitations of Strict Typing

	Variables
	Immutable variables
	Initial values of variables
	Destructuring syntax
	Formal parameters
	Local variables and Type Inference
	Fields

	Names and packages
	Names
	Shadowing
	Hiding
	Obscuring
	Ambiguity and Disambiguation

	Access Control
	Details of `protected`

	Packages
	Name Collisions

	import Declarations
	Single-Type Import
	Automatic Import
	Implicit Imports

	Conventions on Type Names

	Interfaces
	Interface Syntax
	Access to Members
	Member Specification
	Property Methods
	Field Definitions
	Fine Points of Fields

	Generic Interfaces
	Interface Inheritance
	Members of an Interface

	Classes
	Principles of X10 Objects
	Basic Design
	Class Declaration Syntax

	Fields
	Field Initialization
	Field hiding
	Field qualifiers

	Properties
	Properties and Field Initialization
	Properties and Fields
	Acyclicity of Properties

	Methods
	Forms of Method Definition
	Method Return Types
	Final Methods
	Generic Instance Methods
	Method Guards
	Property methods
	Method overloading, overriding, hiding, shadowing and obscuring

	Constructors
	Automatic Generation of Constructors
	Calling Other Constructors
	Return Type of Constructor

	Static initialization
	User-Defined Operators
	Binary Operators
	Unary Operators
	Type Conversions
	Implicit Type Coercions
	Assignment and Application Operators

	Class Guards and Invariants
	Invariants for implements and extends clauses
	Timing of Invariant Checks
	Invariants and constructor definitions

	Generic Classes
	Use of Generics

	Object Initialization
	Constructors and Non-Escaping Methods
	Fine Structure of Constructors
	Definite Initialization in Constructors
	Summary of Restrictions on Classes and Constructors

	Method Resolution
	Space of Methods
	Possible Methods
	Field Resolution
	Other Disambiguations

	Static Nested Classes
	Inner Classes
	Constructors and Inner Classes

	Local Classes
	Anonymous Classes

	Structs
	Struct declaration
	Boxing of structs
	Optional Implementation of Any methods
	Primitive Types
	Signed and Unsigned Integers

	Example structs
	Nested Structs
	Default Values of Structs
	Converting Between Classes And Structs

	Functions
	Overview
	Function Application
	Function Literals
	Outer variable access

	Functions as objects of type Any

	Expressions
	Literals
	this
	Local variables
	Field access
	Function Literals
	Calls
	super calls

	Assignment
	Increment and decrement
	Numeric Operations
	Conversions and coercions
	Unary plus and unary minus

	Bitwise complement
	Binary arithmetic operations
	Binary shift operations
	Binary bitwise operations
	String concatenation
	Logical negation
	Boolean logical operations
	Boolean conditional operations
	Relational operations
	Conditional expressions
	Stable equality
	No Implicit Coercions for ==
	Non-Disjointness Requirement

	Allocation
	Casts and Conversions
	Casts
	Explicit Conversions
	Resolving Ambiguity

	Coercions and conversions
	Coercions
	Conversions

	"instanceof"
	Nulls in Constraints in as and instanceof

	Subtyping expressions
	Array Constructors
	Parenthesized Expressions

	Statements
	Empty statement
	Local variable declaration
	Block statement
	Expression statement
	Labeled statement
	Break statement
	Continue statement
	If statement
	Switch statement
	While statement
	Do--while statement
	For statement
	Return statement
	Assert statement
	Exceptions in X10
	Throw statement
	Try--catch statement
	Assert

	Places
	The Structure of Places
	here
	 at: Place Changing
	Copying Values
	How at Copies Values
	at and Activities
	Copying from at
	Copying and Transient Fields
	Copying and GlobalRef
	Warnings about `at`

	Activities
	The X10 rooted exception model
	async: Spawning an activity
	Finish
	Initial activity
	Ateach statements
	`var`s and Activities
	Atomic blocks
	Unconditional atomic blocks
	Conditional atomic blocks

	Use of Atomic Blocks

	Clocks
	Clock operations
	Creating new clocks
	Registering new activities on clocks
	Resuming clocks
	Advancing clocks
	Dropping clocks

	Deadlock Freedom
	Program equivalences
	Clocked Finish

	Local and Distributed Arrays
	Points
	IntRange
	Regions
	Operations on regions

	Arrays
	Array Constructors
	Array Operations

	Distributions
	PlaceGroups
	Operations returning distributions

	Distributed Arrays
	Distributed Array Construction
	Operations on Arrays and Distributed Arrays
	Element operations
	Arrays of Single Values
	Restriction of an array
	Operations on Whole Arrays

	Annotations
	Annotation syntax
	Annotation declarations

	Native Code Integration
	Native static Methods
	Native Blocks
	External Java Code
	External C++ Code
	Auxiliary C++ Files
	C++ System Libraries

	Definite Assignment
	Asynchronous Definite Assignment
	Characteristics of Definite Assignment

	Grammar
	Alphabetic index of definitions of concepts, keywords, and procedures
	Deprecations
	Change Log
	Changes from X10 v2.1
	Changes from X10 v2.0.6
	Object Model
	Constructors
	Implicit clocks for each finish
	Asynchronous initialization of val
	Main Method
	Assorted Changes
	Safety of atomic and when blocks
	Removed Topics
	Deprecated

	Changes from X10 v2.0
	Changes from X10 v1.7

	Options
	Compiler Options
	Optimization: -O or -optimize
	Debugging: -DEBUG=boolean
	Call Style: -STATIC_CHECKS, -VERBOSE_CHECKS
	Help: -help and -- -help
	Source Path: -sourcepath path
	(Deprecated) Class Path: -classpath path
	Output Directory: -d directory
	Runtime -x10rt impl
	Executable File -o path

	Execution Options: Java
	Class Path: -classpath path
	Library Path: -libpath path
	Heap Size: -mx size
	Help: -h

	Running X10
	Managed X10
	Native X10

